
Boundary cost optimization for Alternate Test
Gildas Leger

Instituto de Microlectrónica de Sevilla, Centro Nacional de Microelectrónica
Consejo Superior de Investigaciones Cientı́ficas (CSIC) and Universidad de Sevilla

Av. Américo Vespucio s/n, 41092 Sevilla, Spain.
e-mail: leger@imse-cnm.csic.es

Abstract—Alternate Test has demonstrated in the last decade
that advanced machine-learning tools can leverage the accuracy
gap between functional test and indirect, or model-based, test. If a
regression approach is taken, a model should be trained for each
specification. The advantage is that the results are interpreted
just like performance measurements but the drawback is that
accuracy is required over the full variation range. On the other
hand, a classification approach can be seen as a wiser solution
since it locates the pass/fail boundary, which inherently contains
all the specification information, in the cheap measurement space.
Cost optimization due to imbalance between test escape and yield
loss is usually handled by guard-banding on specifications. This
is straightforward to translate to regression-based Alternate Test
but not for classification-based.

This paper shows that two different asymmetric approaches
consistently outperforms an off-the-shelf symmetric algorithm.
The first technique is based on manipulating the decision
threshold while the second technique directly builds an optimized
pass-fail boundary by considering different costs to penalize test
escapes and yield losses.

I. INTRODUCTION

The test of Analog, Mixed-Signal and RF circuits (AMS-
RF) is considered a bottleneck for the development of complex
Systems-on-Chip (SoCs). Whenever it is feasible, the industry
relies on functional testing where every single specification on
the datasheet is measured using standardized procedures. The
goal is to achieve the best possible quality.

The test metrics that characterize test quality are not direct
expressions of the measurement accuracy. By the way, they
are indirectly related to the specifications: The test escapes
represent the circuits that pass the test despite failing one
or more specifications. Similarly, yield losses represent the
circuits that fulfill all the specifications but fail the test. These
two concepts can be expressed relatively to their reference
population or not. For instance the test escape ratio is the
proportion of bad circuits that fail the test over the total
number of bad circuits while the defectivity level is the
proportion of bad circuits that fail the test over the total
number of fabricated circuits. These two metrics are related
by the underlying manufacturing yield (in what follows, the
yield Y) which is the ratio of fabricated devices that fulfill all
the specifications.

It may seem obvious to design the test to minimize both
errors equally. However, as it all boils down to money, the
overall cost/benefit relation should be taken into account. This
relates to test quality but also includes the probability of
occurrence of defects as well as cost imbalance. The unit

cost of a customer return is much higher than the unit selling
price of the device. Intuitively, we understand that it may be
beneficial to reduce the number of test escape even at the
cost of an increased yield loss. On the other hand, if the
manufacturing yield is high, it is possible to relax the test
escape ratio. For a defectivity target of 100ppm, if the yield
is 90% the test escape ratio should be 0.1%. However, if the
yield is 99% the required test escape ratio is of only 1%.

All of this is a matter of optimization and for traditional
functional testing it is handled by guard-banding the speci-
fications [1]. Measurements are affected by noise, or more
generally speaking, limited accuracy. By setting test limits a
little bit more stringent than the specifications we can force
that almost the entire error distribution falls within the failing
zone. Guard-banding is thus carried out as a function of the
measurements standard deviation.

In the past decade, the concept of Alternate Test [2], [3]
has found quite a large audience. It consists in using powerful
machine-learning algorithms to build a mapping between sim-
ple measurements (or at least a reduced set of measurements)
and the specifications. In this way the cost of performing the
test can be drastically reduced. If regression tools are used, a
different model has to be built for each specification and the
same guard-banding procedure as for functional test can be
used. The only difference is that the measurement errors are
replaced by the model generalization errors.

