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SUMMARY

Exportin5 mediates the nuclear export of double-
stranded RNAs, including pre-microRNAs, adeno-
viral RNAs, and tRNAs. When tRNAs are amino-
acylated, the Exportin5-aminoacyl (aa)-tRNA
complex recruits and coexports the translation
elongation factor eEF1A. Here, we show that eEF1A
binds to Snail transcription factors when bound to
their main target, the E-cadherin promoter, facili-
tating their export to the cytoplasm in association
with the aa-tRNA-Exportin5 complex. Snail binds to
eEF1A through the SNAG domain, a protein nuclear
export signal present in several transcription factor
families, and this binding is regulated by phosphory-
lation. Thus, we describe a nuclear role for eEF1A
and provide a mechanism for protein nuclear export
that attenuates the activity of SNAG-containing tran-
scription factors.
INTRODUCTION

All transport processes between the cytoplasmic and nuclear

compartments take place through nuclear pore complexes

(NPCs), huge protein assemblies that completely cross the

nuclear envelope. Although small molecules (up to 20–40 kDa)

can pass through the NPCs by passive diffusion, translocation

of most proteins and RNA molecules is an active process medi-

ated by nuclear transport receptors (NTRs) (Görlich and Kutay,

1999; Pemberton and Paschal, 2005). Most NTRs belong to

the importin b family, soluble proteins that continuously shuttle

between the nucleus and the cytoplasm and that interact with

three different components: the cargo they are going to trans-

port, the nucleoporins, and the small GTPase Ran in its GTP-

bound form. The majority of NTRs mediate only nuclear import

or export processes and are classified as importins or exportins

(Exps), respectively. Importins and exportins bind to their cargos

either directly or through adaptor molecules that recognize spe-
Ce
cific motifs called nuclear localization signals (NLSs) or nuclear

export signals (NESs), respectively. The direction of the transport

is regulated by a RanGTP gradient across the nuclear envelope

with a high concentration of RanGTP in the nucleus and a very

low concentration in the cytoplasm. Exportins only bind to their

substrates in the nucleus where the concentration of RanGTP

is high. Under these conditions, a trimeric complex containing

the exportin, RanGTP, and the cargo is formed and then translo-

cated to the cytoplasm. Once in the cytoplasm, the GTP bound

to Ran is hydrolyzed and both Ran and the cargo are released.

The exportin can then enter into the nucleus again and start a

new round of export.

Three exportins (Exp7, CRM1, and Exp5) are able to recognize

and export a broad range of substrates. Exportin 7 seems to be

specialized in keeping the nuclear exclusion of several cyto-

plasmic proteins (Mingot et al., 2004). CRM1 is responsible for

the nuclear export of a huge number of proteins, many of them

containing a leucine-rich NES, and of different RNAs using

NES-containing proteins as adaptor molecules (Calado et al.,

2002). Exp5 directly binds and mediates the nuclear export of

double-stranded RNA (dsRNA) molecules including pre-micro-

RNAs (pre-miRNAs) (Bohnsack et al., 2004; Lund et al., 2004;

Yi et al., 2003), viral hairpin RNAs (Gwizdek et al., 2001, 2003),

and tRNAs (Bohnsack et al., 2002; Calado et al., 2002). When

Exp5 binds aminoacyl-tRNAs (aa-tRNAs), this complex can

recruit and cotransport the eukaryotic elongation factor 1A

(eEF1A) (Bohnsack et al., 2002; Calado et al., 2002). Because

eEF1A is mainly a cytoplasmic protein that plays a critical role

in protein translation, its nuclear coexport by aa-tRNA-bound

to Exp5 was proposed as a mechanism used to return this

protein to the cytoplasm if had accidentally accessed the nu-

cleus (Bohnsack et al., 2002; Calado et al., 2002). Here, we

show that Exp5 not only returns EF1A to the cytoplasm, but

also that eEF1A itself plays an active role in the nucleus, as it in-

teracts with the 9-amino-acid-long SNAG domain present in

several families of C2H2 zinc-finger transcription factors (Bar-

rallo-Gimeno and Nieto, 2009) to promote the nuclear export of

these proteins by the Exp5-aa-tRNA complex.

Among the SNAG-containing transcription factors, Snail

proteins are particularly relevant because they are essential for
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Figure 1. CRM1 and Exp5 Both Mediate the Nuclear Export of Snail

Factors

(A) CRM1 and Exp5, from a complete cytosolic HeLa extract, bind to Snail1,

Snail-like, and Snail2 in pull-down assays only in the presence of RanGTP

(5 mM). ExpT does not bind to any of these proteins. CRM1, Exp5, and ExpT

were detected in western blots.

(B) Nuclear export assays in digitonin-permeabilized HeLa cells transiently

transfected with a Snail-RFP/H2B-GFP bicistronic expression construct. In

contrast to purified ExpT, both CRM1 and Exp5 efficiently mediate Snail-RFP

nuclear export. As expected, H2B-GFP remains in the nucleus.
the definition of embryonic territories (Acloque et al., 2011), the

delamination of the neural crest, and the formation of additional

tissues and organs (Thiery et al., 2009). Activation of Snail in

the adult is important for wound healing and tissue repair, but

when Snail genes are activated in primary tumors, they favor

the acquisition of migratory and invasive properties, whereas in

nontransformed cells they induce organ fibrosis (Acloque et al.,

2009; Nieto, 2011; Thiery et al., 2009). Because of its relevant

function, Snail expression and activity is tightly regulated with

strict transcriptional, posttranscriptional, and posttranslational

controls, the latter including protein stability and subcellular

localization. Snail degradation is mediated by the proteasome

pathway, and different E3 ubiquitin ligases such as b-TrcP,

FBXL14, and MDM2 mediate its polyubiquitination. Phosphory-

lation by different kinases such as PKD1 and GSK3-b primed

by CK1 can trigger its nuclear export. Conversely, Snail can be

stabilized by small C-terminal domain phosphatase-meditated

dephosphorylation, CK2 and PKA phosphorylation, and

O-GlcNAc modification, and its nuclear localization can be

increased, at least in breast cancer cells, upon PAK1 phosphor-

ylation (reviewed in Nieto, 2011). However, although Snail

nuclear import pathways have been described in detail (Mingot

et al., 2009; Yamasaki et al., 2005), little is known about Snail

nuclear export pathways, except that Snail1 protein accumu-

lates in the nucleus following treatment with leptomycin B
728 Cell Reports 5, 727–737, November 14, 2013 ª2013 The Authors
(LMB), a specific CRM1 inhibitor (Domı́nguez et al., 2003; Zhou

