
Report
BRCA1 Accelerates CtIP-Me
diated DNA-End Resection
Graphical Abstract
Highlights
Ahigh-resolutionmethod is used tomeasure DNA-end resection

BRCA1 interaction with CtIP is not essential for resection

BRCA1 interaction with CtIP affects resection speed
Cruz-Garcı́a et al., 2014, Cell Reports 9, 451–459
October 23, 2014 ª2014 The Authors
http://dx.doi.org/10.1016/j.celrep.2014.08.076
Authors

Andrés Cruz-Garcı́a, Ana López-Saave-
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SUMMARY

DNA-end resection is a highly regulated and critical
step in the response and repair of DNA double-strand
breaks. In higher eukaryotes, CtIP regulates resection
by integrating cellular signals via its posttransla-
tional modifications and protein-protein interac-
tions, including cell-cycle-controlled interaction with
BRCA1. The role of BRCA1 in DNA-end resection is
not clear. Here, we develop an assay to study DNA
resection in higher eukaryotes at high resolution. We
demonstrate that the BRCA1-CtIP interaction, albeit
not essential for resection, modulates the speed at
which this process takes place.
INTRODUCTION

Repairing DNA double-strand breaks (DSBs) is essential to

ensure cell and organismal survival (Aguilera andGómez-Gonzá-

lez, 2008). In multicellular organisms, the complete absence of

DSB repair produces severe phenotypes such as embryonic

lethality, immune deficiency, and sterility (Aguilera and Gómez-

González, 2008). While many different pathways contribute to

repairing DSBs, these can be categorized into three groups

according to their use of homology during the repair process

(Huertas, 2010); use of long homologous sequences (homolo-

gous recombination [HR]), short homologous DNA tracks (micro-

homology-mediated end joining [MMEJ]), or no homology at all

(nonhomologous end joining [NHEJ]). Coordinating all three

pathways is extremely important for maintaining genome stabil-

ity. The key event that controls the DSB repair pathway choice is

DNA-end resection. This mechanism consists of a 50 to 30 degra-
dation of one strand at each side of the break (Huertas, 2010).

Since NHEJ is inhibited by DNA-end resection, the DNA end

once resected is committed to being repaired by either HR

or MMEJ (Huertas, 2010). In mammals, CtIP is so far the best

known molecular switch that controls DNA-end resection and,

therefore, DSB repair pathway choice (Escribano-Dı́az et al.,

2013; Huertas et al., 2008; Huertas and Jackson, 2009; Naka-

mura et al., 2010; Reczek et al., 2013; Sartori et al., 2007; Steger

et al., 2013; Wang et al., 2013; Yun and Hiom, 2009). Among

othermodifications, CtIP is phosphorylated by cyclin-dependent

kinases (CDKs) at many different residues, which serves to con-

trol its activity (Huertas et al., 2008; Huertas and Jackson, 2009),

stability (Steger et al., 2013), or interaction with other factors
C

(Nakamura et al., 2010; Reczek et al., 2013; Wang et al., 2013;

Yun and Hiom, 2009). BRCA1, a tumor suppressor gene involved

in recombination (Huen et al., 2010;Moynahan et al., 1999), inter-

acts physically with CtIP in a CDK phosphorylation-mediated

manner (Yu and Chen, 2004). Indirect evidences suggest that

BRCA1-CtIP interaction plays a role in DSB repair pathway

choice by affecting DNA-end resection, thereby facilitating the

removal of the 53BP1-RIF1 complex (Cao et al., 2009; Chapman

et al., 2013; Escribano-Dı́az et al., 2013). Although one report

claimed that CtIP mutants that block its interaction with

BRCA1 in DT40 cells hamper DNA-end resection (Yun and

Hiom, 2009), additional studies in DT40 and mice showed oppo-

site results (Nakamura et al., 2010; Reczek et al., 2013).

Here we clarify the role of CtIP-BRCA1 interaction on DNA

resection by different approaches. First, using CtIP mutants

that change the interaction with BRCA1, we could demonstrate

that such an interaction is involved in proper cell survival and

checkpoint activation upon DNA damage. Second, we devel-

oped a technique that allows resection to be measured at high

resolution in irradiation or drug-treated mammalian cells and to

calculate resection speed. Using this technique, we observed

that although resection could take place in the absence of an

interaction between CtIP and BRCA1 it was slowed down.

