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H I G H L I G H T S

• Suberin has low affinity to retain pesticides of aliphatic character.
• Suberin has a moderate affinity to adsorb isoproturon.
• Modeling calculations show that apolar portion of suberin interacts with isoproturon.
• Modeling calculations evidence Van der Waals interactions play the major role.
• Presence of glycerol provokes changes in isoproturon and methomyl interactions.
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Understanding the role of biomacromolecules and their interactions with pollutants is a key for elucidating the
sorptionmechanisms andmaking an accurate assessment of the environmental fate of pollutants. The knowledge
of the sorption properties of the different constituents of these biomacromolecules may furnish a significant
contribution to this purpose. Suberin is a very abundant biopolymer in higher plants. In this study, suberin
monomers isolated from cork were analyzed by thermally-assisted methylation with tetramethylammonium
hydroxide (TMAH) in a pyrolysis unit coupled to gas chromatography–mass spectrometry (GC/MS). The isolated
monomer mixture was used to study the sorption of three pesticides (isoproturon, methomyl and oxamyl). The
modes of pesticide–sorbent interactions were analyzed by means of two modeling calculations, the first one
representing only the mixture of suberin monomers used in the sorption study, and the second one including
glycerol to the mixture of suberin monomers, as a building block of the suberin molecule. The results indicated
that the highest sorption capacity exhibited by the sorbent was for isoproturon (33%) being methomyl and
oxamyl sorbed by the main suberin components to a lesser extent (3% and b 1%, respectively). In addition to
van der Waals interactions with the apolar region of sorbent and isoproturon, modeling calculations evidenced
the formation of a hydrogen bond between the isoproturon NH group and a carboxylic oxygen atom of a suberin
monomer. In the case ofmethomyl and oxamyl onlyweak van derWaals interactions stabilize the pesticide–sor-
bent adducts. The presence of glycerol in the model provoked significant changes in the interactions with
isoproturon and methomyl.

© 2015 Published by Elsevier B.V.
1. Introduction

Biopolymers, including cellulose, hemicelluloses, lignin and suberin,
which are the main components of the plants, are ubiquitous in the
environment. While the monomeric composition of suberin is quite
well known there is some controversy about the delimitation of the
term suberin. Some authors argue that the term suberin should be
).
mainly restricted to aliphatic macromolecule (Graça and Pereira,
2000a). Concurrently, others refer to the aliphatic and aromatic charac-
ter of suberin (Bernards, 2002). The role of suberin is to form a protec-
tive barrier between the plant and its environment (Bernards, 2002).
The outer bark of higher plants and tuber periderms constitute the
major sources of suberin in nature (Gandini et al., 2006). Suberin
content and composition in outer barks is quite variable, depending of
the wood species and of the isolation method used (Fengel and
Wegener, 1984; Lopes et al., 2001). Suberin is particularly abundant in
Quercus suber L. cork (30–50%), a natural, renewable and biodegradable
raw material (Jové et al., 2011).

https://core.ac.uk/display/36213442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2015.04.118&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2015.04.118
mailto:angels.olivella@udg.edu
Journal logo
http://dx.doi.org/10.1016/j.scitotenv.2015.04.118
Unlabelled image
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


Table 1
Composition (%) of the products (as their methyl derivatives) released from suberin after
pyrolysis in the presence of TMAH.