et al., 2004), indicating that CRM1 likely mediates Snail nuclear

export. In this work, we confirm that CRM1 mediates Snail1

nuclear export. More importantly, we show that Exp5 can also

mediate the nuclear export of Snail family members and of other

SNAG-containing transcription factors, such as those from the

Gfi, Ovol, and insulinoma families. The SNAG domain is required

for the interaction with eEF1A and, hence, the incorporation of

these proteins into the aa-tRNA-Exp5 complex prior to its

nuclear export. Therefore, we define a nuclear function for the

protein translation elongation factor, show that the SNAG

domain is an NES, and describe an additional protein export

pathway used to attenuate the function of important transcrip-

tion factors.

RESULTS

Exp5 and CRM1 Can Both Promote Snail1 Nuclear
Export
Because Snail1 subcellular localization is a fundamental mecha-

nism to control its activity as a transcription factor, we set out to

define its nuclear export pathways. Using Snail1 as bait in pull-

down assays and a complete cytosolic extract from HeLa cells

as a source of exportins, we found that CRM1 interacts with

Snail1 (Figure 1A), again suggesting that CRM1 can mediate

Snail nuclear export as it does for the majority of proteins.

Interestingly, we found that in addition to CRM1, Exp5 also in-

teracted with human Snail1 (Figure 1A). CRM1 and Exp5 could

also bind to other Snail proteins characterized in humans, as

Snail2 and Snail-like (Figure 1A), suggesting that the Snail family

as a whole may use these two nuclear export pathways. In

contrast, we found that another exportin of the impb family,

ExpT, does not bind to any of these Snail proteins (Figure 1A).

We asked whether CRM1 and Exp5 could mediate Snail1

nuclear export and, if so, whether they could each do so inde-

pendently. We assayed Snail1 nuclear export in HeLa cells

transiently transfected with a bicistronic plasmid driving the

expression of Snail1 fused to red fluorescent protein (Snail1-

RFP) and histone H2B fused to GFP (H2B-GFP). Histone H2B

expression permitted us to distinguish between nontransfected

cells and transfected cells from which Snail1 was exported,

since histone H2B is not exported by Exp5, CRM1, or ExpT.

Then, 24 hr after transfection, cells were permeabilized with digi-

tonin, leading to the loss of all soluble cytoplasmic or nucleocy-

toplasmic shuttling components, including NTRs of the impb

family (as CRM1, Exp5, and ExpT), while keeping the nuclear

envelope intact. Permeabilized cells were then independently

incubated with purified Exp5, CRM1, or ExpT in the presence

of Ran system components and an energy regenerating system.

As expected, both in the absence of exportins or in the presence

of ExpT, Snail1 and histone H2Bwere detected in the nucleus by

confocal microscopy (Figure 1B). However, while H2B persisted

in the nucleus in the presence of Exp5 or CRM1, very little Snail-

RFP remained (Figure 1B). These results confirm that, not

surprisingly, CRM1 can mediate Snail1 nuclear export, as previ-

ously suggested (Domı́nguez et al., 2003; Zhou et al., 2004).

More importantly, our data show that Snail1 can be indepen-

dently exported by Exportin 5.
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Figure 2. Snail1 SNAG Domain Is an NES for

Exp5

(A–D) Pull-down assays with the indicated immo-

bilized proteins were performed with a complete

cytosolic HeLa extract as a source of Exp5 in the

presence of RanGTP (5 mm) unless otherwise

stated. Exp5 was detected in western blots. (A)

Exp5 mainly binds to the N-terminal half Snail1

(N-Half; amino acids 1–151). Deletion of the SNAG

domain from Snail1 N half (residues 1–9; Snail 10–

151) prevents Exp5 binding and binding to the

C-terminal half (C-Half: amino acids 152–264) is

virtually undetectable. (B) Exp5 cannot bind to

DSNAG-Snail1 and the SNAG domain alone is

sufficient for Exp5 binding. (C) The SNAG domain

is neither necessary nor sufficient for mediating

CRM1 binding to Snail1. (D) Unless fused to a

SNAG domain (SNAG-WT), Drosophila Snail

(DmSnail) does not bind to Exp5.

(E and F) Nuclear export assays in digitonin-per-

meabilized HeLa cells were performed as in Fig-

ure 1. (E) Deletion of the SNAG domain prevents

Exp5-mediated nuclear export of Snail1. (F) Dm-

Snail was only exported by Exp5 when fused to a

SNAG domain (Dm-SNAG-RFP).
The SNAG Domain Is a NES for Exp5
To identify Snail1 binding sites for Exp5, a deletion analysis was

performed. First, we split Snail1 into two halves and found that

Exp5 binds exclusively to the N-terminal half of the protein (res-

idues 1–151; Figure 2A). Then, we performed serial deletions of

the N-terminal half. C-terminal deletions of this region demon-

strated that Exp5 could bind to the first 58 residues of Snail1 (Fig-

ure 2A), whereas N-terminal deletions showed that removal of

the first nine residues, the corepressor SNAG domain, was suf-

ficient to completely abolish Exp5 binding (Figure 2A). Thus,

the SNAG domain is necessary for Exp5 binding, at least in the

context of the N-terminal half of Snail1. Deletion of the SNAG

domain in the context of the full-length protein also prevented

Exp5 binding (DSNAG; Figure 2B), confirming that these nine

amino acids are the only Snail1 requirement for Exp5 binding.

Furthermore, the SNAG domain alone was as efficient as full-

length Snail1 in interacting with Exp5 (Figure 2B), indicating

that the SNAG domain is not only necessary but also sufficient

to mediate Exp5 recruitment to Snail1. Interestingly, deletion of

the SNAG domain did not affect the interaction of Snail1 with

CRM1 and this exportin was not able to interact with the SNAG
Cell Reports 5, 727–737, N
domain alone (Figure 2C), suggesting

that both exportins can independently

interact with Snail1 and, as shown in Fig-

ure 1B, mediate its nuclear export.

