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Abstract 

 

In the last decade, tremendous progress has been made in generating insulin-producing cells 

from both mouse and human pluripotent stem cells. Following the principles that guide 

pancreas embryonic development is a common aspect in all differentiation protocols with 

considerable success in generating β-like cells in vitro. Greatest outcome of the refined 

protocols became apparent in the first clinical trial, recently announced by the ViaCyte 

Company. ViaCyte strategy is based on the implantation of pancreatic progenitors that would 

further mature into functional insulin-producing cells inside the patient body. In this review we 

will discuss the state-of-art in β-cell replacement therapies based on the differentiation of 

embryonic stem cells into glucose-response and insulin-producing cells in a dish. We will also 

discuss alternative approaches to obtain new sources of insulin-producing cells by enhancing 

the regeneration of the endogenous β-cell mass. 

 

 

1. Introduction  

 

Fifteen years ago (November 1999) our group was the first to publish that insulin producing 

cells may be derived from mouse embryonic stem cells (mESC) and able to normalize blood 

glucose in a toxic model of diabetes 
1
. On October 29, 2014, the company ViaCyte (San Diego, 

California) announced the first-in-the-world implant of one type 1 diabetic patient with 

precursor insulin-producing cells derived from human embryonic stem cells (hESC) 
2
. In the last 

twelve months, three studies have come out describing efficient methods to obtain insulin-

producing cells from human embryonic stem cells 
3-5

. How far have we come along in reaching 

an effective treatment for type 1 diabetes mellitus (T1DM)? 

 

A scheme of the main contributors to the development of new strategies to generate insulin-

producing cells derived from either mice or human embryonic stem cell over the past 15 years 

is depicted in Figure 1. Gene trapping and directed differentiation methods 
1, 6, 7

 result in cells 

that contain insulin, express functional markers of the glucose-sensor (eg. glucose blockade of 

KATP channels), the exocytotic machinery and insulin gene expression, processing and storage. 

Progenitors selected by gene-trapping of Nkx6.1 follow maturation after the transplantation 

under the mouse kidney capsule and display dose-dependent effects
8
. Whilst 1 million cells 

transiently normalize blood glucose (3-4 days), 5 million cells produce a more permanent 

effect.  In contrast with coaxial methods, other groups succeeded by growth inhibition 
9
 or 
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overexpression of Pax4 
10

. Several reviews describe in detail the results of this period 
7, 11-13

, in 

which some of the strategies were based in pancreas development (eg. inhibition of sonic 

hedgehog 
6
), whilst others were more empirical (nicotinamide or butirate). It was also clear 

from the very beginning 
11

 that in order to translate this mouse knowledge to human 

embryonic stem cells we would need to faithfully recapitulate the mammalian developmental 

program.  Unfortunately, at that time human embryonic stem cells were not made freely 

available by the two companies that developed the first lines; Geron in the USA and ESI in 

Singapore and Australia which imposed very restrictive Material Transfer Agreements. In order 

to circumvent tight legislative restrictions imposed by Spain and pursue our work on human 

embryonic stem cells, one of us (Bernat Soria) accepted a Visiting Professorship at the National 

University of Singapore (from 2002 to 2004) to use the ESI owned human ESC in collaboration 

with Profs Alan Colman and Sir Roy Y Calne. Although great strives of progress were achieved 

Confidentiality Agreements signed with ESI limited dissemination of the work. In 2004, the 

social democrate government of the Region of Andalusia rectified the law offering the 

opportunity to develop stem cell work in Granada (National Stem Cell Bank) and Seville 

(CABIMER). In this context, we contributed along with the USA and Sweden to the 

development of new human ESC lines (HVR1, HVR2 and HVR3). Incidentally, between 2007 and 

2009 one of us (BS) was sworn in as Minister of Health of Spain with a mission to rectify the 

archaic Spanish law on human embryonic stem cells. Interestingly, a recent resolution of the 

European Patent Office restrict patenting of results obtained using human embryo derived 

cells, but not on induced pluripotent stem cells (iPSC). 

 

Strategies for in-vitro differentiation of human embryonic stem cells succeeded in better 

reproducing the transcription factors time-course observed for mammalian pancreas 

development 
14, 15

. The seminal work of the group of D’Amour (Novocell-Viacyte) 
16

 established 

some of the key strategies to by-pass the step from ESC to definitive endoderm.  Explained 

below is the work of different groups that drive the long-road to a tentatively non-return 

point, the implantation of the first patient with beta cell progenitors that may mature inside 

the patient body and, eventually, control blood glucose. 

 

------------------ Figure 1 near here ------------------ 

Diabetes describes a group of conditions in which blood glucose is not properly regulated. 

Diabetes mellitus occurs when β-cells fail to secrete the insulin necessary to maintain the 

homeostasis of glucose in the blood flow. Most common forms of diabetes are type 1 and type 

2 diabetes mellitus. Type 1 results from a cellular-mediated autoimmune destruction of β-cells, 

whilst in type 2 diabetes mellitus, insulin resistance from peripheral organs is coupled with 

insulin deficiency resulting from an insufficient β-cell mass or function. Other forms of diabetes 

include gestational diabetes (glucose intolerance during pregnancy) and monogenic forms, in 

which mutations in key pancreatic genes are found (for example in Glucokinase, Pdx1, etc).  

Over time, diabetes can lead to the rise of different long-term complications such as 

retinopathy, neuropathy, nephropathy, critical ischaemia of the limbs and other complications. 

Nowadays, the treatment for diabetes consists in exogenous insulin supply or pancreas/islet 

transplantation, but the inability to achieve a tight control of glucose regulation by exogenous 

insulin administration and the shortage of pancreatic islets donors have motivated recent 

efforts to develop renewable sources of β-cell replacement tissue.  

 

- Why do we need insulin-producing cells?  
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Pancreatic islet hormones secreted by β-cells in the islets of Langerhans regulate blood glucose 

levels in adult mammals. These “micro-organs” represent 1-2% of the pancreas and contain 

several different cell types, including endocrine cells, endothelial cells, and nerve terminals. 

Pancreatic β-cells, which in humans represent around 50% of the islet mass, synthesize, store, 

and release insulin in response to nutrients, while α-cells (40%) secrete glucagon and δ-cells 

(10%) produce somatostatin.  