However, when several specifications are involved, it may
be wiser to make use of classifiers instead of regressors [4],
[5], [6], [7]. Internally, machine-learning classifiers work with
the same principles as regression tools, but they do not focus
on the error on the entire range. Instead, they try to locate
the best possible pass-fail boundary in the space of the simple
measurements. For classifiers, the quality is not measured as a
generalization error but as a misclassification errors, just like
for production test quality metrics. False negatives are yield
losses while false positives as test escapes.

Off-the-Shelf classifiers have usually been built for a generic
purpose and there is no a-priori reason to prefer a false
negative rather than a false positive. The target of their internal
algorithms is thus to minimize the overall classification error
(probably subject to some form of regularization). However, in
the particular case of IC testing, test escapes and yield loss do
not have the same consequences: consumer returns are much
more harmful to the image of a company than the simple
loss of not selling a device that was good. The location of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36212499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the pass-fail boundary should thus take into account this cost
imbalance.

In this paper, we will show that it is not the best practice
to use off-the-shelf classifiers. Since the yield is usually not
50% and the cost of test escapes and yield loss are not the
same, it is better to use an asymmetric classifier, which will
take these costs into account for building an otpimum decision
boundary. Another possibility to artificially create imbalance
in the results would be to alter the decision threshold of a
conventional classifier. We will also show that this strategy
is a better option than the off-the-shelf classifier though not
optimum in most cases.

II. COST ASYMMETRIC CLASSIFIER

A. A brief description of Adaboost
Adaboost is the acclaimed classifier introduced by Shapire

back in 1997 [8]. This classifier is based on boosting: It is a
combination of weak learners built in such a way that each
weak learner gm brings an additional bit of information.

G (x) = sign

(
M∑
m=1

αmgm (x)

)
(1)

A weak learner is a low-accuracy classifier, whose classifica-
tion error is slightly better than a random guess. Typically,
Adaboost is implemented with decision trees or even decision
bumps (a tree of order 1) but this is not a conceptual restriction.
In theory, any classifier can be used – as commented in [9],
where Adaboost is considered as an ensemble classifier.

The main reason for its success is that it has been shown to
be almost immune to overfitting. In the majority of machine-
learning algorithms, when complexity is gradually increased
the generalization error usually begins to drop as the model
gets closer to the training data structure but after an optimum it
usually increases. The reason is that the model starts learning
the particular noise pattern of the training set as if it were
a characteristic of the data. On the test set the noise pattern
is different and the model output is thus worse. Due to the
particular characteristics of boosting, this overfitting trend is
almost negligible. Notice that this resilience to overfitting
is linked to the use of weak classifiers. If more elaborate
classifiers are used, this property may be compromised.

The target of the learning algorithm is to minimize the
exponential loss:

loss =

N∑
i=1

e−G(xi)yi (2)

where yi the true class (either 1 or −1) of sample i.
It can be shown [6] that this minimization can be carried

out by a simple algorithm because the value of the weak
learner contribution (the αm in (1)) can be separated from the
selection of the weak learner itself. The iterative algorithm
works as follows:
• initialize the N sample weights of the training set to a

uniform distribution,

wi = 1/N (3)

• for m = 1 to M (the number of weak learners)
Select the best possible weak learner gm, that is to say, the
learner that gives the lowest weighted misclassification
rate:

errm =

∑N
i=1 wiI (yi 6= gm (xi))∑N

i=1 wi
(4)

where I is the indicator function.
Compute the weak learner contribution to the final deci-
sion

αm = log

(
1− errm
errm

)
(5)

Update the sample weights as follows

wi ← wi × exp (−αmgm (xi) yi) (6)

• Output the final classifier as a combination of the weak
decisions, as defined in (1)

Basically, Adaboost iteratively fits weak learners to the data
but updates the weight of the training samples at each step
in such a way that the relevance of misclassified samples
is increased while that of correctly classified samples is
decreased. This can be seen in (6): as αm is strictly positive,
when the output of the weak classifier gm(xi) is of the same
sign as the true class yi the exponential is lower than 1,
whereas when they are different it can be significantly higher
than 1. The higher the error, the higher the value of αm, and
thus the higher the sample weight correction.