Thus, the CtIP-BRCA1 complex is not essential for DNA-end

resection, but it modulates its speed.
RESULTS AND DISCUSSION

CtIP Mutants that Modify Its Interaction with BRCA1
The CtIP-BRCA1 interaction in human cells is controlled by the

CDK-mediated phosphorylation of CtIP at serine 327 (S327)

(Chen et al., 2008; Yu and Chen, 2004; Yu et al., 2006). Mutations

that convert this serine to alanine abolish the interaction and

render cells sensitive to different DNA-damaging agents (Chen

et al., 2008; Nakamura et al., 2010; Reczek et al., 2013; Yu and

Chen, 2004; Yu et al., 2006; Yun and Hiom, 2009). To study in

more detail the role of the CtIP-BRCA1 complex on DNA-end

resection and DNA repair, we used a green fluorescent protein

(GFP)-tagged version of the CtIP-S327A mutant and a tagged-

version of CtIP that constitutively interacts with BRCA1

by substituting S327 with aspartic acid, which mimics constitu-

tive phosphorylation (CtIP-S327D allele; Figure 1A). First, we

checked that the S327A and S327D mutants really modify the

interaction with BRCA1. Indeed, the CtIP-S327Amutant blocked

such an interaction, while the CtIP-S327D version reconstituted

the interaction (Figure 1B). As the interaction of CtIPwith BRCA1,
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Figure 1. CtIP Mutations that Control Its Interaction with BRCA1

(A) Schematic representation of CtIP mutations and their effect on the interaction with BRCA1.

(B) Interaction of different CtIP mutants with BRCA1. GFP-CtIP and FLAG-BRCA1 were coimmunoprecipitated as described in the Experimental Procedures

section. Protein samples were resolved in SDS-PAGE and blotted with the indicated antibodies.

(C) Expression of GFP-CtIP fusions upon downregulation of endogenous CtIP in U2OS cells. A sample from U2OS cells is shown for endogenous level of CtIP.

(D–F) Sensibility to IR (D), CPT (E), or ETOP (F) of U2OS cells harboring the indicated CtIP mutations. The mean and SD of three independent experiments

are plotted.

See also Figure S1.
HR, and DNA-end resection are cell-cycle-regulated processes,

we checked that not significant changes in cell-cycle distribution

were observed in CtIP-S327A and CtIP-S327D backgrounds

(Figure S1).

Blocking the CtIP-BRCA1 interaction render cells sensitive to

several DNA-damaging agents, especially inhibitors of topoiso-

merases such as camptothecin (CPT) and etoposide (ETOP)

(Chen et al., 2008; Nakamura et al., 2010; Reczek et al., 2013;

Yu and Chen, 2004; Yu et al., 2006; Yun and Hiom, 2009). To

confirm that this sensitivity is due to the lack of interaction, we

performed clonogenic assays using U2OS cells stably trans-

fected with different GFP-tagged versions of CtIP and depleted

for endogenous CtIP (Figure 1C). We used ionizing radiation

(IR) and ETOP, which damages the DNA in all phases of the

cell cycle, and CPT, which only causes DSBs in the S phase

coupled to replication. In agreement with previous results,

CtIP-S327A mutants were as sensitive to IR, ETOP, and

CPT as cells depleted for CtIP (Figures 1D–1F). Moreover,

we conclude that the sensitivity to DNA damage is a direct

consequence of the lack of interaction, as it was reverted to

wild-type levels when CtIP constitutively interacts with BRCA1

(Figures 1D–1F).

CtIP and DNA Processing
Most reports on the CtIP-BRCA1 interaction agree that it is

involved in DNA repair (Chen et al., 2008; Nakamura et al.,
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2010; Reczek et al., 2013; Yu and Chen, 2004; Yu et al., 2006;

Yun and Hiom, 2009). However, it is less clear if this interaction

is required for DNA-end resection (Nakamura et al., 2010;

Reczek et al., 2013; Yun and Hiom, 2009).

Resected DNA is immediately coated by the single-stranded

DNA (ssDNA)-protecting complex RPA. We first analyzed the

appearance of RPA foci 1 hr after the DNA was challenged

with a damaging agent of IR, CPT, or ETOP. Neither GFP-CtIP-

S327A nor GFP-CtIP-S327D mutations had any apparent effect

on RPA-foci formation after IR- or CPT-induced damage, in stark

contrast with control cells expressing GFP (Figures 2A and 2B).