The three Drosophila Snail family

members, Snail, Worniu, and Escargot,

are among the Snail proteins that lack a

SNAG domain (Barrallo-Gimeno and

Nieto, 2009), and thus, they should not

bind to Exp5. As predicted, only back-

ground levels of Drosophila Snail bound

to Exp5 in either the presence or absence
of RanGTP (Figure 2D). Moreover, introducing a SNAG domain

into DmSnail allowed it to interact with Exp5 (Figure 2D), which

is further evidence that the SNAG domain is necessary and

sufficient to mediate binding to Exp5. We also assessed if the

lack of the SNAG domain was sufficient to prevent Exp5-medi-

ated nuclear export of human Snail1 (SNAI1) by performing

nuclear export assays with digitonin-permeabilized cells as

described above. Whereas recombinant Exp5, the only exportin

present in the assay, efficiently mediated Snail1 nuclear export,

SnailDSNAG was mainly retained in the nucleus along with H2B

(Figure 2E). Thus, the presence of the SNAG domain is determi-

nant for Exp5-mediated Snail1 nuclear export. Indeed, while

Exp5 was unable to drive the nuclear export of Dm-Snail-RFP

(Figure 2F), Dm-Snail-RFP fused to the human Snail1 SNAG

domain was exported, although less efficiently than Snail1

(compare Dm-SNAG-RFP in Figure 2F with Snail1-RPF in Fig-

ure 2E). Together, these data indicate that the SNAG domain is

required for Exp5 to drive Snail nuclear export, and therefore, it

represents a NES.

Besides Snail, the SNAG domain is present in other families of

C2H2 transcription factors, such as the closely related Scratch
ovember 14, 2013 ª2013 The Authors 729
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Figure 3. SNAG-Containing Proteins Form a

Complex with Exp5

(A) Alignment of the SNAG domains from repre-

sentative members of the C2H2 transcription

factor families containing SNAG domains.

(B and C) Pull-down assays performed with the

indicated immobilized proteins using a complete

cytosolic HeLa extract as a source of Exp5. (B) All

SNAG domains can be found in a complex con-

taining Exp5. (C) As expected, GFI1 forms a

complex with Exp5 that is dependent on the

presence of the SNAG domain.
factors and the GFI, Ovol, and insulinoma proteins (Barrallo-

Gimeno and Nieto, 2009). Pull-down assays with the SNAG

domain of representative members of each of these five tran-

scription factor families (Figure 3A) showed that Exp5 could

bind to the five immobilized SNAG domains in a similar manner

(Figure 3B). Furthermore, Exp5 binds GFI1 in a SNAG-depen-

dent manner (Figure 3C), confirming that the SNAG domain is

an NES for Exp5.

Exp5-RanGTP-aa-tRNA-eEF1A Is a Nuclear Export
Complex
Exp5 binds and exports dsRNA, and it can indirectly export a few

proteins that associate with dsRNA such as Yaz, Staufen, and

eEF1A (Bohnsack et al., 2002; Brownawell and Macara, 2002;

Calado et al., 2002; Gwizdek et al., 2004; Macchi et al., 2004).

Hence, we examined whether Snail1’s interaction with Exp5

was dependent on dsRNA by performing pull-down assays on

cytosolic HeLa extracts prior to or after treatment with RNase

A. RNase A degraded all the existing RNA (Figure 4A), and

although this degradation did not affect Exp5 levels, it did abro-

gate the formation of the complex between Snail1 and Exp5 (Fig-

ure 4B). Because Exp5 is unable to bind single-stranded RNA

(Bohnsack et al., 2004), we concluded that the interaction of

Exp5 with Snail1 required dsRNA.

We wondered whether Snail1 binds to dsRNA, like Yaz, Stau-

fen, and eEF1A, even though Snail1 does not appear to harbor a

dsRNA-binding motif. Pull-down assays with purified com-

ponents showed that neither RanGTP alone nor a complete

RNA preparation from HeLa cells in the presence of RanGTP

could stimulate the association of Snail1 with Exp5 (Figure S1).

Therefore, rather than binding directly to dsRNA, Snail would

appear to interact with dsRNA via a protein that facilitates its

recruitment to Exp5.

We performed a yeast double-interaction screen (DIS) de-

signed to find nuclear partners for Snail1 when it is bound to

its target promoters (Pick et al., 2000; see also Supplemental

Experimental Procedures), using the E-cadherin promoter

(Cano et al., 2000), and found eEF1A as one of the potential

Snail1-interacting proteins. Because eEF1A is a cytoplasmic

protein involved in translation elongation, we were initially

perplexed by this interaction. However, we wondered whether

eEF1A might be implicated in the mechanism by which Snail

can be exported by Exp5, acting as a bridge between Snail

and Exp5-dsRNA. Indeed, we found an interaction between

Snail1 and eEF1A, detected in pull-down assays of complete

HeLa extracts, that was independent of the presence of RanGTP
730 Cell Reports 5, 727–737, November 14, 2013 ª2013 The Authors
(Figure 4C), suggesting that this interaction was independent of

Exp5. eEF1A binds Snail1 in the presence of RNase, which

completely excludedExp5 from the complex (compare Figure 4D

with Figure 4B). Hence, a nuclear interaction between eEF1A and

Snail1 was required for the latter to complex with Exp5 in a Ran-

GTP dependent manner. To confirm this, we depleted both

eEF1A and Exp5 from a cytosolic HeLa extract (Figure 4E) and

found that Snail1 did not associate with Exp5 above background

levels when the latter was reintroduced into the extract (Fig-

ure 4F). Importantly, Exp5 bound to Snail1 in a dose-dependent

manner when eEF1A was also included (Figure 4F). In addition,

the binding of eEF1A to Snail1 was independent of Exp5 (Fig-

ure 4F), consistent with the binding observed in the absence of

RNA (Figure 4D) and indicating that Snail proteins must complex

with eEF1A for them to be recruited to Exp5. Therefore, Exp5-

mediated nuclear export of Snail1 requires eEF1A, suggesting

a nuclear role for the elongation factor in protein nuclear export.