Peak Ret time Percentage

1 Dodecanoic acid 35.590 0.3
2 Nonanedioic acid 38.486 0.7
3 3,4-Dimethoxybenzaldehyde 38.581 1.0
4 3,4-Dimethoxybenzenecarboxylic acid 40.818 0.8
5 Tetradecanoic acid 41.236 0.5
6 3,4-Dimethoxybenzeneacetic acid 41.989 0.6
7 Pentadecanoic acid 43.834 0.3
8 cis-ferulic acid 46.050 0.8
9 Hexadecanoic acid 46.303 2.5
10 trans-ferulic acid 49.103 8.0
11 Octadecanoic acid 50.922 3.6
12 Eicosanoic acid 55.140 0.8
13 Hexadecanedioic acid 55.293 3.5
14 18-Hydroxy-octadec-9-enoic acid 56.159 4.8
15 Octadec-9-enedioic acid 58.951 12.5
16 Docosanoic acid 59.068 3.5
17 Octadecanedioic acid 59.213 2.0
18 9,10-Epoxyoctadecanoic acid 61.454 2.0
19 Tetracosanoic acid 62.678 1.7
20 Eicosanedioic acid 62.907 1.8
21 22-Hydroxydocosanoic acid 63.957 12.7
22 9,10-Dihydroxyoctadecanedioic acid 64.035 6.6
23 9,10-Epoxyoctadecanedioic acid 64.706 2.7
24 9,10,18-Trihydroxyoctadecanoic acid 66.722 12.8
25 Docosanedioic acid 67.070 12.4
26 24-Hydroxytetracosanoic acid 68.387 1.3
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The environmental fate of toxic organic pollutants such as pesticides
and PAHs is strongly influenced by the sorption process. Because of this,
understanding the role of the biopolymers on the sorption of these
pollutants is essential for the accurate assessment of the fate of pollutants
in the environment. Moreover, in order to develop sustainable technolo-
gies based onnatural sorbents for soil andwater remediation, exploration
of the capability of these biopolymers to retain or immobilize pollutants is
essential.

Raw cork biosorption features towards organic pollutants have been
recently investigated (Crespo-Alonso et al., 2013; Domingues et al.,
2005, 2007; Nurchi et al., 2014; Olivella et al., 2011a, 2011b). Neverthe-
less, studies regarding the role of suberin in sorption processes are still
scarce. Moreover, the investigation of the role of this biopolymer and
the interactions involved is incomplete and the results controversial.

To the best of our knowledge, only Chen and Schnoor (2009) report-
ed the role of suberin, suberan, and hemicelluloses in phenanthrene
sorption by root tissue fractions. This study concluded that suberin
was the major sorption medium for polycyclic aromatic hydrocarbons
(PAHs). More recent studies have reported that suberin from raw cork
does not play significant influence on hydrophobic organic pollutants
sorption (Olivella et al., 2013).

Hence, this study gives some insights for a better understanding of
the role of suberin in the sorption of some organic pesticides. For this
purpose, suberin was first isolated from cork by alkaline hydrolysis
and then chemically characterized by thermally-assisted methylation
with tetramethylammonium hydroxide (TMAH) performed in a
pyrolysis unit coupled to gas chromatography–mass spectrometry
(GC/MS). The so obtained bundles of isolated suberin monomers were
then used to sorb three pesticides of different chemical characteristics
(i.e., isoproturon, methomyl and oxamyl). Based on the major suberin
monomers identified, the interactions involved between suberin and
pesticides were analyzed by molecular modeling.

2. Experimental part

2.1. Sorbents and sorbates

Granulated raw cork of 0.5–0.7 mm particle size was provided by a
Catalonian cork industry. Pretreatment of raw cork to obtain the
granulated form has been described elsewhere (Jové et al., 2011). Cork
extractives were removed by successive Soxhlet extractions with
dichloromethane (6 h), ethanol (8 h) and hot water (20 h) (Jové et al.,
2011). The characteristics of the pesticides selected for this study are
summarized in Table S1. All organic solvents (Romil, Cambridge) used
were Super Purity grade. Standards of pesticides were purchased from
Sigma-Aldrich (Madrid, Spain). All selected pesticides are non-ionic:
isoproturon (C12H18N2O, logKow=2.25)with amoderate hydrophobic-
ity; methomyl (C5H10N2O2S, logKow = 0.60) and oxamyl (C7H13N3O3S,
logKow = −0.47) with hydrophilic character. Deionized water
(Millipore Direct Q4 Water Purification system) was used for pesticide
standard solution preparation and dilutions.