Moreover, BRCA1 depletion also had little to no effect on RPA-

foci formation (Figure 2A and B). Thus, we conclude that neither

the BRCA1 nor the CtIP-BRCA1 interaction is essential for DNA-

end resection on cells treated with IR or CPT. Coherent results

were obtained when phosphorylation at serine 4 and serine 8

of RPA was used as a readout of DNA-end resection (Figure S2),

but a mild not statistically significant reduction of phospho RPA

was observed in CtIP-S327A after IR. However, a mild but clear

decrease in RPA-foci was observed both in the CtIP-S327A and

BRCA1 depletion when ETOP was used (Figure 2C). In agree-

ment, the phospho RPA versus RPA ratio was decreased in

CtIP-S327A to a similar extent as the GFP control (Figure S2).

As ETOP traps topoisomerase II covalently bound to the 50 end
of the break, whereas CPT does the same to topoisomerase I

at the 30 end, we suspected that BRCA1 and the CtIP-BRCA1



Figure 2. RPA Foci Formation in U2OS Cells Stably Transfected with CtIP S327 Mutants

(A–C) Percentage of gH2AX-positive cells with visible RPA-foci in different CtIP or BRCA1 background 1 hr after treatment with 10 Gy of IR (A), 1 mMof CPT (B), or

10 mM ETOP (C). The mean and SD of three independent experiments are plotted. Statistical significance was calculated as described in the Experimental

Procedures section. See also Figure S2.

(D) ATR activity, as measured by Chk1 phosphorylation at S345, in cells harboring CtIP variants after the indicated genotoxic treatments. Protein samples were

taken 1 hr after the treatment, collected as indicated in the Experimental Procedures section, and blotted with the indicated antibodies. A representative western

blot (left) and quantification for Chk1 phosphorylation (right) are shown. Statistical significance was calculated as described in the Experimental Procedures

section.
interaction are required to release proteins covalently bound to

the 50 end of the break. This situation resembles what happens

during meiosis, in which the topoisomerase II-like enzyme

Spo11 creates DSBs on the DNA (Neale et al., 2005). In budding

yeast, drug-induced or IR-induced breaks are resected in the

absence of the CtIP functional ortholog Sae2 due to the activity

of exonucleases such as Exo1 (Moreau et al., 2001). However,

the removal of Spo11 adducts in meiosis is completely depen-

dent on Sae2 (Neale et al., 2005).

As an alternative readout for DNA-end processing, we decided

to analyze the activation of the ATR branch of the DNA damage

response. Resected DNA acts as a platform for the binding of the

checkpoint complex ATRIP-ATR, which is essential for triggering

the checkpoint (Zou and Elledge, 2003). In fact, the amount of

ATRIP bound to DNA responds to the amount of RPA-coated

ssDNA (Zou and Elledge, 2003). We then analyzed the activation

of the ATR branch of the checkpoint bymeasuring the phosphor-

ylation of Chk1 (Figure 2D). We observed that cells bearing the

CtIP-S327A mutant, but not the CtIP-S327D, had a mild reduc-
C

tion in Chk1 activation, in agreement with a reduced length of

resected ssDNA.

Based on these conflicting observations about the putative

role of CtIP-BRCA1 interaction in DNA resection, we contem-

plated two alternative scenarios: either the CtIP-BRCA1 com-

plex has a second role in DNA repair and ATR activation not

related with resection or the lack of interaction between CtIP

and BRCA1 has a role on DNA-end resection too subtle to be

observed by RPA foci accumulation.

Single-Molecule Analysis of Resection Tracks
RPA-foci formation is a low-resolution technique to measure

DNA-end resection that does not give information about the

length of the resected DNA track (Figure 3A). In yeast, resection

could be quantified at higher resolution (Clerici et al., 2006;West-

moreland et al., 2009; Zierhut and Diffley, 2008), but such ap-

proaches are difficult to apply in vertebrate cells. Only recently,

a PCR-based assay has been developed for human cells; how-

ever, it is limited to the analysis of resection at sites created by
ell Reports 9, 451–459, October 23, 2014 ª2014 The Authors 453



Figure 3. Single-Molecule Analysis of Resection Tracks

(A) Schematic representation of the limitation of RPA-foci scoring as a measurement of DNA-end resection. The two possible categories, e.g., RPA foci-positive

or -negative cells, do not discriminate between resected DNA of different lengths.

(B) Graphic representation of the similarities and differences of the DNA combing (left) and the SMART (right) techniques to study replication or resection speed,

respectively. In both cases, DNAwas labeled with BrdU (indicated in red), isolated in plugs to minimize DNA shearing, stretched on a coverslip at constant speed,

(legend continued on next page)
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endonucleases at specific sites of the genome (Zhou et al.,

2014).