It has been previously shown that the only dsRNA that medi-

ates the interaction between eEF1A and Exp5 is the aminoacy-

lated (aa) form of tRNAs, whereas the deacylated (da) form of

these dsRNAs does not participate in this complex (Bohnsack

et al., 2002; Calado et al., 2002). In agreement with these find-

ings, in cytosolic HeLa extract depleted of both Exp5 and total

RNA, we found that whereas aa-tRNA allowed the interaction

of readded Exp5 to a Snail1-eEF1A complex, da-tRNA pre-

vented this interaction (Figure 4G). Because eEF1A interacted

with Snail1 in both RNase-treated (Figure 4D) and RNA-depleted

HeLa extracts (Figure 4G), this interaction does not seem to

require previous binding of eEF1A to aa-tRNA.

eEF1A was found as a putative partner of Snail1 using a DIS

assay designed to find partners when transcription factors are

bound to their target promoters. Therefore, we wanted to

confirm that the interaction of eEF1A with Snail1 occurred

when the later was bound to its main target, the E-cadherin

promoter, used in the DIS assay. We performed chromatin

immunoprecipitation (ChIP) assays in A375P melanoma cells

that endogenously express Snail1 (Figure S2A). As expected,

Snail1 efficiently bound to the E-cadherin promoter (Figures 4H

and S2B). Interestingly, eEF1A also bound to the promoter com-

plex (Figures 4H and S2B). To examine whether eEF1A binding

required previous binding of Snail to the promoter, we transiently

transfected eEF1A and Snail1 in the human mammary gland

epithelial cell line MCF7 that does not express Snail1 (Fig-

ure S2A). This experiment allowed us to test either Snail wild-

type (WT) or a Snail1 mutant version that does not bind to the

E-cadherin promoter (M3: K187E, R191E) (Mingot et al., 2009).
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Figure 4. Exp5 Requires aa-tRNA and

eEF1A to Interact with Snail1

(A) RNA from a cytosolic HeLa extract, either

treated or untreated with RNase, was resolved in

a 1% agarose gel and stained with ethidium

bromide. Note that RNase treatment completely

degrades the RNA.

(B–G and I) Pull-down assays were performed in

the presence of RanGTP (5 mm) unless otherwise

stated.

(B) While RNase treatment did not affect the Exp5

levels in the HeLa extract (left), it prevented Exp5

from interacting with Snail1 (right).

(C and D) eEF1A interacts with Snail1 irrespective

of the presence of RanGTP (C) and RNA (D). Note

that RNase treatment does not significantly alter

the levels of eEF1A.

(E and F) Exp5 and eEF1Awere efficiently depleted

from a complete HeLa extract (E; compare com-

plete with depleted) as shown in western blots. (F)

Added Exp5 was able to interact with Snail1 only in

the presence of eEF1A, while eEF1A bound to

Snail1 in a concentration-dependent manner irre-

spective of the presence of Exp5.

(G) Purified aminoacylated tRNA (aa), but not the

deacylated form (da), allows the interaction of

recombinant Exp5 to a Snail1-eEF1A complex

from an RNA and Exp5-depleted HeLa extract

(HeLa QFT). Exp5, eEF1A, and immobilized Snail1

(bait) were detected by western blots. The input

RNA was resolved in a 1.5% agarose gel and

stained with ethidium bromide.

(H) Chromatin immunoprecipitation (ChIP)

assays with an amplicon (�294 to �63) of the E-

cadherin promoter containing the E-box1. Assays

were performed in A375P or in MCF7 cells

transiently transfected with eEF1A and Snail WT

or a Snail mutant form (M3), unable to bind to

the promoter. ChIP was performed with anti-

Snail1, anti-eEF1A, anti-histone H3 (positive

control), or rabbit IgG (negative control) antibodies. In each case, 10% of the nonimmunoprecipitated chromatin was used as the input.

(I) The absence of the SNAG domain (DSNAG) prevents Snail1 from binding to eEF1A and the formation of a complex with Exp5. Addition of a SNAG domain

promotes Exp5 and eEF1A binding to DmSnail.
When we transfected the Snail1 mutant version, neither Snail1

nor eEF1A could bind to the promoter (Figures 4H and S2B), indi-

cating that eEF1A directly interacts with Snail1 in the nucleus

when the latter is bound to its main target promoter.

In addition, if, as indicated by our data, eEF1A binding to

Snail1 does not require Exp5 and the SNAG domain is an NES

for Exp5-mediated protein nuclear export, then deletion of the

SNAG domain in human Snail1 should prevent it from binding

eEF1A. Not only did deletion of the SNAGdomain in Snail1 signif-

icantly decrease its interaction with eEF1A (Figure 4I, left panel),

but when a SNAG domain was fused to Dm-Snail, this protein

acquired the capacity to bind eEF1A and then, indirectly, Exp5

(Figure 4I, right panel). These data confirm that eEF1A binds to

Snail1 through the SNAG domain independently of the binding

of eEF1A to Exp5.

A Nuclear Function for eEF1A in Protein Export
Wehave shown here that Exp5mediates Snail1 nuclear export in

intact nuclei from digitonin-permeabilized cells and that eEF1A
Ce
binds to Snail1 through the SNAG domain when Snail1 is bound

to the E-cadherin promoter. We wanted to go a step further and

examine whether this complex functions as a nuclear export

pathway in intact cells. To characterize the interaction between

Snail1 and eEF1A, we used the bimolecular fluorescence

complementation technique (Hu et al., 2002; Kerppola, 2006)

using an optimized version of the Venus variant of yellow fluores-

cent protein (Saka et al., 2007). This technique is based on the

fact that the two nonfluorescent halves of GFP derivatives can

reconstitute a fluorescent protein when they are close enough

to irreversibly interact with each other. Venus N and C halves

(VN and VC) are very small proteins (around 17 and 10 kDa,

respectively) that are able to interact with each other and recon-

stitute a fluorescent protein. When we overexpressed free VN

and VC in MCF7 cells, we could detect Venus fluorescence

both in the nucleus and in the cytoplasm (Figure 5A) showing

the typical subcellular localization pattern of GFP derivatives.

