
1 
 

Title of paper: 

Morphological integration of mandible and cranium: Orthodontic implications 

 

Running Title: Mandible and cranium integration 

 

José Antonio Alarcóna,*, Markus Bastirb, Ignacio García-Esponaa, Mario Menéndez-

Núñeza, Antonio Rosasb 

 

a Department of Stomatology, Section of Orthodontics, Faculty of Odontology, University 

of Granada, Granada, Spain 

b Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias 

Naturales, CSIC, Madrid, Spain 

 

*José Antonio Alarcón, Department of Stomatology, Faculty of Odontology, University of 

Granada, Campus Universitario de Cartuja, s/n 18071, Granada, Spain 

Tel. and fax: +34 958201480 

E-mail address: jalarcon@ugr.es 

 

 

Keywords: covariation, geometric morphometrics, generalized linear model, skeletal Class 

II, III- malocclusion, facial pattern. 

Administrador
Cuadro de texto
Postprint del artículo publicado en: Archives of Oral Biology 59(1): 22-29 (2014)



2 
 

ABSTRACT 

Objectives: This study aimed at clarifying the morphological interactions among the cranial 

base, face, and mandible, to improve the assessment and treatment of skeletal 

malocclusions involving the mandible.  

Design: Untreated adult subjects (N = 187) were grouped according to standard 

cephalometric criteria of vertical and sagittal relationships. Geometric morphometrics were 

used to test the null hypothesis that integration patterns between the mandible and its 

associated basicranial and upper midfacial counterparts would be similar among various 

vertical and sagittal facial patterns.  

Results: The null hypothesis was rejected for vertical groups, because the dolicho- and 

brachyfacial subjects showed significantly different integration patterns, but was accepted 

for sagittal groups, which showed identical covariation patterns. The morphological 

integration between the cranium-face and mandible were similarly high in the three skeletal 

classes, which explained the similarly large covariance between the two structures (57.80% 

in Class II to 60% in Class III). 

Conclusions: Dolicho- and brachi-facial subjects showed specific and different cranium-

face and associated mandible configurations. The cranium-face configuration may have an 

important influence (~60%) on the generation of sagittal (anteroposterior) skeletal 

malocclusions. The remaining morphological component of the skeletal malocclusion 

(~40%) would be independent of this particular integration (PLS1) between the cranium-

face and mandible. 

Keywords: covariation, geometric morphometrics, generalized linear model, skeletal Class 

II, III- malocclusion, facial pattern. 
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1. Introduction 

The term morphological integration (MI)1-3 implies that an evolutionary change in the 

morphology of one anatomical element is reflected by morphological changes in other 

elements.4 MI comprises a set of mechanisms that connect (integrate) elements of an 

anatomical system, quantify the associations between them, and provide measures of 

covariation to infer developmental or functional relationships.5 Many orthodontic 

treatments seek to affect the growth of the mandible.6-10 However, differences in cranium 

and mandible MI patterns between patients, depending on their sex, jaw skeletal 

relationship, or facial pattern, could result in divergent responses to orthopedic treatment. 

Therefore, accurate knowledge about the interdependence among craniofacial structures 

(e.g., mandible, face, and cranial base) is critical for therapeutic planning.  

It is still unclear whether orthopedic treatments can alter the mandibular growth to a 

clinically significant degree. For example, the effect of functional appliances over condylar 

growth is a topic of long-standing controversy.7 The MI between the mandible and 

craniofacial system could be partially responsible for the basic skeletal setting that leads to 

a given sagittal or vertical malocclusion. It could also explain the relatively limited 

response of the mandible to orthopedic appliances.  

Several quantitative studies have investigated MI in the human face.11-14 Some 

studies found significant features of integration between the cranium and mandible or some 

of its elements.15 However, the idea that the mandible is relatively independent of the 

cranium remains pervasive. In a study of adolescents without major malocclusion, McKane 

and Kean14 found minor or no covariation among the shapes of parts of the facial skeleton. 

Recent research about the MI of the modern human mandible during ontogeny concluded 

that the mandible has maintained a passive role in hominin skull evolution, playing “follow 
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the leader” with the cranium.16 Enlow offered a compromise between these extreme 

viewpoints, proposing that a brain-to-basicranium-to-face (mandible) cascade of 

morphological influence leads to integration.17,18 Later studies partially confirmed some of 

these spatiotemporal interconnections.19,20 More recently, Wellens et al.,21 found that the 

mandible and maxilla constitute one module, independent of the skull base.  