To analyze in more detail the putative role of CtIP-BRCA1

complex in resection, we have developed a technique for

measuring the length of resected DNA at the level of single mol-

ecules: single-molecule analysis of resection tracks (SMARTs).

This method can be easily extrapolated to any model cellular

system from bacteria to human cells and can be used to analyze

resection created by any damaging agent anywhere in the

genome.

We based the SMART method on the DNA-combing

technique (Herrick and Bensimon, 1999) (Figure 3B, left). This

approach uses thymidine analogs, such as bromodeoxyuridine

(BrdU), to determine the speed of replication. Briefly, a short

pulse of a thymidine analog is followed by a gentle DNA purifica-

tion. DNA molecules are stretched on a coverslip at a fixed

speed, forming parallel fibers. Newly replicated DNA is then de-

tected by immunofluorescence. However, anti-BrdU antibodies

recognize an epitope that is usually hidden inside the DNA.

Therefore, DNA has to be first denatured to expose the BrdU

epitope, and then the coverslips are incubated with an anti-

BrdU antibody. At the end, the newly synthesized DNA can be

visualized as individual tracks, the length of which can be

measured (Herrick and Bensimon, 1999).

BrdU has been previously used to study DNA resection at low

resolution by cellular immunofluorescence (Raderschall et al.,

1999). For this approach, a long BrdU pulse (20 to 24 hr) is

required to allowone strand of everyDNAmolecule to be labeled.

Upon DSB formation, DNA resection over BrdU-labeled DNA ex-

poses the epitope recognized by the antibody and can readily be

observed under the microscope without denaturation. This tech-

nique, similar as RPA-foci formation, is unable to measure how

fast resection is taking place. We combined this approach with

a modified DNA combing technique to visualize individual tracks

of resected DNA (Figure 3B, right, SMART). Cells were exposed

to BrdU for 24 hr, treated or mock treated with IR, and incubated

1 hr to allow DNA resection to take place. We isolated and

stretched DNA and immunodetected BrdU in native conditions

(Figure 3B, right). As observed in Figure 3C, almost no fibers

were detected with the antibody from DNA from cells not treated

with IR, indicating that the amount of ssDNA on unperturbed

conditions is minimal. In contrast, irradiated samples showed

multiple long tracks of BrdU-containing ssDNA. Extensive obser-

vation of several fields demonstrates that the number of fibers

observed in untreated conditions was less than 1% of those

visualized upon irradiation (Figure S3A). Moreover, those tracks
and detected using an anti-BrdU antibody. Whereas a denaturation step (NaOH)

the SMART technique resection directly exposes the epitope.

(C) A representative image of DNA fibers visualized with the anti-BrdU antibody

irradiation (right). See also Figure S3A.

(D) Representation of the mean of the medians of the length of 200 resected fibe

correlation (R2 = 0.998). The mean and SDs of three independent experiments a

(E) The same as in (D) but in cells expressing an shRNA against CtIP, 53BP1, EXO

R2 = 0.94. shScr: R2 = 0.98. The absolute resection speed, calculated as the slop

the slope of each curve with the slope of shScr, is also shown. Statistical differenc

case of shEXO1 harboring cells, which followed a biphasic graph, the initial time

(F) Percentage of gH2AX-positive cells with visible RPA-foci at different times af

(shScr). The mean and SD of four independent experiments are plotted.

C

observed in control cells were substantially shorter (Figure S3A).

We reasoned that these short ssDNA tracks were either created

during replication or reflect resection of endogenously aroused

breaks. In contrast, irradiation creates abundant and long resec-

tion tracks. To validate the SMART technique, wemade two pre-

dictions: first, if the ssDNAs are the product of an active process,

such as DNA resection, they should grow at a specific rate, and

second, ssDNAs should be affected by downregulation of pro-

teins involved in the regulation and/or process of resection. To

test the former idea, we performed the same experiment taking

samples at several time points after irradiation from U2OS cells

(Figure 3D). We measured the length of at least 200 single resec-

tion tracks at each time point per experiment. At each sample,

we observed many different lengths of resected DNA (see Fig-

ure S3B and Table S1 for individual fibers quantification of repre-

sentative experiments). We think this reflects different times of

resection initiation, resection over different chromatin templates,

etc. Similar heterogeneity of resection speed has been previ-

ously reported in budding yeast (Zierhut and Diffley, 2008).