In contrast, when we coexpressed one of the halves alone and

the other one fused to either eEF1A (VN-eEF1A + VC) or Snail1
ll Reports 5, 727–737, November 14, 2013 ª2013 The Authors 731
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Figure 5. Interaction between eEF1A and

Snail1 in Mammalian Cells

(A–F) Protein interaction analysis in intact cells was

carried out by assessing bimolecular fluorescence

complementation (BIFC) after transfection of

different constructs. MCF7 cells (Snail1 negative)

were transiently transfected with plasmids driving

the expression of Venus amino- or carboxy-halves

either alone (VN or VC) or fused to Snail1 or eEF1A.

The subcellular localization of the reconstituted

Venus was analyzed by confocal microscopy.

(A–C) Venus nucleocytoplasmic distribution (A)

was shifted to a mainly cytoplasmic or nuclear

localization when one of the halves was fused to

either eEF1A (B) or Snail1 (C), respectively.

(D) The interaction between eEF1A and Snail1

resulted in a similar nucleocytoplasmic distribution

of Venus.

(E and F) Venus localization clearly increased in the

nuclear compartment when Exp5 was knocked

down by siRNA (E) or when the interaction

between Snail1 and eEF1A was prevented by

deleting the SNAG domain of Snail1 (F).

(G) Western blot showing that the protein levels of

Exp5 were significantly reduced (at least 85%

reduction) after the treatment with a specific small

interfering RNAs (siRNAs) against Exp5 (siExp5).

Treatment with a siRNA control (siC) had no effect.

Beta-actin detectionwas used as a protein loading

control.

(H–O) Similar experiments to those described in

(B)–(D), subjected to immunofluorescence to

detect eEF1A (J and K) and Snail1 proteins (N and

O). When cells expressed EF1A and Snail1 fused

to each Venus half, respectively, reconstituted

fluorescence (green) allows the detection of partial

nuclear eEF1A localization (I and K, arrows) and

partial cytoplasmic Snail1 localization (M and O,

arrows).
(VN + VC-Snail1), Venuswas reconstituted showing a subcellular

localization corresponding to that of the protein attached,

namely, mainly cytoplasmic in the case of eEF1A (Figure 5B)

and nuclear in the case of Snail1 (Figure 5C). Interestingly,

when we coexpressed one half fused to eEF1A (VN-eEF1A)

and the other half fused to Snail1 (VC-Snail1), in most of the

transfected cells Venus was similarly distributed between the

cytoplasmic and the nuclear compartments (Figure 5D), indi-

cating an interaction between eEF1A and Snail1 and reflecting

the shuttling of the complex between the nucleus and the cyto-

plasm. This nucleocytoplasmic distribution of Venus is compat-

ible with eEF1A and Snail1 interacting in the nucleus, allowing

the recruitment of aa-tRNA-Exp5 and the subsequent nuclear

export of the complex. If this were the case, a decrease of

Exp5 levels would decrease the nuclear export of the complex

and increase its nuclear localization. Indeed, this was the case

(compare Figures 5D and 5E) when we efficiently knocked
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down Exp5 by small interference RNA

(Figure 5G), before transfecting VN-

eEF1A and VC-Snail1 expression con-

structs. In agreement with these data,
the nuclear localization of the complex was similarly increased

when we impaired the interaction between eEF1A and Snail1

and, hence, the recruitment of the aa-tRNA-Exp5 complex,

coexpressing VN-eEF1A together with VC-Snail1DSNAG

instead of VC-Snail1 (compare Figures 5D and 5F). To further

confirm that the subcellular distribution of the reconstituted fluo-

rescence reflected the nucleocytoplasmic distribution of eEF1A

and Snail1 and, consequently, the presence of EF1A in the

nucleus and Snail1 nuclear export, we examined the distribution

of both proteins by immunofluorescence (Figures 5H–5O). When

we coexpressed one half fused to eEF1A (VN-eEF1A) and the

other half fused to Snail1 (VC-Snail1), we could detect a partial

nuclear localization of eEF1A when Venus fluorescence was

reconstituted (Figures 5H–5K, arrows in I and K pointing to the

same cell). We could also observe the result of Snail nuclear

export by its partial cytoplasmic localization (Figures 5L–5O,

arrows in M and O). Altogether, these data confirm that eEF1A
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Figure 6. Exportin5-aa-tRNA-eEF1A Is a

Protein Export Complex

(A) MCF7 cells were transiently transfected with

Snail1-GFP or DSNAG-Snail1-GFP expression

vectors together with RFP, with RFP-IRES-Exp5

alone or in combination with eEF1A (upper panel)

or with the CRM1 substrate eIF2b fused to GFP

(GFP-eIF2b, lower panel). Then, 24 hr after trans-

fection, cells were fixed and Snail-GFP, RFP, and

GFP-eIF2b signals were detected by confocal

microscopy. Where indicated, cells were treated

4 hr with 5 ng/ml leptomycin B (LMB).

(B) Quantification of the Snail1-GFP nucleocyto-

plasmic signal ratio from cells in (A) represented as

a percentage of that measured for the negative

control (cotransfection of Snail1-GFP and RFP).

Fifty cells were analyzed in each case. Statistical

analyses were performed by two-tailed Student’s

t test: ***p < 0.0005.

(C) Luciferase reporter assay showing the activity

of the E-cadherin promoter (�330) in cells co-

transfected with the luciferase reporter plasmid

and the indicated expression constructs. Results

are the mean values ± SE of duplicates from six

independent experiments and presented as

the percentage of luciferase activity relative to

the negative control (cells cotransfected with the

empty vector V0). Statistical analyses were per-

formed by two-tailed Student’s t test. **p < 0.01;

***p < 0.0005.
and Snail1 interact through the SNAG domain in the nucleus of

living cells and that this interaction allows the subsequent func-

tional recruitment of the aa-tRNA-Exp5 complex leading to

Snail1 nuclear export.