 

The metabolic interbalance, resulting in blood glucose homeostasis is governed by several 

hyperglycemic factors (glucacon, growth hormone, glucocorticosteroids, epinephrine) and only 

one hypoglycemic agonist (insulin). This is the reason why loss of pancreatic β-cells, 

responsible of the synthesis, storage and release of insulin produces a life threatening disease: 

diabetes (from the greek “pass through”). High blood glucose saturates renal tubule glucose 

transporters and glucose appears in urine (glucosuria), the resulting osmotic pressure increase 

inside the kidney tubules augment urine formation (polyuria) and then patients need to 

increase liquid intake (polydipsia). Since insulin is needed for glucose to enter into the cells, 

storage of energy (fat, glycogen) decreases and as a consequence type 1 diabetic patients 

loose weight. Before the discovery of insulin in the 1920’s 
17

, type 1 diabetes was an acute and 

lethal disease. Exogenous insulin administration (first purified from porcine and bovine 

pancreas and later obtained by recombinant methods) allowed blood glucose control but only 

intensive insulin therapy diminished diabetic complications (retinopathy, nephropathy, 

myocardial infarction, stroke, diabetic foot, etc), unfortunately with an increased risk for 

hypoglycemia.  In terms of blood glucose regulation pancreatic islets located in the portal 

vascular bed will do the job better than any option. This is the reason why islets are 

transplanted into the liver (direct implantation into the exocrine pancreas is not considered 

because of the risk of pancreatitis).  However, islet transplantation as a potential cure for 

diabetes is limited by scarcity of donors, suboptimal islet procurement techniques and the side 

effects of long-term immunosuppressive therapy. 

 

Glucose-induced insulin release needs a glucose-sensing mechanism (the “glucose-sensor”), a 

response element (the “exocytotic machinery”) and a regulated gene expression, processing 

and storage of insulin (transcription factors, miRNAs, Golgi apparatus, secretory granules) 

(Figure 2). Although pancreatic β-cells share many properties with peptide secretory nerve 

terminals, some of the mechanisms are unique for the β-cell. Glucose-sensing mechanisms 

need a high capacity low affinity glucose transporter (Glut-2) that equilibrates glucose 

concentration at both sides of the plasma membrane, a kinase that works at physiological 

blood glucose concentrations (hexokinase IV or glucokinase) and a potassium channel, which is 

blocked by the ATP and diadenosine polyphosphates formed during glucose metabolism (ATP-

dependent K-channels). Additionally, β-cells in order to sense glucose lack the Pasteur effect, 

then glucose degradation is not stopped by augmentation of the ATP/ADP ratio, which in turn 

increases ROS formation with subsequent β-cell damage. Exocytosis is initiated by the 

blockade of ATP-dependent K-channels depolarizing the β-cell, opening voltage-activated Ca
2+

 

channels and increasing Ca
2+

 in the submembrane region 
18

 creating a [Ca
2+

]i code that do not 

desensitize and correlates with insulin secretion. Pancreatic β-cells initiate an oscillatory and 

widespread bursting activity throughout the whole islet due to the gap-junction conductance 

oscillations 
19, 20

. Ca
2+

-sensing proteins of the exocytotic machinery promote the fusion of the 

granule with the membrane and release insulin to the extracellular space. All these “fast” 

effects of glucose on the β-cell operate, provided that β-cells are ready to be stimulated. 

Insulin gene expression is finely tuned by nutrients as is processing in the Golgi apparatus and 

storage in secretory granules (together with C-peptide and Zn
2+

). In contrast with the detailed 

study of the transcription factors involved (PDX1, Nkx6.1, CREB, etc), the biophysical processes 

governing these “slow” regulatory effects of glucose have been less studied 
21

. Glucose is 

considered to be an “initiator” of insulin release, whilst other metabolic signals (amino acids) 
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or neural and paracrine factors (acetylcholine, colecystokinin), are unable to induce insulin 

release by their own, and rather “potentiate” the effect of glucose using mainly the release of 

Ca
2+ 

by intracellular stores.  

 

------------------ Figure 2, near here ------------------ 

 

In summary, a long list of proteins (transporters, ion channels, connexins, [Ca
2+

]i sensors, etc) 

are needed for glucose sensing and insulin release. Furthermore, another long-list of 

transcriptions factors and miRNAs, regulate insulin gene expression and processing.  A proper 

characterization and identification of a surrogate β-cells should not only identify the presence 

of these components but also their ability to work and respond to glucose (initiator of insulin 

release) and to potentiate -agonists- the effect of glucose (potentiators), and thus, to 

normalize blood glucose levels in diabetic animal models. 

 

2.  From ESC to Insulin-producing cells: The challenge of making a β-cell 

 

Stem cells are non-specialized clonogenic cells defined by two important characteristics: self -

renewal and pluripotency. These paradigmatic properties depend on transcription factors 

(Nanog, Oct4, etc), ion channel activity 
21, 22

 and cell-to-cell communication 
23

. Proliferation will 

permit the expansion of millions of cells from a native undifferentiated cell. In terms of 

functional substitution in type 1 diabetes an estimate of 10
9
 β-cells are needed to control 

blood glucose in an adult. Subsequent changes in cellular phenotype may be transiently 

reversible 
24

, however epigenetic modifications driving cell lineage differentiation may 

permanently lock the new entity into an adult post-mitotic cell or a committed progenitor. In 

terms of proliferation and differentiation capabilities embryonic stem cells are the most 

attractive, then multiple efforts reported multistep differentiation procedures, which end with 

insulin-producing cells, therefore, the human embryonic stem cells hold the promise of an un-

limited, but allogenic, source of cells for this propose. On the other hand, the discovery of the 

induced pluripotent cells (iPSC) by Yamanaka’s team 
25

 made possible the use of patient own-

cells and in both cases to build a bank of HLA compatible cells.  

 

After the proof-of-concept was established in rodent 
1
 and human 

26
 ESCs, more than one 

hundred papers reported the conversion of different stem cells and progenitors into insulin-

producing cells either from monocytes 
27

, hematopoietic stem cells or mesenchymal stromal 

cells 
28

. Transdifferentiation from the three germ layers into insulin-producing cells exceeds 

the aim of this review. Here we will discuss the consolidated knowledge using mammalian 

embryonic stem cells as well as innovative concept of islet cell regeneration giving support to a 

new era in the treatment of diabetes mellitus. 

 

a. Lessons learned from islet development 

 

The current success in generating pancreatic cell lineages from human ESCs relies on 

recapitulating the key events that regulate pancreatic lineage commitment in the embryo. The 

advances in our understanding of the key transcription factors and signaling pathways that 

govern pancreas development and β-cell formation have been crucial for the design of new 

protocols for generation of in vitro insulin-producing cells from ESCs. Our knowledge of human 

pancreas development derived largely from animal models, such as rats, chicks, fish and 

mainly mice, and it is based on the assumption that the molecular and cellular aspects of 

pancreas development are conserved, although some aspects of the mouse ESCs 

differentiation protocols may differ from those applied to human ESCs differentiation 

protocols. 
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Tremendous progress has been made in the field of pancreas development and it has been 

extensively reviewed 
29, 30

. In this review, we will focus on the main transcription factors that 

govern different stages of islet development and β-cell fate.  