B. Decision Thresholding

A straightforward way of causing imbalance in a classifier
is to consider a variable threshold on the class likelihood. The
class likelihood is the probability that the device is failing
(or conversely passing) knowing the measurement results. It is
thus the conditional posterior probability of the samples. Many
classifiers, and in particular Adaboost, produce an output that
is in reality an estimate of the class likelihood. The decision is
thus simply taken by comparing this output to the probability
of a random draw (50%). It appears quite intuitive that if we
tag as good only devices that have a high passing probability
(say 90%) we will displace the pass-fail boundary towards the
good population and thus decrease the false positive rate. The
unavoidable consequence is an increase of the false negative
rate. Conversely, if we tag as bad only devices that have a
low passing probability we will displace the pass-fail boundary
towards the bad population and thus increase the false positive
rate.

Thresholding is of particular interest for some applications
where the objective is to control the test escape probability
rather than explicitly optimizing a cost. In a recent paper
[10], an adaptive alternate test procedure was proposed where
incremental models were constructed for each newly acquired
feature in the test sequence. These models were used to
perform early diagnosis but strict guardbanding should be
taken to limit test escape penalty. Though the authors applied

the proposal to a regression case, thresholding was suggested
as a way to control the guardband for classifiers.

Though thresholding is applicable to any sort of classifier
(whenever it gives a probability-like output), we will apply
it to Adaboost in order to perform a fair comparison. For
Adaboost, we simply have to consider the value of the quantity
prior to applying the sign function in (1). If these weights are
normalized during the construction of the model, this quantity
can be viewed as an affine mapping from the interval [−1, 1]
to the probability range [0, 1]. In this way, the 50% probability
threshold corresponds to 0.

C. Making Adaboost asymmetric

The basic idea of the asymmetric Adaboost proposed in
[11] is to introduce a different weight modification to the
misclassified devices whether they are false positives or false
negatives.

Let us define Ip and In, the subsets of good and bad samples
in the training set, respectively. The asymetric weight update
would be of a from similar to (6):

wi ← wi × exp (−C1αmgm (xi)) i ∈ Ip (7)
wi ← wi × exp (C2αmgm (xi)) i ∈ In

To evolve the Adaboost classifier, we must add the weak
classifier gm, with contribution αm that minimize the modified
exponential loss,

err = EY |X

(
Ipwpe

−αC1g(x) + Inwne
−αC2g(x)

)
(8)

=
(
eC1α − e−C1α

)
b+ Tpe

−C1α

+
(
eC2α − e−C2α

)
b+ Tne

−C2α

where,

Tp =
∑
i∈Ip

wi (9)

Tn =
∑
i∈In

wi

b =
∑
i∈Ip

wi × I (yi 6= gm (x− i))

d =
∑
i∈In

wi × I (yi 6= gm (x− i))

The main issue of the cost-sensitive Adaboost is that the
search to find the optimum weak learner and its associated
coefficient cannot be split into two independent steps to
maintain optimality.

The cost-sensitive algorithm is thus as follows:
• We first initialize the sample weights of the two subsets

as an uniform distribution,

wi = 0.5/Np ∀i ∈ Ip (10)
wi = 0.5/Nn ∀i ∈ In

• for m = 1 to M (the number of weak learners)
Perform a search over the possible weak learners gk
considering the sample weights.

For each instance of the search, compute the contribution
step αk as the value that makes the derivative of the error
equal to zero, which is the solution of:

2bC1cosh (C1α) + 2dC2cosh (C2α) (11)
= C1Tpe

−C1α + C2Tne
−C2α

Once the step value is known, compute the associated
error as,

errk =
(
eC1αk − e−C1αk

)
b+ Tpe

−C1αk (12)

+
(
eC2αk − e−C2αk

)
b+ Tne

−C2αk

Finally select the pair of weak learner gm and associated
contribution step αm that minimizes the error.