We next cotransfected Snail1-GFP into intact MCF7 cells

together with RFP (as a negative control). In this situation, with

the different nuclear import and export pathways unaltered,

Snail1-GFP localization was mainly nuclear (Figure 6A). In

contrast, when we cotransfected Snail1-GFP together with

Exp5 (RFP-IRES-Exp5), the protein partly localized in the cyto-

plasm (Figures 6A and 6B), indicating that Snail1 was exported

by Exp5. This partial cytoplasmic localization was increased

when, in addition to Exp5, eEF1A was overexpressed (Figures

6A and 6B), which did not occur when the SNAG domain was

deleted (Figures 6A and 6B). These data indicate that the

Exp5-aa-tRNA-eEF1A complex is a functional export mediator

for SNAG-containing proteins. Importantly, inactivation of

CRM1 by LMB, which resulted in the nuclear accumulation of

its known substrate eIF2b (Figure 6A, lower panel), did not

change the observed partial cytoplasmic localization of Snail1

(Figures 6A and 6B), discarding a possible role of CRM1 activity

in the observed nuclear export. In agreement with these results,
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Snail1-mediated transcriptional repres-

sion of the E-cadherin promoter

decreased when Snail1 was transiently

cotransfected with either eEF1A or Exp5

(Figure 6C), and this effect was higher

(20% decrease of Snail1 transcriptional

repression) when both were cotrans-
fected, indicating that eEF1A modulates Snail1 activity. As

expected, if the latter was carried out with a Snail1 construct

lacking the SNAG domain (DSNAG), no significant repression

of the E-cadherin repressor was observed either in the absence

or presence of eEF1A and Exp5 (Figure 6C).

It has been recently shown that Snail2 can be phosphorylated

in vivo at Serine 4 (S4) and that this phosphorylation potentiates

its epithelial-mesenchymal transition (EMT) induction capacities

(Molina-Ortiz et al., 2012). Because the SNAG domains of

Snail1 and Snail2 are identical, we wondered whether the phos-

phorylation state of the SNAG domain could influence the

interaction with eEF1A and, in turn, the recruitment of the

Exp5-aa-tRNA complex and the subsequent Exp5-mediated

nuclear export of Snail1. Indeed, we have found that whereas

the nonphosphorylatable (S4A) mutant version did not affect

Snail1’s interaction with eEF1A and Exp5, the phosphomimetic

version (S4E) prevented this interaction in a manner similar

to that caused by the deletion of the SNAG domain (Figure 7A).

In contrast, these mutations did not affect the interaction of

Snail1 with CRM1 (Figure 7A). ChIP analysis of the E-cadherin

promoter in MCF7 cells transiently transfected with eEF1A and

either the Snail1 S4A or the S4E versions showed that both
ovember 14, 2013 ª2013 The Authors 733



Figure 7. Serine 4 Phosphorylation Regu-

lates Snail1 Binding to eEF1A and Nuclear

Export by Exp5

(A) Similar to the deletion of the SNAG domain, the

S4E mutation strongly prevented binding of Snail1

to eEF1A and consequently Exp5, whereas the

S4A mutation did not affect these interactions.

Both S4E and S4A Snail1 could still bind to CRM1.

Pull-down assays were performed in the presence

of RanGTP (5 mm) and the interacting partners

were detected by western blot.

(B) ChIP assays of an amplicon (�294 to �63) of

the E-cadherin promoter containing the E-box1.

ChIP assays were performed in MCF7 cells tran-

siently transfected with eEF1A and S4A or S4E

Snail1. ChIP was performed with Snail1, eEF1A,

histone H3 (positive control), or rabbit IgG (nega-

tive control) antibodies. In each case, 10% of the

nonimmunoprecipitated chromatin was used as

the input.

(C) MCF7 cells were transiently transfected with

plasmids driving the expression of S4A and S4E

mutant versions of Snail1-GFP (as indicated) in

combination with RFP-IRES-Exp5 and eEF1A.

Then, 24 hr after transfection, cells were fixed and

Snail-GFP and RFP signals detected by confocal

microscopy.

(D) Quantification of the Snail1-GFP nucleocyto-

plasmic signal ratio from cells in (C), presented as

a percentage of the ratio measured for the nega-

tive control (cotransfection of Snail-GFP and RFP

shown in Figure 6B). Fifty cells were analyzed in

each case. Note that the nucleocytoplasmic dis-

tribution of Snail1 S4A-GFP is indistinguishable

from the one of Snail1 WT in the same conditions

(compare with Figure 6A), whereas mutant S4E

was retained in the nucleus (as Snail-GFP when

cotransfected with only RFP as shown in Fig-

ure 6A). Statistical analyses were performed by

two-tailed Student’s t test. ***p < 0.0005.

(E) eEF1A binds to SNAG-containing proteins

and, at least in the case of Snail1, this process

occurs when Snail1 is bound to the E-cadherin

promoter and is negatively regulated by phosphorylation of Serine 4. When Exp5 binds aminoacyl-tRNAs (aa-tRNAs), eEF1A can bind to the complex and it is

coexported. The binding of Exp5-aa-tRNA to eEF1A allows the Exp5-mediated nuclear export of SNAG-containing proteins, attenuating their function as

transcription factors.
Snail1 proteins could bind to the promoter (Figures 7B and S2B),

suggesting that the phosphorylation state of S4 does not affect

this binding. However, eEF1A was only recruited to the S4A-

Snail-promoter complex (Figures 7B and S2B). These results

confirm that eEF1A binds to Snail1 when the latter is bound

to the E-cadherin promoter and only when S4 is not phos-

phorylated. In agreement with this, S4A-Snail1-GFP was

exported as efficiently as Snail1-GFP when overexpressed

together with RFP-IRES-Exp5 and eEF1A (Figures 7C and 7D;

compare with Figures 6A and 6B), whereas SnailS4E-GFP was

not exported, showing a nucleocytoplasmic distribution similar

to that of Snail1-GFP in the absence of Exp5 and EF1A (Figures

7C and 7D; compare with Figures 6A and 6B). These data clearly

show that the nuclear export of Snail1 by the Exp5-aa-tRNA-

eEF1A complex is regulated by phosphorylation of the SNAG

domain at S4.
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DISCUSSION

One efficient way to inactivate a transcription factor is to export

it out of the nucleus, and this process is mediated mainly by

exportins of the Impb family. Snail transcription factors are espe-

cially relevant because they are able to induce a complete EMT,

which is essential during embryonic development and always

linked to disease when reactivated in the adult. Thus, the activity

of these proteins must be (and in fact is) tightly regulated. By

characterizing nuclear export pathways of Snail proteins, we

have identified a nuclear export mechanism for proteins contain-

ing the corepressor SNAG domain that is present not only in all

vertebrate and many invertebrate Snail proteins but also in other

families of C2H2 transcription factors, such as the related

Scratch factors and the GFI, Ovol, and insulinoma proteins (Bar-

rallo-Gimeno and Nieto, 2009). Here, we show that eEF1A binds



to the SNAG domain of these proteins, allowing their recruitment

to the Exp5-aa-tRNA complex through eEF1A and their sub-

sequent nuclear export (Figure 7E). At least in the case of Snail1,

the interaction of eEF1A happens when the transcription factor is

bound to its main target, the E-Cadherin promoter, and this inter-

action is regulated by phosphorylation of S4 (Figure 7).