Thus, we calculate the medians of the measured resected tracks

length at each time point as the representative value and then

plot the average of the medians of three independent experi-

ments. Strikingly, we observed that the lengths of those tracks

grew following a straight line, suggesting a fixed speed of DNA

resection. Moreover, a lack of CtIP not only reduced the number

of fibers observed, but reduced DNA resection speed by 23% as

compared with a control (Figure 3E). Thus, with the SMART tech-

nique, we can distinguish between two types of effects during

resection: initiation and speed. Whereas the number of resection

fibers will be an indication of resection initiation, the slope of the

curve calculated with those breaks that are indeed resected will

represent resection speed. Considering the physical character-

istic of ssDNA on solution (Chi et al., 2013), we could estimate

that the resection rate in the shRNA scramble control is about

0.2 kb/hr. This is 20 times slower than the resection calculated

for HO breaks in budding yeast (Fishman-Lobell et al., 1992;

Vaze et al., 2002). However, it has been shown that only 10%

of the breaks actually reach such speed, but the majority is

resected at a slower pace (Zierhut and Diffley, 2008). Indeed,

such heterogeneity it is also observed with the SMART tech-

nique, as not all breaks are equally resected (Table S1). More-

over, in our case, the breaks are not the ‘‘clean’’ HO induced,

but ‘‘ragged’’ IR created, which could also explain some of the

difference.

We observed that CtIP depletion has a strong effect in resec-

tion initiation, as previously described, but also affects resection
is required to expose the BrdU epitope in the traditional combing technique, in

with the SMART technology from cells untreated (left) or treated with 10 Gy of

rs at each time point in U2OS cells treated with shRNA control with their linear

re plotted. See also Figure S3B.

1 or a control shRNA (shScr). shCtIP: R2 = 0.90. sh53BP1: R2 = 0.92. shEXO1*:

e of the line, is indicated. The normalized resection rate, calculated normalizing

e between slopes was calculated as described in the Methods section. *In the

point (0 min) was omitted for the linear regression. See also Figure S4.

ter irradiation in cells transduced with shRNA against CtIP (shCtIP) or control
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Figure 4. The Interaction between CtIP and

BRCA1 Accelerates DNA-End Resection

(A and B) SMART of U2OS cells harboring the

indicated CtIPmutants or depleted for BRCA1 1 hr

after IR (A) or ETOP (B) treatment. The mean

and SDs of three independent experiments are

shown. Statistical significance was calculated as

described in the Experimental Procedures section.

(C) SMART was performed in U2OS cells ex-

pressing the indicated CtIP variants at different

time points after addition of ETOP. The mean of

three different experiments is plotted. Absolute

(slope) and normalized resection rate, calcu-

lated as indicated in Figure 3E, are shown. The

statistical difference of the slopes compared

with either the GFP-CtIP or GFP cell lines was

calculated as described in the Experimental

Procedures section.

(D) Same as (B), but in cells depleted of BRCA1

and control cells.
speed. Surprisingly, the effect on resection speed was mild

compared with the strong effect that CtIP depletion causes in

RPA foci formation 1 hr after DNA damage (Huertas and Jack-

son, 2009; Sartori et al., 2007). One interpretation of this

apparent contradiction is that in CtIP-depleted cells this mild

resection speed defect is enough to shorten resected DNA

tracks to avoid visualization of RPA foci by microscopy. We

reasoned that, in that case, at later time points the number of

cells with RPA foci in cells depleted of CtIP should approach

normal levels. Indeed, when we analyzed the formation of RPA

foci in control and CtIP-depleted cells at different time points,

we realized that the large difference observed at early time points

diminished with time, as the number of RPA foci-positive cells

reach a plateau in control cells but keep increasing in shCtIP

harboring cells. Thus, the SMART technique allowed us to visu-

alize resection tracks in conditions in which RPA foci are not

observed, i.e., 1 hr after DNA damage induction. The long-range

resection machinery, i.e., EXO1 and BLM (Gravel et al., 2008;

Huertas, 2010), might cause this resection observed in CtIP-

depleted cells. This strongly resembles the data observed in

budding yeast, in which in the absence of Sae2, Exo1 is able
456 Cell Reports 9, 451–459, October 23, 2014 ª2014 The Authors
to resect the DNA, albeit at a slower

pace (Clerici et al., 2006; Moreau et al.,

2001).

In stark contrast, depletion of 53BP1

accelerates resection by over 20% (Fig-

ure 3E; see Figure S4 for depletion levels).