• Output the final classifier as a combination of the weak
decisions, just like in (1)

Obviously, C1 is the cost associated to false negative and
C2 the cost associates to false positive. In what follows we
will refer to Cfn and Cfp for the sake of clarity. It appears
clearly that the computational cost is higher than for the
conventional Adaboost since the solution of (12) requires
numerical approximation (and is thus a nested search loop).
Since our Matlab codes are not fully optimized, we prefer not
to give any value for the impact on efficiency, but we can say
that the increase is manageable (not an order of magnitude).

D. Other approaches

Some papers have already dealt the topic of boundary guard-
band in a somewhat indirect way. In [4], two defect filters
– a strict one and a lenient one – are built to assess which
devices should be rejected directly, should pass through a
regression test or should be submitted to additional tests.
These defect filters are in fact one-class classifiers based on
a joint-probability density estimate. The devices subjected to
the filters are considered to be correct whenever the probability
estimate is higher than zero. In that paper, instead of applying
thresholding to the probability estimate, the strictness of the
filters is controlled by a parameter that defines the size of the
kernel associated to each training sample. Since the definition
of the kernel is somewhat arbitrary, the boundary can hardly
be considered optimal.

In [5], the case of population imbalance is commented: for
high yields, the number of good devices is much higher than
the number of bad devices in the training set of the classifier.
This usually tends to favor test escapes since the faulty circuit
appear to be statistically less important. A proposed solution
consists in replicating faulty devices to artificially generate a
symmetric population. Though the biasing effect is clear, here
again, the optimality of the decision cannot be assessed easily.

III. AN ALTERNATE TEST EXPERIMENT

A. Cost Model for validation

In order to compare the results obtained by different clas-
sification approaches, we need to define an appropriate cost
model.

Let us begin by the simplest part. The amount of money
earned is the number of sold devices times the unit selling
price (Uprice). And the number of devices sold is the number
of devices that pass the test. Among the sold devices, we have
those that are actually correct and those that have passed the
test but are bad devices: these are the test escapes. Similarly
we can consider that the number of good devices that pass the
test is the full number of good devices minus the number of
good devices that fail the test: these latter are the yield losses.
So it comes,

benefit = Uprice
Ngood −Ngood|fail +Nbad|pass

N
(13)

= Uprice (Y − Y L+ TE)

Notice that the first term is independent of the test strat-
egy: it is the true number of good devices fabricated, the
manufacturing yield. We could argue that in some cases
the decision of the specification values may be linked to
marketing considerations. The value of Y would thus vary
with the chosen specifications and could be introduced into
the optimization. However, this is beyond the scope of our
study: we consider a fixed specification that will not enter
into the cost optimization. We can thus obviate it.

Then we have to model the cost of customer returns. In
a first approximation, we may want to consider that all test
escapes are customer returns and we would thus have the
simple cost function,

cost = Ureturn × TE (14)

However, it seems reasonable to think that customer returns
are more unlikely if the performance of the device is close
to the specification. Indeed, if the device is to be used in a
larger system its specification may have been guard-banded.
It is possible that a customer may never verify that the part is
not performing as in the datatsheet because its performance is
good enough. Similarly, some parts may have been purchased
as spare parts and never actually be used. We thus need a
function to model the probability of customer returns. This
is probably application-dependent sensitive information for
the industry and this modeling task shall be done in-house.
However, without loss of generality, we will consider that the
probability of a customer return knowing that the device is
actually faulty (and thus a test escape) is of the form

P (return|TE) = β

(
1−

np∏
i=1

e
−αi

∣∣∣ si−spi
spi

∣∣∣)
(15)

With such a function, we can see that test escapes that
are much worse than the specifications will be almost always
detected. On the contrary, if the performance is sufficiently
close to the specification, the customer will not be able to
see the malfunction. This asymptotic rate is controlled by
parameter αi for each specification. The factor β should be
lower than 1 and represents the fraction of devices that will
actually be tested or used by the consumer.