The fact that a high integration degree between the mandible and the cranium could 

exist in some cases, but not in others, raises some questions: For example, what are the 

morphological pattern (i.e., shape-coordinated variation) and the quantitative pattern (i.e., 

the degree of covariation) of the mandible-cranium integration, and do these integration 

patterns differ among various craniofacial configurations (e.g., occlusal and facial 

patterns)?  

The aim of this study was to quantify patterns of morphological covariation between 

the mandible and cranium in adult subjects with skeletal Class I, II, and III malocclusions, 

on the one hand, and meso- dolicho-, and brachyfacial configurations, on the other hand. 

The overall goal was to improve the assessment and treatment of skeletal malocclusions 

involving the mandible. Because conventional distance-angle cephalometric approaches 

present limitations for shape assessment,22,23 this study employed geometric 

morphometrics, which have been shown to be useful for investigating MI.24-26 The null 

hypothesis was that there would be no difference in the craniofacial-mandibular integration 

pattern between groups.  

 

2. Material and methods 

2.1. Data sample 
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This study included 187 Caucasian adult subjects (92 males; 95 females, age range, 20–30 

years; mean, 25.6 ± 4.2 years) from Granada (southern Spain) who were randomly selected 

from a private dental office. Exclusion criteria included: craniofacial disorders such as cleft 

anomalies, craniosynostoses, or other syndromal diseases or congenital malformation, 

congenitally missing, supernumerary, or extracted teeth; and previous or current orthopedic 

or orthodontic treatment.  

 For all subjects, standard lateral cephalometric radiographs with the teeth in centric 

occlusion and with the head oriented horizontally with the Frankfort plane were taken with 

a cephalostat in accordance with standard cephalometric prodecures. The same digital x-ray 

device (Planmeca PM-2002 EC Proline Dental Pan X-Ray Machine, Helsinki, Finland), 

technician, focus-median (150 cm), and film-median (10 cm) plane distances were used for 

all radiographs. A reference ruler was shown on the cephalostat for exact measurement of 

the magnification factor. 

 Cephalograms were imported into tpsDIG 2.12 software (tpsSeries, J.F. Rohlf, 

SUNY Stony Brook; http://life.bio.sunysb.edu/morph/) to digitize 38 landmarks (2D) 

representing the morphology of the cranial floor, the midline cranial base, and the face, and 

31 semilandmarks representing the morphology of the lower surface of the mandibular 

body and the contour of the bony chin-symphysis (Table and Fig. 1). All of these 

localizations were performed by the same examiner (J.A.A.). Paired bilateral landmarks 

were digitized by averaging the left and right sides.  

Measurement errors were evaluated by multivariate analysis of variance 

(MANOVA) by repeated data recordings of 10 randomly selected subjects on 4 different 

days. No significant differences were found between the repeated samples (Wilks lambda 5 
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0.00; F 5 1.69; df1, 2 5 138, 6, 47; P 5 0.2), indicating that the measurement errors were 

smaller than the sample variations. 

 

2.2. Geometric morphometrics and statistical analyses 

The degree of covariation patterns were quantified with a two-block partial least squares 

(PLS) analysis,27 by assessing correlations between the first PLS vector scores25 and the 

RV coefficient.28 The integration pattern was quantified by using Procrustes registered 

configurations along the PLS vectors of the corresponding blocks.29 Blocks 1 was the 

cranium (cranial base and face), and block 2 was the mandible. 

 Integration vectors for the full sample after correction for sexual dimorphism were 

calculated. Sex correction was performed by multivariate regression of shape on sex 

(dummy) and avoided assessment of integration patterns driven by male and female mean 

shape differences. Then, mesofacial (FMA between 20° and 28°, n=97), dolichofacial 

(FMA >28°; n=49), and brachyfacial (FMA <20°; n=41) patterns, and skeletal Class I 

(ANB angle between 0° and 3°, n=88), Class II (ANB angle >3°; n=54), and Class III 

(ANB angle <0°; n=45) malocclusions were distinguished, following standard orthodontic 

criteria (ANB angle and FMA angle -mandibular plane to the Frankfurt horizontal 

angle).30,31 

 To assess the overall similarity of integration patterns in different groups of facial 

patterns and skeletal classes, craniofacial and mandibular PLS1 scores were analyzed by a 

Generalized Linear Model (GLM).32 We considered the overall correlation between the 

craniofacial and the mandibular PLS scores as principal factor as well as a group factor 

with three levels (doli- meso- and brachyfacial groups, skeletal Class I, II, and III). The 

GLM model was then set up so as to decompose the overall variance into fractions that are 
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contributed to the mandible by the craniofacial factor (principal factor) as well as to 

possible differences of the principal factor across the different groups (interaction term).12,32 

 

3. Results 

Table 2 shows the results for the interaction strength. Except for the brachyfacial 

subsample, the PLS1 (singular warp) vector results indicated that the mandible was highly 

integrated with the cranium and explained between 57.8% (Class II) and 68.1% (total sex-

corrected sample) of the total covariation. A higher correlation was found in Class III 

subjects (r = 0.75, P < 0.0001). For the brachyfacial subsample, the PLS1 vector was not 

significant and the PLS 2 vector, although significant, only explained 19% of the cranium-

mandible covariation. 