This result agrees with the complex

53BP1-RIF1 blocking DNA-end resection

(Cao et al., 2009; Chapman et al., 2013; Di

Virgilio et al., 2013; Escribano-Dı́az et al.,

2013). Moreover, our results suggest that

53BP1, which is recruited to damaged

chromatin in all cell-cycle phases and

spreads over kilobases, not only impedes

resection in G1 but in S andG2 also slows

down resection. Interestingly, whereas
the length of resected DNA in both CtIP and 53BP1 depletion

fitted with a linear correlation, when we reduce the amount of

EXO1, we observed a different picture. In this case, considering

the whole kinetics, the linear correlation was poor (R2 below 0.7).

In fact, it seemed that the initial resection (up to 15 min) in EXO1-

depleted cells was similar to control cells, but after that, point

resection slows down to 50% (Figure 3E; see Figure S4 for

depletion levels). Indeed, considering only time points between

15 and 120 min, the fitness to a linear correlation improved

(R2 = 0.94). This observation agrees with EXO1 being involved

in a second phase of DNA-end resection and being dispensable

for initiation (Gravel et al., 2008; Huertas, 2010).

Thus, we propose that this technique can be applied to mea-

sure the length of single-molecule resection tracks and to calcu-

late resection rate. In contrast, RPA foci formation will reflect the

contribution of a protein to both initiation and resection speed.

Resection Is Slower in CtIP-S327A Mutants
Weused the SMART technique to analyze the speed of resection

in different CtIP backgrounds (Figures 4A and 4B) after IR or

ETOP treatment. First, we measured the length of resected



DNA in the same conditions we used to study RPA-foci forma-

tion, i.e., 1 hr following irradiation or the addition of the drug (Fig-

ures 2A and 2C). We observed that cells harboring CtIP-S327D

resected as much as those bearing wild-type CtIP in both cases.

In contrast, impairment of the CtIP-BRCA1 interaction (via the

CtIP-S327A mutants) or BRCA1 depletion resulted in shorter re-

sected tracks after both treatments. No difference was observed

in the number of resected tracks, indicating that such an inter-

action is dispensable for resection initiation. Thus, we conclude

that, although the CtIP-BRCA1 interaction is not essential for

DNA-end resection (Figure 2), it affects the length of resected

DNA. This could be explained by a reduction in resection speed,

a delay in resection initiation, or an early stop in resection. This is

especially important in ETOP-treated cells, in which the timing of

topoisomerase II removal could influence the length of resected

DNA. Therefore, we performed a kinetic study of resection in

cells treated with ETOP (Figures 4C and 4D). We observed that

resection speed is indeed reduced when CtIP cannot interact

with BRCA1 or BRCA1 is absent to a similar extent as that

observed in CtIP-depleted cells. In contrast, a constitutive inter-

action between CtIP and BRCA1 completely restored resection

speed. Thus, we conclude that CtIP interaction with BRCA1 af-

fects resection speed and that this effect is more prominent

when the 50 end of the DNA is blocked by a topoisomerase

II-DNA adduct.

Considering all of our data collectively, we suggest that CtIP

and the rest of the resection machinery are able to resect

DNA breaks in the absence of BRCA1. However, BRCA1 action

upon CtIP facilitates resection. This is likely due to the role that

BRCA1 plays in removing RIF1-53BP1 complexes (Chapman

et al., 2013; Escribano-Dı́az et al., 2013). Indeed, CtIP-S327A

mutants accumulate RIF1 foci in S and G2 phases of the cell

cycle (Escribano-Dı́az et al., 2013), and depletion of 53BP1 ac-

celerates resection (Figure 3E). The subtle effects on DNA-end

resection might explain some of the conflicting data in the litera-

ture based on RPA foci formation (Chapman et al., 2013; Escri-

bano-Dı́az et al., 2013; Nakamura et al., 2010; Reczek et al.,

2013; Yun and Hiom, 2009). Resected DNA is essential for HR.

However, long resected tracks are not required to engage the

homologous sequence involved in this type of repair. That might

explain why HR is not impaired in CtIP-S327A mutants (Naka-

mura et al., 2010). However, the length of resected DNA will

impact checkpoint activation (Figure 2D) and will also affect

the type of HR that will take place (Chandramouly et al., 2013;

Huertas, 2010), thereby affecting in cell viability upon DNA dam-

age induction. Thus, either the actual shortening of resected

DNA or this mild checkpoint defect could account for the sensi-

tivity to DNA-damaging agents observed in the CtIP-S327A

mutant, although we cannot exclude an additional role for the

CtIP-BRCA1 complex in DSB repair.