 

- Pancreas Organogenesis and Islet Development 

After gastrulation, the definitive endoderm is specified by the expression of endodermal 

markers including FoxA2, Sox17 and GATA4 and GATA6 transcription factors 
31-33

. The 

development of this germ layer involves highly orchestrated morphogenetic events, reciprocal 

interactions with the adjacent mesoderm and ectoderm, and cell determination and 

differentiation 
34-38

.  The result of these patterning events is a gut tube in which budding 

organs are defined in determined regions along the tube 
39

. Each stage of pancreas 

development is achieved by combinatorial of signals that activate in a specific spatial and 

temporal way a set of transcription factors. The region of the gut tube that will acquire a 

pancreatic fate requires retinoic acid signal and the exclusion of both Sonic hedgehog (Shh) 

and Bone Morphogenic Proteins (BMPs) 
40-43

. The combined actions of activation and inhibition 

of these signaling pathways will result in the expression of Pdx1, Ptf1a, Sox9 and Nkx6.1, which 

are known as multipotent pancreatic progenitor markers 
44, 45

. The homedomain transcription 

factor PDX1 is one of the first markers of the developing pancreas. Lack of PDX1 function leads 

to pancreatic agenesis in mouse and mutations in human PDX1 are associated to hypoplastic 

or absence of pancreatic tissue, indicating the importance of this transcription factor in 

pancreas development 
45-47

. Similarly, mutations in PTF1a also have been linked to pancreatic 

agenesis in both mice and humans 
48, 49

. More recently, genomic sequencing of neonatal 

diabetes patients associated to pancreas agenesis has revealed a new gene responsible for this 

pancreatic disease, GATA6 
50

. Studies in mice have shown that GATA4 and GATA6 are required 

to maintain the number and identity of pancreatic progenitor pool to allow the normal 

progression of pancreas development 
51, 52

. 

 

Around embryonic stage (e) 9.5 in the mouse, epithelial buds undergo branching 

morphogenesis invading the surrounding mesenchyme resulting in the formation of small 

ductules, which contain the precursor cells of the acini, ducts, and islets of Langerhans 
53

. The 

most important of the transcription factors that have been identified as specific for endocrine 

development is the bHLH transcription factor Neurogenin3 (Ngn3). Ngn3 expression is first 

observed at e9.5 in the mouse, and its expression peaks around e15.5, a stage that 

corresponds to the endocrine differentiation wave 
54-56

. Lineage tracing experiments have 

shown that Ngn3 expressing-cells (Ngn3
+
) function as endocrine precursor cells and give rise to 

all hormone-secreting pancreatic cells; α (glucagon-secreting), β (insulin-secreting), δ 

(somatostatin-secreting), PP (pancreatic peptide-producing) and ε (ghrelin-secreting) cells 
57

. 

That observation agrees with the phenotype of Ngn3 knockout mice, which lack all endocrine 

cells types 
58

. Ngn3-positive cells undergoe dynamic changes in gene expression, resulting in 

the activation of Ngn3 targets (Pax4, Arx4, Rfx6, NeuroD1, Pax6, Isl1) 
59, 60

.  

 

The hormone-expressing cells become apparent around e13.5. By this time, the gut tube 

rotates to bring both buds into proximity and dramatic changes occur in the cellular 

architecture of the pancreas. Similarly, a rapid branching morphogenesis and acinar cell 

differentiation occurs 
53

. There is a major amplification of endocrine cell numbers, mainly β-

cells, which organize into islets clusters. Choice between α- and β-cells fate rely on the mutual 

repression of lineage-specific transcription factors. The transcription factor Pax4, Pdx1 and 

Nkx6.1 are critical for β-cell commitment, whereas Arx4 determines α-cell fate 
61-65

.  
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In addition to its role in early pancreas development discussed above, Pdx1 is expressed in β-

cells at later stages of pancreas development and persist in the adult life. Its activity is required 

to activate important genes for β-cells function, including Glut2 and Glucokinase 
66-68

.  Cell 

maturity is also achieved by the cooperation of MafA and NeuroD and Pdx1 in the 

transcriptional activation of the Insulin gene 
69-71

. 

 

b. In-vitro differentiation 

 

As mentioned before, the common approach to differentiate human embryonic stem cells and 

human induced pluripotent cells towards β-cells is based on a multi-stages protocol 

attempting to reproduce in vivo pancreas development. Protocols aim to induce hESCs and 

hiPS to follow a sequential transition through mesendoderm, definitive endoderm, gut-tube 

endoderm, pancreatic endoderm and endocrine precursor stages, to finally obtaining 

functional insulin-expressing cells 
3-5, 72

. Reported signaling pathways and factors required to 

direct pluripotent stem cells differentiation towards functional insulin-secreting cells are the 

result of years of investigation. However, due to the complexity of the aim, a highly efficient 

step-wise differentiation protocol is still missing. 

 

The major problems in directing hESCs and iPS differentiation to β-cell-like cells are: 

• The low reproducibility of the current differentiation protocols and  

• The low amount of insulin-secreting cells produced at the end of the 

differentiation processes, which indicates that we are still far away from 

obtaining an optimal β-cell mass (1x10
9
 cells) that could be used for cell therapy.  

Protocols described so far generate PDX1 and/or insulin positive cells, which need further 

maturation when transplanted into immunocompromised mice 
73-75

. 

 

------------------ Figure 3 near here ------------------ 

 

- Obtaining definitive endoderm 

 

In order to drive human ESCs differentiation towards insulin producing cells, the first goal is 

the efficiently generate definitive endoderm, which is the first step towards commitment into 

pancreatic fate. Whereas Activin A and Wnt activators are commonly used for DE induction, 

Noggin supplementation is justified by the requirement for low BMP signalling to direct the 

mesendoderm towards anterior primitive streak derivatives 
16, 76, 77

.  This first step of 

differentiation has been readily achieved by D’Amour et al. 
16

 using a combination of TGFβ 

family member, Activin A, to activate Nodal signaling, and low serum concentration of media 

to avoid the activation of PI3K. Furthermore, to improve the yield of definitive endoderm cells, 

the activity of PI3K could be inhibited using two different inhibitors, LY 294002 or wortmannin. 

Wnt3a-mediated Brachyury expression is also important for the migration of precursors cells 

through the anterior region of the primitive streak (PS) and the formation of a mesendoderm 

population from which both endoderm and mesoderm will generate depending on the 

magnitude and duration of Nodal signalling. Hence, the efficiency of definitive endoderm 

generation further improve with exposure of human ESCs to a combination of Activin A and 

Wint3a in the absence of serum on the first day, followed by one day of culture in medium 

supplemented with Activin A and 0,2% of serum and 3 days in medium supplemented with 
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Activin A and 2% of serum 
26

. In contrast to Wnts, BMPs inhibit endoderm induction. 