 Figure 2 shows the PLS1 covariation pattern between the mandible and cranium in 

the complete (sex-corrected) sample. Variations in the spatial configurations of the cranial 

base and maxilla (2D and 3D, because mid-line and bilateral landmarks were involved) 

were related to coordinated shape variations in the mandible. The spectrum of mandibular 

variations detected among human populations (e.g., open vs. closed corpus-ramus angle, 

narrow vs. wide ramus breadth, thick vs. thin symphysis profile, high vs. low coronoid 

process, convex vs. concave basal border, etc.) was associated with a cranial base swing, 

with Sella as the center, and a rectangular-to-quadrate maxilla variation. Thus, a long face 

occurred in the context of a vertically oriented cranial base and a deep and short maxilla. A 

long-face mandible showed an open corpus-ramus angle, narrow ramus breadth, and thin, 

high symphysis, whereas a short face displayed the opposite configuration. 

 These associations were further corroborated by the GLM analysis results (Table 3). 

In both analyses, correlations between the cranium-mandible PLS1 scores were highly 
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significant. However, a highly significant interaction term was also identified in the GLM 

with vertical facial patterns as the group factor. This finding supported the hypothesis of 

different cranium-mandible covariation patterns in these groups. The interaction term was 

not significant between the skeletal classes, indicating similarity in the cranium-mandible 

covariation pattern (Fig. 3). Thus, all of the analyses suggested that the null hypothesis 

should be rejected with respect to facial patterns but not skeletal classes.  

 Because the integration patterns were different among the vertical facial patterns, 

we conducted separate PLS analyses for the dolicho- and brachyfacial subsamples (Fig. 4). 

As expected, the long-face subsample mostly followed the covariation scheme detected for 

the whole sample, but with a few differences. Notably, although the anterior part of the 

maxillary alveolar process remained stable, the posterior part (U2M) went down, with 

important occlusal repercussions. This cranium-face configuration was associated with a 

more retruded, hyperdivergent mandible and a narrower, elongated, and posteriorly 

orientated ramus.  

A different cranium-mandible covariation pattern was found in the brachyfacial 

subsample. The anterior cranial base (i.e., presphenoid plane, cribriform plate, and Nasion), 

Frankfort plane position, and maxillary orientation remained almost stable. Variation was 

mostly concentrated in the posterior face and posterior base. This finding was related to an 

anteroposterior rotation of the basion, which led to cranial base flexion. U2M became more 

backwardly located as the cranial base was flexed, and the maxillary alveolar process 

became longer due to posterior elongation. The mandible responded with corpus-ramus 

angle and ramus breadth variations, presumably due to condylar growth. The anterior 

mandibular corpus and chin rotated anteriorly, leading to upward displacement of the chin, 
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which moved closer to the maxilla. This movement contributed to shortening of the anterior 

facial height and anterior supraocclusion. 

 

4. Discussion 

Geometric morphometric methods and GLM were used to reveal the pattern and strength of 

MI between the cranium-face and mandible in adult subjects with skeletal Class I, II and III 

malocclusions, on the one hand, and meso- dolicho-, and brachyfacial configurations, on 

the other hand. The null hypothesis of no difference between groups was rejected for facial 

patterns but not for skeletal classes. The craniofacial-mandibular covariation did not differ 

between different skeletal classes, but the MI was different between dolicho- and 

brachyfacial subjects.  

 The level of covariation between the cranium and mandible were similarly high in 

the three skeletal classes, which explained the similarly large covariance between the two 

structures (57.80% in Class II to 60% in Class III). That could be interpreted as a prevalent 

influence (~60%) of the craniofacial configuration (e.g. interdependencies between 

anatomical systems) in the generation of sagittal (antero-posterior) skeletal malocclusion in 

the three skeletal classes. The remaining morphological component of the skeletal 

malocclusion (~40%) would be independent of this particular integration (PLS1) between 

the cranium and mandible. Because we are unable to act clinically over the cranial base, our 

ability to correct orthopedically sagittal skeletal malocclusions acting only in the mandible, 

is limited to, at most, this 40%. From this perspective, the treatment of Class III 