2.2. Suberin depolymerization

The extractive-free cork sample was submitted to alkaline depoly-
merization. Alkaline hydrolysis was carried out using a 0.5 M KOH in
ethanol/water (9:1, v/v) solution at 70 °C for 1.5 h (Pinto et al., 2009).
The mixture of hydrolyzed suberin monomers was cooled to room
temperature and acidified with dilute sulfuric acid to a pH of around
3–3.5, and then extracted three times with methyl t-butyl ether
(MTBE). The solvent was then removed in a rotary evaporator and the
residue weighed. This procedure yields suberin components like free
acids, and preserves epoxide-containing structures (Ekman and
Eckerman, 1985). Although most suberin monomer studies used
alkaline methanolysis, in this study it may not be applied in terms of
sorption because suberin structure is changed: acids are converted to
methyl esters while epoxy-containing structures are largely converted
to the corresponding methoxyhydrin structures.

2.3. Analysis of suberinmonomers by thermally-assisted methylation in the
presence of tetramethylammonium hydroxide (TMAH)

Thermally-assisted methylationwas performed with approximately
1.0mgof suberin isolated in powdered form,mixedwith approximately
5 μL TMAH (25% w/v in methanol), in a EGA/PY-3030D micro-furnace
pyrolyzer (Frontier Laboratories Ltd.) connected to an Agilent 7820A
gas chromatograph equipped with a DB-1701 (Agilent J&W) fused-
silica capillary column (60 m x 0.25 mm i.d., 0.25 μm film thickness)
and an Agilent 5975 mass selective detector (EI at 70 eV). The pyrolysis
unit was heated at 500 °C. The oven temperature was programmed
from 45 °C (4 min) to 280 °C (10 min) at 4 °C min−1. Helium was used
as carrier gas (1 mL min−1). The injector and detector were set at
300 °C. The compounds were identified by comparison of retention
times andmass spectra with those from our own collection of authentic
standards and by comparison with Wiley and NIST mass spectral
libraries and with those reported in the literature. The sum peak areas
were normalized to 100 and the results of two averages are presented.

2.4. Sorption experiments

Batch equilibrium experiments were conducted at room tempera-
ture (20 ± 2 °C) on a rotary shaker (rotator STR4, Stuart Scientific
Bibby) at 40 r.p.m, using 25 mL glass tapered tubes. In all experiments,
0.1 g of the mixture of suberin monomers were put into contact with
15mL of pesticides aqueous solutions for 56 h. Pesticides initial concen-
tration was 5.4 μM. After sorption, samples were filtered through a
0.45 μm filter to separate the solid fraction from the solution. Quantita-
tive determination of non-sorbed pesticide concentration in solution
was accomplished by high-performance liquid chromatography
(HPLC) (Agilent technologies, 20120) using a ZORBAX Eclipse XDB-
C18 column (4.6 mm ID × 150 mm length). Detection of pesticides
was performed at 210 nm. The solid obtained after filtration was dried
at 70 °C until constant weight and kept in a desiccator until its use.
Quantification of pesticides concentration was performed with the



Fig. 1. Theminimized suberinmodel including themain suberinmonomers detected (i.e.,
octadec-9-enedioic acid; 22-hydroxydocosanoic acid; 9,10,18-trihydroxyoctadecanoic
acid, docosanedioic acid and glycerol).
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external calibration procedure (R2 ≥ 0.99, p b 0.001). Two blank
experiments were carried out under the same experimental conditions
as were the studied samples: the first blank was only Milli-Q water and
the second blank was Milli-Q water with the suberin. All experiments
were performed in duplicate.

Sorption results were calculated in terms of sorption percentages of
the initial and final pesticide concentrations, respectively. A quite high
pesticide concentration, corresponding to a suberin model/pesticide
1:1 ratio was used. The obtained model can be extrapolated to describe
interactions between suberin and pesticides at concentration levels of
μg L−1such as those found in aqueous compartments (de Gerónimo
et al., 2014; Köck-Schulmeyer et al., 2013).