Therefore, inhibition of BMP signalling using the BMP antagonist, Noggin, resulted in increased 

expression of PS/endoderm markers and in a rapid reduced expression of PS/mesoderm 

markers, thus demonstrating the cooperatively intertalk of canonical Wnt/β-catenin, 

Activin/Nodal and BMP signaling pathways during ESCs specification of PS, mesoderm and 

endoderm 
76

. A different approach to induce definitive endoderm has been recently published 
78

, consisting in the use of two small molecules identified as endoderm inducers (IDE1 and 

IDE2) with efficiency similar to that obtained with Activin A treatment. 

 

- Pancreatic progenitors and late maturation 

 

Maturating endocrine precursors toward specialized and functional hormone-secreting cells is 

still the most problematic step to direct pluripotent stem cells differentiation to insulin-

producing cells 
79, 80

. Despite the great number of biologically active compounds that have 

been already tested for this purpose, none of them has successfully worked 
81, 82

. D’Amour et 

al. 
26

 used a mix of different “maturation factors” such as IGF1, Exendin-4, HGF and B27 

supplement during terminal differentiation stages, but observed only minor effects on 

differentiation when these factors were omitted. On the other hand Cho et al. 
83

 demonstrated 

that the application of betacellulin and nicotinamide to D’Amour’s protocol resulted in 

sustained Pdx1 expression and led to subsequent insulin production. Nevertheless, cells 

obtained from in vitro differentiation strategies are not mature enough to be completely 

functional; although they express different markers of β-cells, such as insulin, GLUT2 or 

Glucokinase (GK), they display functional defects in the glucose sensing pathway or the 

exocytotic machinery 
84-87

. Hence, strategies to improve the in vitro maturation process of 

endocrine precursors are needed and until quite recently has been achieved 
3-5

.   

 

 

- Other approches to take into account for maturation 

 

All strategies describe so far for pluripotent stem cells differentiation to obtain functional 

insulin secreting cells are the result of a decade of research and the fact that it has not been 

still achieved demonstrate the complexity of reaching this aim. New factors and different 

culture conditions are mandatory to induce a complete differentiation and maturation of 

pluripotent stem cells-derived β-cells. Here we mention some novel approaches that could be 

useful to improve definitive endoderm generation and final maturation of the endocrine 

precursors, resulting in a more efficient insulin-secreting cells differentiation strategy, below 

some of these strategies are overviewed. 

 

i. Effects of soluble factors in the maturation process 

 
Screening for new active molecules to be used as “maturation factors” could be helpful. In this 

context, a previous study described fetal soluble factor, released by pancreatic buds, that has 

been used to induce in vitro endocrine pancreatic differentiation from mouse ESCs 
7
. 

Subsequent proteomic studies (unpublished data) have demonstrated that one of the most 

abundant proteins present in the soluble factors released by pancreatic buds was 

Regenerating 1 (Reg-1). Reg-1 is normally induced in pancreatic β-cells and acts as an 

autocrine/paracrine growth factor for β-cell regeneration 
88, 89

. Based on this information, Reg-

1 could be used in differentiation protocols to induce human ESCs-derived β-cells maturation.  

 

ii. Nitric oxide and definitive endoderm induction 
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The relevant role of Nitric Oxide (NO) in developmental processes in the embryo has been 

previously described 
90, 91

, including the induction of ESCs differentiation into cardiomyocytes 
92, 93

. Short time exposure of ESCs to exogenous donors of NO like diethylenetriamine/nitric 

oxide (DETA-NO) induces early differentiation towards a definitive endoderm phenotype. 

Treatment of ESCs with DETA-NO for only 19h induces the expression of endodermal markers 

Pdx1 and GATA4, which represents an attractive alternative to the classical treatment with 

Activin/Wnt3a for 3-5 days to direct the cells towards a endodermal fate 
24, 94

. During 

pluripotent stem cells differentiation, lineage commitment is controlled not only by a gamut of 

transcription factors and soluble factors, but also by epigenetic events 
24, 95

. In this regard, NO, 

which is a messenger molecule involved in a wide variety of pathophysiological processes, has 

been shown to have a direct effect on gene expression through epigenetic events 
24, 96

. The link 

between NO-dependent early stem cells differentiation and its epigenetic effects opens a new 

field of investigation aimed at defining the possibility to ex vivo prime stem cells with NO 

donors and/or more classical epigenetic drugs as a strategy to obtain specialized cell 

populations.  

 

iii. Micro-RNAs 

 

Emerging evidence indicates that micro-RNAs (miRs) a group of small non-coding RNAs are 

prime candidates to fine-tune signaling pathways and gene expression and therefore able to 

control a variety of physiological processes, including glucose homeostasis 
97

. Several miRs are 

expressed at high levels during human pancreatic islet development and are known to have a 

functional role in pancreatic β-cell development and function. Among the pancreatic miRs 

identified, miR-15a has been shown to induce insulin biosynthesis by inhibiting UCP-2 gene 

expression 
98

. miR-30d has an important role in the regulation of insulin gene transcription by 

glucose through negative regulators of insulin gene expression 
99

. miR-124a regulates Foxa2 

gene expression and preproinsulin 
100

. miR-9 is a key factor in the modulation of Sirt1 

expression, and therefore modulates insulin secretion because by regulating exocytosis 
101

. 

overexpression of miR-373 leads to differentiation towards the mesendodermal lineage 
102

, 

miR-148 involved in regulating insulin synthesis via upregulation of insulin transcription 
103

, 

miR-375 has been implicated not only in pancreatic islet development but also in mature islet 

function because is required for normal glucose homeostasis 
104, 105

, miR-7 is the most 

abundant endocrine miR and is expressed at high levels also during human pancreatic islet 

development 
106

, and inhibition of miR-7 results in decreased β-cell numbers and glucose 

intolerance in the postnatal period 
107

. Previous studies have shown that overexpression of 

miR-375 promotes differentiation of ESCs to pancreatic endocrine, and provide evidence that 

constitutive miR-375 expression in ESCs led to the expression of beta cell markers as well as 

the production of insulin in reponse to glucose in islet-like clusters 
108

. Furthermore, expression 

of miR-7 in human fetal pancreas increase at weeks 14-18 that correspond to induction of 

PDX-1 and other genes required for endocrine cells fate specification 
107

. Altogether suggests a 

novel mechanism in the control of endocrine cell differentiation and consequentially miR-7 

could be considered as an important player for the achievement of a complete differentiated 

human pluripotent stem cells-derived β-cells. The mechanisms by which miRs regulate this 

process remain poorly understood.  

 

- Recent achievements 

 

As previously mentioned, insulin-producing cells obtained by numerous in vitro differentiation 

protocols published so far are commonly immature and non-functionally glucose-responsive. 