We can now express the cost of customer returns as,

cost = Ureturn

∫
P (return|TE)P (TE) dTE (16)

=
∑

j∈[escapes]

βUreturn

(
1−

np∏
i=1

e
−αi

∣∣∣ si,j−spi
spi

∣∣∣)
As a result, we can write the total cost balance, which should

be minimized, as

costbalance = cost− benefit (17)

Neglecting the terms that do not depend on test, we get a
simpler cost function,

cost =
∑

j∈[escapes]

βUreturn

(
1−

np∏
i=1

e
−αi

∣∣∣ si,j−spi
spi

∣∣∣)
(18)

−
∑

j∈[escapes]

Uprice +
∑

j∈[yield losses]

Uprice

It appears that the parameter β, which was introduced to
quantify the fraction of the devices that would never be tested
by the customer, has the exact same influence as the return
cost. In what follows, we will thus set it to one, without loss
of generality.

B. LNA Alternate Test
In order to observe the possible impact of cost-sensitive

boundaries, it is necessary to consider a case of study. Ideally,
we would have chosen a realistic case of an analog circuit
with high yield and selected the input features that would give
the best possible classifier performance. This would yield to
low dppm levels (defective parts per million). Unfortunately,
such a situation requires a very large number of MonteCarlo
simulations since we want to examine the variation on the test
escape and yield loss levels.

On the other hand, cost sensitive pass-fail boundary is a
concept that is independent of model accuracy: whatever the
absolute misclassification rate, we should be able to modify
the relative contributions of test escapes and yield.

So for the sake of statistical validity, we decided to sacrifice
the realism of the test situation and consider a very unfavorable
case. The Circuit Under Test is an LNA and the signatures
are 9 DC probes augmented with 4 simple tests related to the
passive devices. These passive tests are carried out on dummy
structures for capacitors and resistors, as proposed in [12], but
the inductor test relies on another mechanism since replicating
the inductor would not be cost-effective. As a matter of fact,
a number of additional signatures is available, for instance
the input and output of a co-designed envelope detector but
also the same signatures obtained at different supply voltages
[13], [14]. We deliberately restricted ourselves to using few
signatures to observe statistically meaningful variations on the
misclassified circuits for the 2000 simulated samples. These
samples are split in a training and testing set of equal size.

Similarly, we purposely set the specification values to
demanding levels in order to get a relatively low manufactur-
ing yield. Indeed, it is known that the misclassification rate

TABLE I
LNA SPECIFICATIONS

Specification value # failing devices

gain (in dB) 11 73
IIP3 (in dB) -7.5 285
NF 4.2 54

7 8 9 10 11 12 13 14 15
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

7

8

9

10

11

12

13

14

15

-10

-5

0

5

-10 -8 -6 -4 -2 0 2 4 6 8 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

Fig. 1. Correlation of the LNA performance metrics. The green points are
the circuits that pass the 3 specifications.

depends on the classifier accuracy but also on the density
of probability of the circuit population in the vicinity of the
pass-fail boundary. We considered three different performance
parameters as are the gain, the noise figure (NF) and the
third order Intermodulation Intercept Point (IIP3) and their
specifications are summarized in Table I.

In this way we obtain a yield level in the range of 65%.
It is also important to notice that we set the value of each
specification such that they all impact the pass-fail boudary.
Indeed, if a given specification is relaxed, or significantly
guard-banded by design, it may happen that it never cause any
failure under process variations because the circuits that fail
such a specification already fail others. This could have been
the case for the gain and the Noise Figure which are highly
correlated, as can be observed in Fig.1. It can be observed
how in each cloud of points the good devices are limited by
the two specifications.