Exportin5 is known to bind and export different dsRNA mole-

cules (Gwizdek et al., 2001; Okada et al., 2009; Zeng and Cullen,

2004). Interestingly, when other proteins such as Yaz, Staufen, or

eEF1A are bound to these dsRNAs, they can be coexported

(Bohnsack et al., 2002; Brownawell and Macara, 2002; Calado

et al., 2002; Gwizdek et al., 2004; Macchi et al., 2004). eEF1A

was the first described to be coexported by Exp5 together

with aa-tRNAs, as these dsRNAs are the natural eEF1A-interact-

ing partners for protein synthesis elongation (Bohnsack et al.,

2002; Calado et al., 2002). However, the fact that themain export

pathway for tRNAs in higher eukaryotes involves ExpT and

eEF1A is mainly cytoplasmic, as expected from its prominent

role in protein elongation, led to the interpretation that the

Exp5-mediated nuclear export of eEF1A was a mechanism to

return this protein to the cytoplasm after its accidental access

to the nucleus (Bohnsack et al., 2002; Calado et al., 2002).

Here, we provide evidence of a mechanism by which eEF1A, in

addition to its essential cytoplasmic roles (Mateyak and Kinzy,

2010), fulfills a specific nuclear function in protein export. This

requires that, in addition to Exp5, aminoacylated tRNAs and

eEF1A itself should localize in the nucleus at least to some

extent. It is well known that tRNAs shuttle between the nuclear

and cytoplasmic compartments in both yeast and mammalian

cells (Murthi et al., 2010; Shaheen et al., 2007), and, at least in

yeast, their nuclear reexport requires both Exp5 (Msn5) and

eEF1A (Tef1/2) (Murthi et al., 2010). Interestingly, eEF1A has

been observed in the nucleus of different mammalian cells as

oligodendrocytes and fibroblasts (Barbarese et al., 1995; Dapas

et al., 2003; Sanders et al., 1996), and its nuclear localization can

be induced in some cancer cells upon insulin stimulation (Piazzi

et al., 2010). Compatible with the described partial nuclear local-

ization of eEF1A, we have identified it as a partner of the Snail1

transcription factor when the latter is bound to its main target,

the E-cadherin promoter, and we provide evidence of this inter-

action occurring in living mammalian cells. Considering the

nuclear function identified here for eEF1A, it is tempting to spec-

ulate that other translation factors, including initiation (eIF4A1,

eIF2, eIF5B), elongation (eEFB, eEF2), and release (eRF1) fac-

tors, could also play important functions in the nucleus, as they

also seem to be actively exported from the nucleus (Bohnsack

et al., 2002).

We find that Snail binds to eEF1A through the SNAG domain,

known to interact with different proteins as histone deacetylases

(HDAC), demethylases (LSD1), and the Ajuba Lim protein core-

pressor. In all of these cases, the binding reinforces the role of

Snail as an E-cadherin transcriptional repressor (Ayyanathan

et al., 2007; Lin et al., 2010; Peinado et al., 2004), which is

required for EMT induction (Molina-Ortiz et al., 2012). In contrast,

our data show that the binding of eEF1A to the SNAG domain

acts in an opposite manner. This binding allows the subsequent

recruitment of the nuclear Exp5-aa-tRNA complex, and eEF1A

therefore functions as an adaptor molecule that removes Snail
Ce
from the transcription complex and promotes its nuclear export,

consequently attenuating its function as a transcription factor.

Furthermore, we show that the interaction between Snail and

the protein export complex is regulated by phosphorylation at

S4, located in the SNAG domain. As such, only the unphos-

phorylated form can bind eEF1A and therefore be exported to

the cytoplasm by this mechanism.

This work shows that Snail proteins can be exported by

at least two independent pathways: one mediated by CRM1

and the other mediated by Exp5 through a ‘‘piggyback’’ mecha-

nism that requires previous binding of eEF1A to the SNAG

domain in a S4-phosphorylation-mediated manner. It has been

recently shown that S4 phosphorylation is important for Snail2-

induced E-cadherin repression and EMT in epithelial cells

(Molina-Ortiz et al., 2012). Because these cells had the CRM1

nuclear export system intact, this points to a significant physio-

logical contribution of the Exp5-mediated Snail nuclear export,

which in contrast to that mediated by CRM1 is highly dependent

on the unphosphorylated state of S4. Further work is warranted

to unveil the relative contribution of each pathway in different

physiological or pathological contexts, together with definition

of the extracellular stimuli that allow their individual or combined

activation.

In summary, we have found a protein export complex, Exp5-

aa-tRNA-eEF1A, that works independently of the CRM1 export

pathway but on common targets to attenuate their activity as

transcription factors. Our data also unveil an unexpected nuclear

function for the protein translation elongation factor eEF1A.

EXPERIMENTAL PROCEDURES

Plasmids

Unless otherwise stated, expression plasmids were generated by cloning

PCR-amplified DNA products of the wanted coding sequences in appropriate

vectors. GFI1 was obtained from RZPD, and Dm-snail was kindly provided by

Maria Domı́nguez (Instituto de Neurociencias, CSIC-UMH). eEF1A DNA cod-

ing sequences were obtained from clones previously described (Bohnsack

et al., 2004). Complete details of the plasmids can be found in the Supple-

mental Experimental Procedures.