As a consequence, many research groups omitted the late in vitro differentiation steps, and 

allowed pancreatic progenitors to specialize into functional β-cells by in vivo maturation after 

transplantation in STZ-induced hyperglycaemic mice 
5, 73-75, 109

 or included small molecules and 
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growth factors to medium formulation in the last stage of cell differentiation. IGF1, Exendin-4, 

HGF and B27-supplement were used as a “maturation factors” during late differentiation 

stages, but only minor effects were observed 
26

, fibronectin and insulin-transferrin-selenium 

(ITS) were successfully used during the suspension culture step 
110

, and recently, R428 (a 

selective small-molecule inhibitor of the tyrosine kinase receptor AXL), Alk5 receptor inhibitor 

(Alk5i), N-acetyl cysteine (N-Cys) and thyroid hormone T3 were successfully used to come up 

with highly differentiated cells quite similar to mature β-cells 
3-5

. 

 
i. Impact of Resveratrol on stem cells-derived endocrine precursors maduration: 

 

Several studies reported the beneficial impact of resveratrol (RSV) on insulin secretion and 

how this compound potentiates glucose-stimulated insulin secretion (GSIS), not only in rat 

insulinoma cell lines (INS-1E), but also in isolated human islets 
111

. Based on this knowledge, we 

investigated whether RSV could improve the final maturation step of hESCs differentiation 

towards β-cells. RSV (3,5,4'-trihydroxy-trans-stilbene) is a polyphenol that has been shown to 

activate SIRT1, a NAD
+
-dependent sirtuins or class III histone deacetylase (HDACs) 

112, 113
. We 

have shown that SIRT1 contributes to the establishment of specific 

developmental/differentiation programs of hESCs 
114

. SIRT1 in combination with antagonists 

(nicotinamide) 
1, 83, 127

 promotes stem cells differentiation and in combination with agonists 

(RSV) 
4
 promotes maturation. Other studies demonstrated the effect of RSV on insulin 

secretion using INS-1E and human islet 
111, 115

. SIRT1 represses mitochondrial uncoupling 

protein-2 (Ucp2) transcription by binding directly to its promoter 
116

 resulting in increased ATP 

production and insulin secretion in INS-1E and in BESTO mice islets 
117, 118

. Additionally, RSV 

induced an up-regulation of key genes for β-cell function such as Pdx1, Glut2, Gk, Hnf1α and 

Tfam in both INS-1E cells and human islets 
111

, this up-regulation has been described as a 

possible mechanism by which RSV potentiates metabolism-secretion coupling in β-cells and 

interestingly for the maintenance of the β-cell identity 
119, 120

. We have shown for the first time 

that RSV is a critical compound improving the maturation of hESCs-derived endocrine 

precursors towards insulin-secreting cells, thus proposing its use for a more efficient insulin-

secreting cells differentiation strategy 
4
. 

 

ii. Two independent works, same achievement 

Using high-throughput screening techniques, Kieffer’s team 
5
 improved considerably their 

original protocol, which -for the first time- showed that fully functional beta-like cells could be 

generated in vitro and were able to permanently reverse hyperglycemia when transplanted 

into diabetic mice. It is a seven-stage in vitro differentiation protocol that builds upon 

protocols previously used to specify pancreatic progenitors. The addition of vitamin C at early 

stages of differentiation results in production of PDX1
+
/NKX6.1

+
 pancreatic progenitors with 

low expression of NGN3 and its downstream targets. Further differentiation of pancreatic 

progenitors using a combination of reagents including an ALK5 inhibitor, BMP receptor 

inhibitor and thyroid hormone T3, wich results in the increase of NGN3 expression and a 

substantial fraction of PDX1
+
/NKX6.1

+
/NEUROD1

+
cell populations. The continued exposure to 

ALK5 inhibitor, BMP receptor inhibitor, thyroid hormone T3 and Notch inhibitor results in the 

generation of NKX6.1
+
/insulin

+
 cell populations that express insulin but not glucagon or 

somatostatin. Finally, the screening of a number of additional reagents (a library of >40 small 

molecules and growth factors) identified R428, an inhibitor of AXL, which, in combination with 

ALK5 inhibitor and T3, potently induces MAFA expression in PDX1
+
/NKX6.1

+
/NEUROD1

+
 cells 

that are insulin
+
/glucagon

−
/somatostatin

−
. The resulting highly differentiated cells display key 

characteristics of mature beta cells, including glucose-induced insulin secretion, and rapidly 

reverse diabetes after transplantation in mice. 
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A 70 kg diabetic patient may need about 0,5-1 x 10
9
 insulin-producing cells in order to 

normalize blood glucose. To obtain such a critical mass of pancreatic progenitors committed to 

be differentiated into insulin-producing cells or a similar number of surrogate β-cells, it is 

required to expand the population of pancreatic precursors. Melton's group 
3
 follows a very 

similar protocol to that of Kieffer's, with common elements but slightly simpler, and report a 

strategy for large-scale production of functional human β cells from human pluripotent stem 

cells. By using sequential modulation of multiple signalling pathways in a three-dimensional 

cell culture system, without any transgenes or genetic modification, they succeed to generate 

glucose-responsive, monohormonal insulin-producing cells that show key features of a bona 

fide β-cell, including coexpression of key β-cell markers and ultrastructure. Furthermore, these 

cells mimic the function of human islets both in vitro and in vivo.   

 

The recent success in generating more mature beta cells from human pluripotent stem cells is 

very encouraging and although more basic research is needed, the field has taken important 

steps towards using human pluripotent stem cells-derived β-cells in cell therapy in diabetes 
3-5

. 

Actually, the first and generally accepted initiative of obtaining pluripotent stem cells-based 

therapy is that headed by ViaCyte Inc. Looking ahead, it is likely that phase 1 clinical trials 

based on using insulin-producing β-cells derived from human pluripotent stem cells, promoted 

by ViaCyte Inc. Company, will soon follow. ViaCyte strategy consists in implanting non-mature 

progenitors that may thereby follow the maturation process inside a device (VC-1) inside 

patient body and follow the maturation process by measuring insulin and human C-peptide 

production in parallel with exogenous needs for blood glucose regulation. 

------------------ Figure 4 near here ------------------ 

 

3. Cell selection strategies 

 

In-vitro directed differentiation methods have been successfully applied to generate hESC-

derived β-cells and β-progenitor cells. However, many of these methods yield different islet-

like cell enrichment. Thus, independently of the percentage of cells, which are positive for 

human C-peptide (20 to 60%), Pdx-1 (aprox 100%) and other markers, currently, there is not a 

single method that generates a completely pure post-mitotic human ESC-derived β-like cell 

culture. This generates several problems: i) it is important to enrich first the population of 

differentiated cells and then they could be expanded and ii) the risk for undifferentiated cells 

inducing teratoma formation exists 
73, 121

. Thus, without a well-designed method of selection of 

tissue-specific precursors, the cells obtained after the different differentiation protocols are 

not yet scalable for clinical application. 