EXPERIMENTAL PROCEDURES

Cell Culture, Lentiviral Infection, and Cell Survival

U2OS or HEK293 cells stably expressing GFP-CtIP variants were grown

in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich) supplemented

with 10% fetal bovine serum (Sigma-Aldrich), 100 units/ml penicillin, and

100 g/ml streptomycin (Sigma-Aldrich) supplemented with 0.5 mg/ml G418

(GIBCO). Lentiviral particles were obtained as previously described (Gomez-
C

Cabello et al., 2013) using the plasmids listed in Table S2. Cell survival assays

were performed as describe previously (Huertas and Jackson, 2009).

Immunofluorescence Microscopy

U2OScells expressingGFP-CtIP fusionswere infectedwith lentivirus harboring

an shRNA targeted against CtIP. After 48 hr, cells were treated with 1 mMCPT,

10 mMETOP, 10Gy of IR, ormock treated, incubated 1 hr for foci formation, and

then collected. Coverslips were treated for 5 min on ice with pre-extraction

buffer (25 mM HEPES [pH 7.4], 50 mM NaCl, 1 mM EDTA, 3 mM MgCl2,

300mMsucrose, and 0.5%Triton X-100) and then fixedwith 2%paraformalde-

hyde (w/v) in PBS for 15 min, washed three times with PBS, and blocked for at

least 1 hr with 5% fetal bovine serum (FBS) diluted in PBS.Cellswere incubated

with the adequate primary antibodies (Table S3), diluted in 5% FBS in PBS for

2 hr at roomtemperature,washedwithPBS, and then incubatedwith secondary

antibodies (Table S4) diluted in 5% FBS in PBS for 1 hr at room temperature.

Cells were then washed twice with PBS, and coverslips were mounted with

Vectashield mounting medium (Vector Laboratories) containing 40,6-diami-

dino-2-phenylindole and analyzed using a Nikon NI-E microscope.

Immunoblotting

Extracts were prepared in Laemmli buffer (4% SDS, 20% glycerol, 120 mM

Tris-HCl [pH 6.8]), and proteins were resolved by SDS-PAGE and transferred

to polyvinylidene fluoride (Millipore) followed by immunoblotting. Western

blot analysis was carried out using the antibodies listed in Tables S3 and S4.

Results were visualized using an Odyssey Infrared Imaging System (Li-Cor).

To quantify Chk1 phosphorylation, protein abundance was measured using

the Li-Cor software, and the ratio between phosphorylated Chk1 and total

Chk1 was calculated. Those ratios were then normalized with respect to

control cells expressing full-length CtIP.

Immunoprecipitation

HEK293T cells stably expressing GFP-CtIP variants were cotransfected with

HALO-BARD1 and SFB-BRCA1 expression vectors (a gift from Ko Sato,

St. Marianna University Graduate School of Medicine) and shCtIP (Sigma-

Aldrich). At 48 hr after transfection, cells were harvested in a lysis buffer of

50 mM Tris-HCl [pH 7.4], 100 mM NaCl, 1 mM EDTA, 0.2% de Triton X-100,

13 protease inhibitors (Escribano-Dı́az et al., 2013), 13 phosphatase inhibitor

cocktail 1 (Sigma). Protein extract (1 mg) was incubated with 20 ml of packed

anti-GFP_ M magnetic beads (Chromotek) at 4�C. Beads were then washed

three times with lysis buffer, and precipitate was eluted in Laemmli buffer.

SMART

U2OScells, eitherwild-type or stably expressingGFP-CtIP variants or depleted

of the indicatedproteins,weregrown in thepresenceof 10mMBrdU (GEHealth-

care) for 24 hr. Cultures were then irradiated (10 Gy) and harvested at the

indicated time points. DNA combing was performed as previously described

with modifications (Michalet et al., 1997). Briefly, cells were embedded in

low-melting agarose (Bio-Rad) followed by DNA extraction. To stretch the

DNA fibers, silanized coverslips (Genomic Vision) were dipped into theDNA so-

lution for 15 min and pulled out a constant speed (250 mm/s). Coverslips were

baked for 2 hr at 60�C and incubated directly without denaturation with an

anti-BrdU mouse monoclonal (Table S3). After washing with PBS, coverslips

were incubated with the secondary antibody (Table S4). Finally, coverslips

were mounted with ProLong Gold Antifade Reagent (Molecular Probes) and

stored at �20�C. DNA fibers were observed with Nikon NI-E microscope

and PLAN FLOUR40 3/0.75 PHL DLL objective. The images were recorded

andprocessedwithNISELEMENTSNikon software. For each experiment, a to-

tal of 200DNA fibers was analyzed, and the length of DNA fiberswasmeasured

with Adobe Photoshop CS4 Extended version 11.0 (Adobe Systems).