2.5. Molecular modelings

Molecular modeling calculations were carried out on the adducts
formed by isoproturon, methomyl or oxamyl with two models of
sorbent. One is a suberin model formed by the four most abundant
acids found in our samples detected by the thermally-assistedmethyla-
tion procedure (i.e., octadec-9-enedioic acid, 22-hydroxydocosanoic
acid;, 9,10,18-trihydroxyoctadecanoic acid, docosanedioic acid), in
2:2:2:2 molar ratio, esterified with eight glycerol groups (in 6:2 R:S
stereoisomeric ratio) bearing six ferulic acid residues (Table 1). As
suggested by Bernards (2002) this model includes an aromatic moiety
composed by three ferulic acids linked together by C–C and ester
bonds according to an aliphatic–aromatic suberin lamellae construction
that, nevertheless, seems not to be always true for Quercus suber
(Teixeira and Pereira, 2010). The model was subjected to repeated
cycles of simulated heating followed by cooling and minimization
(T = 400 K, equilibration, run and cooling time = 5 ps, time
Fig. 2. Gas chromatograms of the products released from suberin after thermally-assisted me
step = 1.0 fs) to obtain the structure reported in Fig. 1. The other
model was generated from this structure upon removal of all the
aromatic and the glycerol residues and successive protonation of the
carboxylate groups. The resulting structure was then minimized. The
latter model represents more closely the material used for the sorption
experiments.

Starting conformations of the pesticide adducts with both sorbent
models were obtained by manual docking and followed by minimiza-
tion procedure. Potential energy surface of each system was explored
by means of simulated annealing (T = 400 K, equilibration, run and
cooling time = 10 ps, time step = 1.0 fs), sampling 80 conformations
for each studied adduct. All calculations were performed by using the
AMBER3 forcefield, as implemented in the Hyperchem v.7.5 package
(Hyperchem, 2002), with implicit treatment of the solvent effects
(ε = 4R) and atomic charges calculated at semiempirical level by PM3
(Stewart, 1990).

3. Results and discussion

3.1. Suberin composition as observed by thermally-assisted methylation
with TMAH

The chromatogramof the products released from the suberin sample
after thermally-assisted methylation with TMAH (Table 1) is shown in
Fig. 2. Although it is known that some differences may exist between
thermally-assisted methylation with TMAH and methanolysis methods
(i.e., the former may overestimate the relative abundance of ferulic acid
andmay underestimate the occurrence of epoxides) due to the complex
heterogeneous structure of suberin and the differences in ether and
ester labilities in alkaline medium, the thermally-assisted methylation
with TMAH is still a powerful and relatively simple analytical approach
to investigate the structure of the suberin polymer and to know the
identities of their monomeric constituents (Bento et al., 2001; Olivella
and del Río, 2011; del Río and Hatcher, 1998).

As shown in Table 1, C18 and C22monomers are predominant in sim-
ilar relative abundances. The most abundant members of the C18 family
were octadec-9-enedioic acid (15) and 9,10,18-trihydroxyoctadecanoic
acid (24). The former compoundwas found to bemore abundant at the
back anatomical part than in cork (i.e., anatomical part used for the
production of cork stoppers) (Olivella and del Río, 2011). Among the
trihydroxyacids, 9,10,18-trihydroxyoctadecanoic acid was reported to
be the most abundant compound in cuticles from apple fruit and
Agave Americana (del Río and Hatcher, 1998). The presence of this
compound was also found in the early stages of fruit development
thylation with TMAH. Peak numbers correspond to the compounds identified in Table 1.

Image of Fig. 2
Image of Fig. 1


Fig. 3. Low energy conformations calculated for the adducts formed by isoproturon (ball and stick molecule), with suberin monomers (stick structures). Hydrogen bond is shown as a
dashed black segment.
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(Baker et al., 1982). However, it is necessary to mention that part of the
content of 9,10,18-trihydroxyoctadecanoic acid may also arise from
9,10-epoxy-18-hydroxyoctadecanoic acid after cleavage of the epoxide
ring during the thermally-assisted methylation with TMAH, as previ-
ously reported (del Río and Hatcher, 1998). Concerning the C22 family,
the most abundant compounds are 22-hydroxydocosanoic acid (21)
and docosanedioic acid (25). These four above mentioned compounds
(i.e., 15, 24, 21 and 25), representing 50%of the totalmonomers content,
were used for molecular modeling calculations.