 

A variety of methods could be used or have been developed to select islet-cell differentiated 

cells. For example, the uses of lineage-specific cell surface markers. In the case of β-cells it 

would be the glucose transporter 2 (Glut-2), that it is expressed in the cellular membrane of β-

cells 
122

. However, Glut-2 could not be enough specific because is also expressed in the liver 
123

 

also coming from endoderm. Another authors 
124

 were able to enrich pancreatic endoderm 

cells and endocrine cells, derived from hES cells, by using CD142, CD200 and CD318 cell-

surface markers.  Nowadays, there are still large gaps in our ability to select islet-cell 

differentiated cells on the basis of surface marker expression. In addition, the use of 

fluorescent reporters of gene expression has been used as an approach to select differentiated 

islet-cells. Then, the differentiated cells can be selected by using fluorescent-activated cell 

sorting. In this regard, Shiraki et al. 
125

 were able to select endoderm and Pdx1-positive 

pancreatic progenitors from ES cells. Alternatively, cell-trapping methods using antibiotic 

resistant genes coupled to the insulin gene promoter 
1, 126, 127

 or the Nkx6.1 gene promoter 
6
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has also been used. This technology consists on the use of reporters that activate expression of 

a selectable marker that can drive differentiated islet-cells to almost 100% homogeneity by 

restrictive survival using antibiotics. The generation of reporter lines that carries an eGFP 

reporter gene under the control of insulin or any transcription factor needed for islet-cell 

differentiation, such as Pdx1 is another strategy 
128

 employed. However, random genomic 

integration and unregulated transgene expression are limitations to this approach. To address 

these limitations, homologous recombination to “knock-in” a fluorescent protein into a 

specific genetic locus can be used. Currently there exist hESC reporter lines that have been 

used to sort neuronal 
129

, cardiac precursors 
130

 and β-cell precursors 
131, 132

.  

 

Actually, new alternatives to avoid the use of genetically modified stem cell lines for isolating 

tissue-specific progenitors are being explored. In this regard, King et al. 
133

 modified dual-

fluorescence resonance energy transfer (FRET) “molecular beacon” technology, using 

fluorescence-activated cell sorting (FACS). This new technology allows the isolation of live 

differentiated ESCs based on expression of intracellular proteins and leaving the stem cell 

genome intact. 

 

In conclusion, the ability to select specific differentiated stem cells with tissue-specific 

properties is a key aspect that will need to be overcome for clinical application of stem cells. 

 

- Role of non β-cell partners:  

 

Intra-islet interactions have shown that β-cells act as a functional syncytium and that other 

endocrine (alfa-, delta- and PP-cells) and non-endocrine (endothelial) cells play a relevant role 

in the construction of an integrated response to nutrient signals. Although isolated β-cells keep 

the whole machinery to respond to nutrients, its efficiency increases substantially when 

couples other β-cells 
134

. Minimal size aggregates that better mimic islet behavior were 

estimated in 10-15 β-cells. More recently, a role for α-cells has been reported 
135

.  

 

Moreover successful engraftment may be improved by cotransplantation of mesenchymal 

stromal cells that will also protect from immune attack (ESC and banks of HLA compatible cells 

are allogenic in nature). 

 

This new approach is be based on the ability of MSCs to secrete many cytokines and growth 

factors  that both provide an in vivo favorable microenvironment supporting engrafment of 

insulin-producing cells, angiogenesis and immunomodulation  

 

Renewal of β-cells may depend on replication of differentiated β-cells and/or ductal 

progenitors, then it is tempting to speculate that an in-vitro obtained progenitor of ductal and 

endocrine cells which differentiate and maturate after implantation may be closer to 

endocrine pancreas repair. Most efforts were focused on the post-mitotic β-cell whilst, in 

theory, a ductal-endocrine progenitor will be better in order to keep tissue homeostasis. Then, 

efforts to better control developmental decisions ending with ductal, endocrine or exocrine in-

vitro differentiation 
136

 are needed. 

 

 

4. Minimal standards to accept a β-cell surrogate  

 

  

As described above a pancreatic β-cell gathers together three main features: glucose-sensing, 

exocytotic machinery and insulin gene expression, processing and storage complexes. Whilst 

early and late progenitors could be better characterized the transcription factors governing the 
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process (Figure 3) to characterize a postmitotic β-cell we should test the presence and 

function of the 3 complexes. Tables I and II summarize these in insulin-producing cells derived 

from mouse and human embryonic stem cells. The aim is not a full descriptive report but a 

summary of the breakthrough published papers with an historical perspective, which drive this 

research.  

 

Tables I and II 

 

 

5. From adult progenitors to Insulin producing cells 

 

 

a. Defining the Holy Grail of Islet Re-Juvenescence 

 

In recent years, the concept of β-cell regeneration has come into the limelight as a potential 

complementary approach to stem cell therapy for future treatment of Type 1 Diabetes 

Mellitus (T1DM) 
137

. These two approaches or not mutually exclusive as on one hand lessons 

learned from in vivo regeneration may aid in the development of improved in vitro 

differentiation protocols while on the hand characterization of novel differentiating genes 

highlighted in in vitro studies may become useful markers to identify a bona fide re-

juvenescence cell source within the pancreas. The notion of regeneration stemmed from 

studies revealing that individuals with long standing T1DM were found to retain a residual and 

functional β-cell mass, which persisted in a steady state turnover within the hostile 

autoimmune environment 
138-140

. In agreement with these human data, studies performed in 

mouse model of experimental autoimmune diabetes, revealed that the immunological 

destruction of islet β-cells was associated with enhanced β-cell regeneration 
141, 142

. Consistent 

with an intimate dialogue between immunity and islets to promote β-cell regeneration, 

immunosuppressive therapy using anti-CD3 monoclonal antibodies impeded β-cell 

replenishment 
141

. These studies highlight a fundamental paradigm, if ever an in vivo 

regenerative approach to treat T1DM is to be implemented: A non-mutually exclusive strategy 

in which the immune response as well as β-cell regeneration and function are exquisitely fine 

tune is essential in order to successfully regain an optimally performing β-cell mass and 

maintain normoglycemia.  

 

Notwithstanding this complex crosstalk that likely triggers the regeneration process, the 

subsequent target cells and mechanisms that leads to β-replenishment remains a matter of 

controversy 
143, 144

. Indeed, depending on the experimental mouse model and degree of injury 

inflicted to the pancreas, new β-cells were shown to be generated by neogenesis of ductal 

epithelium cells 
145, 146

, by trans-differentiation of α- and δ-cells to β-cells 
147-150

 and from rare 

pancreas-derived multipotent precursor cells 
151, 152

. Interestingly, in young animals trans-

differentiation after extreme β-cell loss was shown to arise from δ-cell conversion while in 

older mice replenishment was predominantly through α-cell trans-differentiation 
147, 148

. These 

findings indicate that islets retain an age-dependent specific cell plasticity challenging the 

current perception that regeneration is gradually lost with age 
153, 154

. Although exocrine acinar 

cells can be reprogramed to insulin-producing cells in vivo via the combined viral mediated 

ectopic expression of PDX1, NGN3 and MAFA 
155

, this conversion does not appear to occur 

spontaneously in either mice or human, excluding these cells as a likely source of in vivo 

regeneration. On the hand, bone marrow stem cells also appear to indirectly contribute to islet 

regeneration by promoting proliferation of resident islet cells 
156, 157

. Alternatively, lineage-

tracing studies demonstrated that pre-existing mouse adult pancreatic β-cells were the major 

source of new insulin-producing cells during adult life and also after pancreatectomy 
158-160

. 
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Furthermore, it was shown that all β-cells could contribute to islet growth and maintenance 
161

. 