For resection speed, SMART results at different time points were plotted.

After doing a linear correlation, the resection rate was calculated as the slope

of the line. To compare between treatments, slopes were normalized with

respect to control cells expressing full-length CtIP.

Statistical Analysis

Statistical significance was determined with a paired t student test using the

PRISM software (Graphpad Software) for all data sets, with the exception of
ell Reports 9, 451–459, October 23, 2014 ª2014 The Authors 457



the slope comparison shown in Figures 3E, 4C, and 4D. In that particular case,

the slope comparison was performed as described in Chapter 18 of Biostatis-

tical Analysis (Zar, 1984).

SUPPLEMENTAL INFORMATION
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Steger, M., Murina, O., Hühn, D., Ferretti, L.P., Walser, R., Hänggi, K., Lafran-

chi, L., Neugebauer, C., Paliwal, S., Janscak, P., et al. (2013). Prolyl isomerase

PIN1 regulates DNA double-strand break repair by counteracting DNA end

resection. Mol. Cell 50, 333–343.

Vaze, M.B., Pellicioli, A., Lee, S.E., Ira, G., Liberi, G., Arbel-Eden, A., Foiani, M.,

and Haber, J.E. (2002). Recovery from checkpoint-mediated arrest after repair

of a double-strand break requires Srs2 helicase. Mol. Cell 10, 373–385.

Wang, H., Shi, L.Z., Wong, C.C., Han, X., Hwang, P.Y., Truong, L.N., Zhu, Q.,

Shao, Z., Chen, D.J., Berns, M.W., et al. (2013). The interaction of CtIP and

Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break

repair. PLoS Genet. 9, e1003277.

Westmoreland, J., Ma, W., Yan, Y., Van Hulle, K., Malkova, A., and Resnick,

M.A. (2009). RAD50 is required for efficient initiation of resection and recombi-

national repair at random, gamma-induced double-strand break ends. PLoS

Genet. 5, e1000656.

http://dx.doi.org/10.1016/j.celrep.2014.08.076


Yu, X., and Chen, J. (2004). DNA damage-induced cell cycle checkpoint con-

trol requires CtIP, a phosphorylation-dependent binding partner of BRCA1

C-terminal domains. Mol. Cell. Biol. 24, 9478–9486.

Yu, X., Fu, S., Lai, M., Baer, R., and Chen, J. (2006). BRCA1 ubiquitinates

its phosphorylation-dependent binding partner CtIP. Genes Dev. 20, 1721–

1726.

Yun, M.H., and Hiom, K. (2009). CtIP-BRCA1 modulates the choice of DNA

double-strand-break repair pathway throughout the cell cycle. Nature 459,

460–463.
C

Zar, J.H. (1984). Biostatistical Analysis, Second Edition (EnglewoodCliffs, New

Jersey: Prentice-Hall).

Zhou, Y., Caron, P., Legube, G., and Paull, T.T. (2014). Quantitation of DNA

double-strand break resection intermediates in human cells. Nucleic Acids

Res. 42, e19.

Zierhut,C., andDiffley,J.F. (2008).Breakdosage,cell cycle stageandDNArepli-

cation influence DNA double strand break response. EMBO J. 27, 1875–1885.

Zou, L., and Elledge, S.J. (2003). Sensing DNA damage through ATRIP recog-

nition of RPA-ssDNA complexes. Science 300, 1542–1548.
ell Reports 9, 451–459, October 23, 2014 ª2014 The Authors 459


	BRCA1 Accelerates CtIP-Mediated DNA-End Resection
	Introduction
	Results and Discussion
	CtIP Mutants that Modify Its Interaction with BRCA1
	CtIP and DNA Processing
	Single-Molecule Analysis of Resection Tracks
	Resection Is Slower in CtIP-S327A Mutants

	Experimental Procedures
	Cell Culture, Lentiviral Infection, and Cell Survival
	Immunofluorescence Microscopy
	Immunoblotting
	Immunoprecipitation
	SMART
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References