Among the C16 monomers, hexadecanedioic acid (13) and
hexadecanoic acid (9) were identified. Moreover, significant amounts
of ferulic acid (10) were also identified. Nevertheless, it is important
to emphasize that the cork suberin analyzed in this work contain
predominantly C18 and C22 monomers.

Note that the main suberin monomers detected by thermally-
assisted methylation with TMAHmatch those detected in cork without
previous suberin isolation, namely octadec-9-enedioic acid (19.2%),
docosanedioic acid (15.9%) and 9,10,18-trihydroxyoctadecanoic acid
(9%) (Olivella and del Río, 2011). So, it is expected that most of the
suberin monomers considered for the model are fairly close to those
really present in suberin structure.

Glycerol is a suberin component (Gandini et al., 2006). Small
amounts of glycerol (usually in the range from 2 to 5.2%) have been
reported by different authors (Bento et al., 1998; Graça and Pereira,
1997; Parameswaran et al., 1981; Rosa and Pereira, 1994). In contrast,
more recently other authors detected in the complete suberin extract
by GC-FID analysis using the internal standard calibration procedure
higher amounts of glycerol (up to 14%) in Q. suber cork (Graça and
Pereira, 2000b).

In this study, glycerol was not observed among the compounds
released upon thermally-assisted methylation with TMAH of the suberin
sample. In the mentioned chromatographic conditions, glycerol (as its
trimethyl ether) could be expected to elute at a retention time of
14.1 min, with characteristic fragments in the mass spectrum at m/z 59
(base peak), 89 and 102 (molecular ion), as it has been observed in
Fig. 4. Low energy conformations calculated for the adducts formed by (a) methomyl and
other suberin samples (Bento et al., 2001). This absence is because
polar suberin monomers such as glycerol, in principle, are not extracted
with methyl t-butyl ether of non-polar character, remaining in the
aqueous phase.

3.2. Sorption studies of isoproturon, methomyl and oxamyl with suberin

Regarding the results obtained in the sorption studies of the three
pesticides using the main suberin monomers isolated from cork, the
highest sorption yield was found for isoproturon (33%). Methomyl
(3%) and oxamyl (b1%) were poorly sorbed. These results put into
evidence that the sorbent affinity for the pesticides is related to the
hydrophobic character of the pesticide. That is the reason why the
other two pesticides, that possess hydrophilic character, are poorly
sorbed.

The result of isoproturon sorption onto the isolated suberin found in
this work (33%) is slightly lower than that from our previous study
where the sorption of this pesticide was investigated onto raw cork
(37%) (Olivella et al., 2015). In this previous work, the interactions
between aromatic pesticides and the cork matrix were attributed
mainly to lignin moieties but also to suberin. Results of these studies
suggest that both biopolymers, lignin and suberin, that possess aromatic
and aliphatic character, respectively (Pereira, 2007), exhibit a good
binding affinity for isoproturon.

An interpretation of the adsorption results was obtained at the
molecular level by performing a molecular modeling of the interaction
of pesticides with themore abundant suberinmonomers. Since glycerol
is a significant suberin component, we performedmodeling calculations
on the interaction with the three pesticides by using two models of
sorbents: one representing the mixture of suberin monomers used in
the sorption study, and one (hereafter indicated as suberin model)
including glycerol and ferulic acid residues in addition to suberinmono-
mers, which is more representative of the suberin composition.

The lowest energy conformers obtained for the interaction of the
former model with each pesticide–sorbent system are shown in Figs. 3
(b) oxamyl (O) (ball and stick molecules), with suberin monomers (stick structures).