Albeit the compelling evidence that β-cell replication is the main mechanism of β-cell 

regeneration in rodents, neogenesis and trans-differentiation were also reported in pancreas 

of T1DM patients providing the proof-of- concept that all three processes independent of their 

contribution are important for β-cell regeneration 
162-165

. Identifying factors or signals 

regulating these processes potentially triggered and sustained by the autoimmune 

environment will be the key to harnessing a successful in vivo regenerative therapy. 

 

b. Pax4 and Arx, master regulators of ββββ-cell regeneration  

 

Lessons learnt from pancreas development studies have clearly demonstrated an antagonistic 

role of the transcription factors Pax4 and Arx in islet β and α cell faith decision from an early 

Ngn3-positive endocrine progenitor 
166

. High expression levels of Pax4 relative to Arx were 

shown to favor a β-cell phenotype while low levels relative to Arx result in a α cell phenotype 
62

. Seminal work performed by Collombat and colleagues demonstrated that forced expression 

of Pax4 in endocrine precursors as well as in mature α-cells in mice impelled the conversion of 

these cells into insulin-producing cells resulting in enlarge islets. In parallel, a continuous 

replenishment of α-cells was detected through neogenesis of an Ngn3-positive progenitor 

subpopulation located in the ductal epithelium vicinity 
167

. Similarly, the selective inhibition of 

the Arx gene in α-cells through conditional loss-of-function in mice resulted in the efficient 

conversion of adult α-cells into β-like cells at any age 
168

. More importantly both transgenic 

animal models were rescued from hyperglycemia subsequent to toxin-induced β-cell 

destruction as a result of constant β-cell renewal through α- cell transdifferentiation 
167, 168

. 

Independently, we demonstrated that conditional overexpression of Pax4 in adult β-cells 

protected transgenic animals against streptozotocin-induced hyperglycemia 
169

. More recently, 

we have also validated this protection in an animal model of experimental autoimmune 

diabetes (manuscript in preparation). Interestingly, long-term expression of Pax4 in vivo also 

resulted in loss of islet insulin secretion with the concomitant appearance of a Pdx1
+
/insulin

-

/BrdU
+
 cell subpopulation suggesting a de-differentiation of β-cells that potentially acquire a 

proliferative phenotype 
169

. Interestingly, these cells are reminiscent of the sub-population 

reported by the group of van der Kooy 
151, 152

. Substantiating this notion, we demonstrated 

using a transgenic mouse model in which EGFP along with the CRE recombinase expression is 

under the transcriptional control of the Pax4 promoter (pPAX4/EGFP-CRE) the existence of a 

Pax4/EGFP-enriched β-cell subpopulation. More importantly, mitogens such as activin A, 

betacellulin and GLP-1 increased Pax4 mRNA levels specifically in EGFP-positive β-cells 
170, 171

. 

These results indicate the potential co-existence of two β-cell subpopulations within islets: A 

predominant Pax4-negative subpopulation which is functionally active in maintaining 

glycaemia and a Pax4-expressing subpopulation prone to proliferation that adapts the β-cell 

mass in response to physiological cues. These studies combined with the work of Collombat 

clearly define both Pax4 and Arx as master regulators of β-cell regeneration through the 

concerted processes of trans-differentiation, neogenesis and replication.  

 

c. Pax4 and Arx as ‘druggable’ targets: Reality or fiction 

 

The next challenge is now to seek naturally occurring or chemical factors which temporally 

induced Pax4 expression or repress Arx levels in order to promote regeneration within the 

autoimmune environment. Recently Dirice and colleagues reported that soluble factors such 

as IL-2, -6 and 10 secreted by invading immune T-cells stimulated β-cell regeneration 
172

. 

Whether these cytokines have an impact on either Pax4 or Arx expression remains to be 

established. Glucagon-like peptide-1 (GLP-1) was also proposed to potentially promote α- to β-

cell trans-differentiation through activation of Pax4 
173

. The feasibility of targeting transcription 
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factors with small therapeutic molecules was recently validated for the islet-enriched 

transcription factor Pdx1 
174

. These exciting results open a new era towards a potential 

regenerative therapy for the treatment of T1DM by targeting transcription factors such as 

Pax4 and Arx. 

 

 

6. Expert Opinion 

 

The last 15 years have witnessed different strategies to obtain insulin-producing cells from 

stem cells. Since the pioneer “proof-of-concept” with mouse embryonic stem cells it was 

crystal clear that developmental biology-based approaches were instrumental in the challenge 

of making a pancreatic β-cells. ViaCyte Inc. group succeeded in translating mouse knowledge 

into human embryonic stem cells. Whilst recently several groups, including ours, have came 

out with new strategies to generate functional β-cells from human stem cells, ViaCyte Inc. took 

a step ahead and start a clinical trial with 4 diabetic patients transplanted with pancreatic 

progenitors derived from stem cells. The maturation of pancreatic progenitors are expected 

inside the ViaCyte device implanted in patient’s body, which could be very promising in the 

finding of a cure for type 1 diabetic people. Undoubtedly the recent events prelude the 

beginning of a new era in diabetes therapy. In spite of that, in our opinion there are still so 

many unanswered questions. While the generation of pancreatic progenitors from stem cells 

seems to be easier to accomplish than obtaining glucose-responding and insulin-producing 

cells, should we then focus in the in the β-cell maturation process? Are the pancreatic β-cells 

interconnected with other non-β endocrine cells, and if so, should we generate whole islets 

from stem cells? Should they be vascularized? Could we find a “miraculous” small molecule or 

cellular treatment that promote β-cells regeneration? Would cell-selection be needed to avoid 

remaining non-differentiated cells? Would these cells be tolerated by immune system? 

 

Successful projects on making β-cells from stem cells have been funded by public systems in 

Europe and USA. However, it is a private company who is taking the control of such success, 

Johnson & Johnson Group. In order to get the best cost-effective treatment so every diabetic 

person could benefit of the in vitro generated β-cells, we think that the combination of private 

and public systems should control the production with its risks and benefits. That will 

definitively accelerate the process. We keep the hope that a century after the discovery of 

insulin we are now close to a cure for diabetes rather than for new treatment. 
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Figure legends 

 

Figure 1. From Embryonic Stem Cells to Insulin Producing cells: a summary of progress. 