malocclusions due to mandibular prognathism would be slightly more limited as the degree 

of cranium-mandible MI increases (r = 0.75), when compared with Class II malocclusions 

with a retrognatic-hypoplastic mandible (r = 0.71). Nevertheless, these analyses only 
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account for morphological traits; in the genesis and correction of skeletal malocclusions 

involving the mandible other factors, such as neuromuscular balance and function, should 

also be considered.33 

 The cranium-mandible MI was significantly different between dolicho- and 

brachyfacial subjects, in terms of the pattern and strength of covariation. In dolichofacial 

subjects, the cranium and mandible were highly integrated, explaining 56.10% of the total 

covariation. In brachyfacial subjects, the degree of integration explained only ~19% of the 

total covariation. As a result, our ability to modify the mandible morphology by orthopedic 

approaches may be less limited in brachy- than in dolichofacial subjects because the 

interdependence between the cranium and mandible is much lower. 

 Dolicho- and brachyfacial subjects exhibited important differences in the degree of 

cranial base variations. In the most-dolichofacial configuration many traits varied: the 

sphenoid plane and cribriform plate were more upward, posterior cranial base was 

anteriorly rotated, Frankfurt plane was more downward, maxilla was decreased, retruded, 

and anterorotated, and posterior alveolar process was markedly decreased. Thus, the 

cranium became anteroposteriorly compressed, with a large variation at the M2 level. This 

craniofacial configuration was associated with a characteristic mandible: retruded and 

hyperdivergent, with a narrow, elongated, and posteriorly orientated ramus, pronounced 

preangular notch, decreased corpus height, and narrow, elongated, and vertically projecting 

symphysis. 

 In contrast, the range of cranial base variations was reduced in brachyfacial 

subjects. In the most-brachyfacial configuration, the anterior cranial base and Frankfurt 

plane remained almost invariable. Only the posterior cranial base varied, presenting an 

anteroposterior rotation. For the maxilla, only a slight vertical compression was detected. 
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However, in the anteroposterior dimension, the maxilla was protruded and the alveolar 

process was elongated backward. This craniofacial configuration was also associated to a 

characteristic mandible: square-shaped, protruded and hypodivergent, with a wide, 

anteriorly oriented ramus, increased corpus and symphysis thickness, and anterorotation of 

the anterior mandibular corpus and chin, leading to upward projection.  

 Unique covariation patterns between the maxilla and mandible were observed in the 

dolicho- and brachyfacial groups. In the most-dolichofacial morphology, a decreased, 

anterorotated, and retruded maxilla with a decreased and anterorotated posterior alveolar 

process covaried with a more hyperdivergent mandible, whit an increased preangular notch, 

and posterior orientated ramus. This decreased posterior maxilla height may potentially be 

involved in the morphological development of a dolichofacial mandible.12 In contrast, in 

the most-brachyfacial morphology, a slightly protruded and compressed maxilla and 

backward elongation of the alveolar process covaried with anterorotation of the anterior 

mandibular corpus and chin, upward chin displacement, and anterorotated and wider ramus. 

The vertical compression and mainly, the backward elongation of the alveolar process 

could potentially be implicated in the morphological development of a brachyfacial 

mandible.  

 The ontogenetic processes underlying the findings of this study could have relevant 

clinical repercussions. For example, development of a dolichofacial mandible might be 

prevented by reducing the posterior vertical development of and posterorotating the 

maxilla, while compressing and stimulating the backward elongation of the alveolar 

process. Development of a brachyfacial mandible might be prevented by stimulating the 

vertical development of and anterorotating the maxilla, while shortening and elongating the 

maxillary alveolar process. However, the efficacy of such procedures depends on myriad 
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factors, including the problem severity, morphological configuration of the cranial base, 

potential autonomous genetic control of the mandibular growth, oral functions, etc. 

 The observed similarity between skeletal classes and differences between facial 

patterns may explain why most of the specific traits of morphological covariation between 

the cranium and mandible in the total sample were related to the vertical dimension, 

whereas the sagittal (anteroposterior) dimension was almost unaffected along the PLS1 

vector.  

 To summarize, dolicho- and brachi-facial subjects showed specific and different 

cranium-face and associated mandible configurations. The cranium-face configuration may 

have an important influence (~60%) on the generation of sagittal (anteroposterior) skeletal 

malocclusions. The remaining morphological component of the skeletal malocclusion 

(~40%) would be independent of this particular integration (PLS1) between the cranium-

face and mandible. Future studies should analyze 3D data from growing and adult subjects 

to identify the processes that cause the final morphological and functional integration 

between the cranial base, ethmomaxillary complex, and mandible. 
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