Image of Fig. 4
Image of Fig. 3
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and 4. First of all, it must be stressed here that the model used for the
sorbent is an approximated model, representative of the four main
components constituting the mixture of suberin monomers employed
in the sorption experiments and of the random structure of this materi-
al. Also, the calculated structure of the pesticide adducts shown in Figs. 3
and 4 can be regarded as feasible interaction models. Within these
Fig. 5. Low energy conformations calculated for the adducts formed by (a) isoproturon,
(b) methomyl and (c) oxamyl (ball and stick molecules) with the suberin model (stick
structure) including glycerol and connected aromatic residues. Only the interacting sec-
tors of the suberin model are shown.
boundaries, the results obtained by modeling calculations allow to
evidence interesting binding behaviors that make differences between
the three substrates. As it can be seen in Fig. 3, isoproturon interacts
with the terminal part of the suberin monomer lamellae, where its
apolar portion forms van der Waals interactions, while its NH group
forms a hydrogen bond with an oxygen atom of a sorbent carboxylic
group (NH∙∙∙OCOH, 2.07 Å). Conversely, both methomyl and oxamyl
interact with the lamellae rims of suberin monomers, in the region of
higher hydrophobic character where only van der Waals interactions
are possible (Fig. 4). Nevertheless, the polar groups of methomyl are
closer to the terminal polar groups of the sorbent than the polar groups
of oxamyl. Accordingly, for this pesticide attractive dipole–dipole
interactions that stabilize the methomyl–sorbent adduct are possible.
Therefore considering that the energy of the weak forces involved in
the formation of such pesticide–suberin adducts decreases in the
order hydrogen bond N N dipole–dipole N van der Waals interactions
and on the basis of the modeling results it can be concluded that the
strength of these pesticide–sorbent interactions decreases in the order
isoproturon≫methomyl N oxamyl, in agreement with the sorption re-
sults. This trend seems to be a compromise between the hydrophobic
character of the pesticide and the ability of amide groups to formhydro-
gen bonds. Indeed, isoproturon is more hydrophobic than methomyl
and oxamyl but it is also more efficient in forming hydrogen bonds as
generally are aromatic amides in comparison to aliphatic ones.

When the suberin model containing glycerol and aromatic residues
(i.e., suberin monomers) is considered, rather different results are
obtained by modeling calculations. The lowest energy structures
calculated for the adducts of the three pesticides with this suberin
model are shown in Fig. 5. As can be seen, the presence of glycerol
and connected aromatic residues modify significantly the interaction
mode of isoproturon (Fig. 5a) and methomyl (Fig. 5b), the two pesti-
cides finding more favorable interactions with the aromatic region of
the sorbent. In particular, isoproturon (Fig. 5a) forms three interactions
with aromatic groups (one edge-to-face π–π stacking, involving the
isoproturon aromatic ring and an aromatic proton of the sorbent, one
CH–π and one CO–π interactions), while methomyl (Fig. 5b) forms
one CH–π and one CO–π interactions. Weaker van der Waals contacts
contribute to further stabilize pesticide–sorbent adducts. On the
contrary, oxamyl, constituted by a longer and more branched aliphatic
chain shows a preference for the aliphatic section of the sorbent
(Fig. 5c) where it interacts with the sorbent mainly through van der
Waals contacts and by a C(aromatic)H–OC hydrogen bond.

This kind of information is instrumental in understanding the contri-
bution of suberin components to the sorption properties of suberin, to
explore new applications of suberin and envisage the affinity of this
biopolymer for organic pollutants. This affinity will be predicted on the
basis of octanol/water partition coefficient and the chemical structure of
the pollutant (i.e., ionic, molecular) without the need to determine
sorption isotherms and calculate maximum sorption capacities which is
the usual procedure in sorption studies.

The sorption data presented here show that in spite of their aliphatic
character the suberin monomers studied in this work display their
highest affinity for isoproturon, a pesticide of aromatic character,
while a lower performance was observed for the sorption of methomyl
and oxamyl, both exhibiting aliphatic character. Molecular modeling
calculations indicated that the major interactions of isoproturon with
suberin monomers are of van der Waals type and hydrogen bonding
(NH⋯OCOH), while only van derWaals interactions take place between
suberinmonomers andmethomyl and oxamyl. If glycerol and connected
aromatic residues are also included in the sorbent model (Fig. 5),
modeling calculations show that the interactions of isoproturon and
methomyl with the aromatic residues becomes of major importance
while the aliphatic sorbent sector remains the principal location for
oxamyl sorption.

Selected physicochemical properties and chemical structure of
chemicals (Table S1).

Image of Fig. 5
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