Schematic representation of the contributors to the development of differentiation strategies 

to generate insulin producing cells from mouse and human pluripotent cells. ViaCyte Inc. 

signed rights agreement with Janssen Research & Development LLC. BetaLogics is a subsidiary 

of Janssen Research & Development LLC a Pharmaceutical company of the Johnson & Johnson 

Group. Contributions identified by the first author (see Reference section) 

 

Figure 2. The Challenge of making a β-cell: A. Simplified scheme of glucose-sensing 

mechanism, exocytotic machinery and gene expression, processing and storage of insulin. G: 

Glucose; Glut-2: Glucose transporter; GK: Glucokinase; G-6-P: glucose-6-phosphate; ATP: 

adenosinetriphosphate, DPs: diadenosinepolyphosphates; KATP: ATP-regulated potassium 

channels; T. Factors: transcription factors. B. Intraperitoneal glucose-tolerance test in 

overnight fasted non-diabetic mice (o) and in streptozotocin-diabetic mice transplanted with 

insulin-producing cells under the kidney capsule (taken from: Vaca P. et al. Stem Cells 2006; 

24:258-265). C. Blood glucose after transplantation of insulin producing cells under the kidney 
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capsule. TX: Transplantation; GR: graft removal (from León-Quinto T. et al. Diabetologia 2004; 

47:1442-1451). D. Dose-dependent effect on blood glucose. (o) Control STZ-diabetic mice; (∆) 

Transplanted with 1 x 10
6
 cells or with (•) 5 x 10

6
 cells under the kidney capsule (from Roche E. 

et al. Handb Exp Pharmacol 2006; 174:147-167). E. Blockade of ATP-dependent K currents by 

ATP. Inside-out patch recoding at membrane potential = 0 mV (taken from Vaca P. et al. Stem 

Cells 2006; 24:258-265). F. Graft removed 3 weeks after transplantation removal (from León-

Quinto T. et al. Diabetologia 2004; 47:1442-1451). 

 

Figure 3. Summary of Pancreas Organogenesis and Differentiation and Maturation strategies 

to obtain a β-cell fate. Protocol Stages: ESC: embryonic stem cells; iPS: induced pluripotent 

cells; ME: mesendoderm; DE: definitive endoderm; PG: primitive gut; PF: posterior foregut; PE: 

pancreatic endoderm; EP: endocrine precursors. Transcription Factors and Signaling Pathways: 

FoxA2: Forkhead box A2; GATA4: GATA binding protein 4; Sox17: SRY (sex determining region 

Y)-box 17; PDX1: Pancreatic and duodenal homeobox 1; PTF1a: pancreas specific transcription 

factor 1a; Nkx2.2: NK2 homeobox 2; Sox9: SRY (sex determining region Y)-box 9; Ngn3: 

Neurogenin 3; NeuroD: Neuronal differentiation; MafA: V-maf avian musculoaponeurotic 

fibrosarcoma oncogene homolog A; Wnt: Wnt signaling pathway; PI3K: Phosphatidylinositol-

4,5-bisphosphate 3-kinase; Shh: sonic hedgehog. Soluble Factors and culture media inducing in-

vitro differentiation: FBS: fetal bovine serum; Wnt3a: Wingless-type MMTV integration site 

family, member 3A; Sirt-1: Sirtuin 1; bFGF: Basic fibroblast growth factor; RA: retinoic acid; ITS: 

insulin-transferrin-selenium. New Factors: R288: small-molecule inhibitor of the tyrosine kinase 

receptor AXL; Alk5i: Alk5 receptor inhibitor; T3: thyroid hormone T3; N-Cys: N-acetyl cysteine. 

Potential factors: Reg-1: regenerating islet-derived 1; mir7: mir-7 microRNA precursor; mir375: 

miR-375 microRNA. 

 

Figure 4. Effect of late maturation on hESCs-derived insulin-secreting cells. Upper: In-vitro 

staining for human C-peptide and insulin in hESC-derived insulin containing cells which 

followed a conventional protocol. Lower: hESC-derived cells exposed to late maturation factors. 
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Figure 1. Schematic representation of the contributors to the development of differentiation strategies to 
generate insulin-producing cells from mouse and human pluripotent cells.  
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Figure 2. Pancreatic β-cell: A representation of glucose-sensing mechanism, exocytotic machinery and gene 
expression, processing and storage of insulin.  
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Figure 3. Pancreas organogenesis summary, differentiation strategies and maturation processes used to 
obtain a β-cell fate.  

 
hESC, human embryonic stem cells; iPS: induced pluripotent cells; ME, mesendoderm; DE, definitive 

endoderm; PG, primitive gut; PF, posterior foregut; PE, pancreatic endoderm; EP, endocrine precursors; RA, 
retinoic acid; ITS, insulin-transferrin-selenium; R288, small-molecule inhibitor of the tyrosine kinase 

receptor AXL; Alk5i, Alk5 receptor inhibitor; T3, thyroid hormone T3; N-Cys, N-acetyl cysteine.  
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Figure 4. Maturation promotes hESCs-derived insulin-secreting cells obtention.  
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MINIMAL CRITERIA FOR Human PANCREATIC BETA CELL MARKERS  

(Adult & Progenitors) 

 
 Novocell-Viacyte 

(2006-2011) 

Kieffer 

(2011-2014) 

Melton 

(2014) 

Pezzolla 

(2015) 

1. Glucose-sensor 

Glut-2 

Glucokinase 

Kir6.2 & functional KATP channels 
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+ 
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2. Exocytotic machinery 

 EM granules 

Synaptophysin  

 

 

+/- 

 

+ 
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3. Gene Expresión, Processing and Storage 

 

mRNA 

Insulin 

     

Transcription Factors 

 

Progenitors 

 Pdx1 

 PTF1a 

NKx2.2 

Nkx6.1 

Sox 9 

Ngn3 

HNF6 

HNF1B 

HNF1A 
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NeuroD   

MafA 
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Protein (Western, ELISA,Immunosteaining, Cytometry) 

Insulin 

Preproinsulin 

C-peptide 

 

Transcription Factors 

Progenitors 

Pdx1 

PTF1a 

NKx2.2 

Nkx6,1 

Sox 9 

Ngn3 

Pax4 

Pax6 

Isl-1 

 

Adult 

PDX-1 

NEURO D   

MAFA 

Pax 4 

Pax6 

VCN-3 
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4. Insulin and C-peptide content  + + + 

 

5. Stimulus-secretion coupling (Glucose-induced insulin release) 

[Ca
2+

]i  signals 

 

Glucose-induced insulin release 

 
In-vitro 

Basal vs Stimulated 

Depolarization-induced 
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In vivo 

Human C-peptide/insulin 

Glucose challenge  

 

 

+ 

+ 
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6. Blood glucose normalization 

Rodent models 
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7. Preclinical Studies 
In vivo maturation 

GLP studies 
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