Recombinant Protein Expression and Purification

Expression and purification of His-tagged components of the Ran system

(Ran, RanBP1, and Rna1P-RanGAP) and ExpT have been described previ-

ously (Kutay et al., 1998; Mingot et al., 2001, 2009). NTF2 was purchased

from Sigma. His-tagged Exp5 and eEF1A were expressed in E. coli BL21 at

16�C overnight in 2YT medium with 0.1 mM isopropyl-beta-D-thiogalactopyr-

anoside. Bacterial lysis was performed in 50 mM Tris-HCl (pH 7. 5), 500 mM

NaCl, and 2 mM MgCl2. Purification was performed on Ni-Sepharose 6 fast

flow (GE Healthcare) followed by buffer exchange (500 to 50 mM NaCl) and

imidazole removal using a PD-10 desalting column (GE Healthcare).

Nuclear Export Assays

HeLa cells were transiently transfected with the indicated bicistronic con-

structs and grown to 50% confluence on 12 mm coverslips. Cells were then

permeabilized for 5 min with digitonin (30 mg/ml) diluted in import buffer. Per-

meabilized cells were incubated for 5 min (Snail1 proteins) or 20 min (Dm-Snail

proteins) at room temperature with import buffer containing the components of

the Ran System, an energy-regenerating system (see the composition in Sup-

plemental Experimental Procedures) and, where indicated, Exp5, CRM1, or

ExpT (1 mM). For in vivo nuclear export assays, MCF7 cells were cotransfected

with Snail1-GFP constructs and the indicated expression constructs. Cells

were fixed with 4% paraformaldehyde and analyzed using confocal laser
ll Reports 5, 727–737, November 14, 2013 ª2013 The Authors 735



scanning microscopy. Fluorescence quantification was performed with the

ImageJ program.

Pull-Down Assays

ZZ versions of the indicated proteins were immobilized on 50 ml of immuno-

globulin G (IgG) Sepharose (GE Healthcare) from 100,000 g cleared lysates

of E. coli cultures that expressed the recombinant proteins. The immobilized

proteins were incubated for 3 hr in the presence or absence of 5 mM purified

GTP-RanQ69L (a GTPase-deficient mutant), with 0.4 ml of a HeLa cell extract

in 50 mM Tris-HCl (pH 7.5), 50 mM NaCl, and 10 mM MgCl2 or with the indi-

cated purified components. After four washes with 500 ml of binding buffer,

bound proteins were eluted with 1.5 M MgCl2, precipitated with 95% isopro-

panol, and analyzed by SDS-PAGE followed by western blotting.

Complete Cytosolic HeLa Extract Processing and tRNA Purification

A total of 5 3 109 HeLa cell pellets (CILBiotech) were broken by Dounce ho-

mogenization in 50 ml of low-salt lysis buffer (20 mM Tris [pH 8.0], 1 mMmag-

nesium acetate, 0.5 mM EGTA, and 3 mM b-mercaptoethanol) and the extract

cleared by centrifugation at 30,0003 g. Depletion of Exp5 and eEF1Awas per-

formed at 4�C incubating 5 ml of the extract with 1 ml of Ni-Sepharose 6 fast-

flow beads (GE Healthcare) saturated with recombinant His-tagged Exp5 in

the presence of 5 mM RanGTP for 20 min. RNA was degraded by incubating

the extract with RNaseA (40 mg/ml; QIAGEN) for 1 hr at 37�C. RNA depletion

and tRNA purification from a complete cytosolic HeLa extract were performed

essentially as described before (Calado et al., 2002) and are described in the

Supplemental Experimental Procedures.

Antibodies and Oligonucleotides

Antibodies and oligonucleotides used in this work are described in the Supple-

mental Experimental Procedures.

Yeast DIS

The DIS was carried out essentially as previously described (Pick et al., 2000).

See the Supplemental Experimental Procedures for details.

Bimolecular Fluorescence Complementation and Exp5 RNA

Interference

MCF7 cells were transiently transfected with 1 mg of the indicated Venus

constructs (Figure 5) and fixed with 4% paraformaldehyde after 24 hr. Venus

subcellular localization was analyzed by scanning confocal microscopy.

Exp5 knockdown was performed by transiently transfecting 150 nM of a

stealth small interfering RNA (siRNA) duplex (Invitrogen) based in the siExp5-

3 sequences described before (Lund et al., 2004) or a random siRNA control.

Transfected cells were collected after 48 hr, for Exp5 protein level detection by

western blot using b-actin as a protein loading control, or transfected with the

Venus expressing constructs after 24 hr and processed as explained above.

Plasmids and siExp5 sequences are detailed in the Supplemental Experi-

mental Procedures.

Promoter Activity Analysis

To analyze the activity of Snail1 as an E-cadherin repressor, a luciferase

reporter construct carrying the WT human E-cadherin promoter (�330 pb)

was transiently transfected into MCF7 cells together with empty pCDNA3

(negative control) or a pCDNA constructs driving the expression of Snail1 or

Snail1DSNAG. pCDNA3-Snail1 was cotransfected either alone or with

different combinations of Exp5- and eEF1A-expressing plasmids. Firefly and

Renilla luciferase activity were measured 40 hr after transfection using the

Dual Luciferase Reporter Assay System (Promega) according to the manufac-

turer’s instructions. Results are the mean values ± SE of duplicates from six

independent experiments and are presented as the percentage of luciferase

activity relative to the negative control (luciferase values in cells cotransfected

with the empty vector).

Chromatin Immunoprecipitation Assays

ChIP assays were performed with the Magna ChIP G kit (Millipore) from A375P

cells or MCF7 cells transiently transfected (48 hr) with eEF1A and different

Snail1 expression constructs. After sonication, chromatin was precleared
736 Cell Reports 5, 727–737, November 14, 2013 ª2013 The Authors
and immunoprecipitated with rabbit raised antibodies against Snail1, eEF1A,

anti-histone H3 (positive control), and rabbit IgG as a negative control. Con-

ventional PCR detection of a 232 bp fragment of the E-cadherin promoter

(�294 to �63) containing the E-box1 was performed from the precipitated

and input DNA. PCR products were resolved in 2% agarose gels and stained

with ethidium bromide.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and two figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2013.09.030.
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