The first experiment consists in verifying the cost sensi-
tivity of the modified Adaboost algorithm. We trained several
models varying the cost ratio between false positives and false
negatives (Cfp/Cfn) and evaluated these models over the test
set. The obtained results are plotted in Fig.2. First of all,
the topmost curve shows the total number of misclassified
devices which is seen to remain relatively stable around 100
for moderate cost imbalances. This represents a 10% error but
keep in mind that we have selected purposedly a worst case
model and yield situation. Thanks to this high error level, we
can observe clearly that the number of false negatives and
false positives cleary follow the expected trends.The minimum
number of test escapes (i.e. false positives) is only 9 for a cost

1/21/41/81/16 1 2 4 81/32
0

50

100

150

C
fp

/C
fn

m
is

cl
as

si
fic

at
io

ns

Total
False positive (test escapes)
False Negative (yield losses)

Fig. 2. Mis-classifications versus cost imbalance ratio

imballance of 16. The test escape rate is thus reduced by a
factor 5.

It is worth noticing the counterintuitive fact that a balanced
cost ratio does not lead to symmetric false positive and false
negative rates. Our guess is that the sample density in the
feature space influences the results. Roughly speaking, since
there are less bad circuits than good circuits (and since the
distributions of the two populations are different), the bad
circuits should be assigned a slightly higher weight. The very
principle of Adaboost training states the link between cost and
sample weights through the update rule (6).

We have also trained a conventional Adaboost model in
the exact same conditions as in the previous experiment,
varying the decision threshold. Since this threshold cannot
be compared directly to the cost ratio, Fig.3 presents the
false negatives versus false positives obtained in the two
experiments. It is clearly seen that the cost-optimized boundary
obtains better results, whenever the imbalance is not too
extreme. Beyond a certain point the two techniques offer
similar results. This is understandable since the asymptotic
behavior is the same in both cases: Ultimately, if test escapes
are infinitely more expensive than yield losses all the devices
would be tagged as bad. Similarly, if the consider a device as
good only is the likelihood of being good is 1, all the devices
would also be tagged as bad.

To further validate the optimality of the proposed approach,
we have to consider the cost function defined in the previous
section. In this way, we can make a fair comparison between
the proposed approach and the most traditional one. For this
experiment, we consider that the cost of a return (Ureturn) is
ten times as high as the selling price (Uprice) in (19). We set
the sensitivity parameter of the different specifications to the
same value, and vary this value from 0.001 to 1000.

αgain = αIIP3 = αNF ∈
[
10−3; 103

]
(19)

For each value of α, we compute the cost associated to the
different thresholds in the case of the thresholding approach

20 40 60 80 100 120
0

20

40

60

80

100

120

Yield losses

Te
st

 e
sc

ap
es

cost optimized

thresholding

Fig. 3. ROC curves for cost-sensitive Adaboost ans for conventional
Adaboost with decision thresholding

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-70

-60

-50

-40

-30

-20

-10

gain,IIP3,NF

co
st

 re
du

ct
io

n
(in

 %
)

cost imbalance

decision thresholding

Fig. 4. Minimum achievable cost as a function of the parameter sensitivity,
for the conventional thresholding method and for the proposed cost-optimized
boundary

and to the different cost ratios in the case of the proposed
approach. In both cases, the final selected model for a given
α is the one that gives the lowest cost. In other words, we do
not consider the cost ratio or the threshold as fixed a-priori
but rather perform a search on all the possible values to get
the best result.

Fig.4 displays the obtained results. These are presented as
a variation with respect to the cost obtained by an off-the-
shelf Adaboost classifier. It can be clearly seen how both
the proposed methods outperform the conventional classifier,
offering a cost reduction between 10% and 70%.

When the sensitivity parameter is low, which gives a high
detection probability (and thus customer return probability)
to the escapes located farther from the specification than
those located closer, the cost-asymmetric Adaboost classifier
outperforms the decision thresholding approach. We can thus
infer that the escapes that occur with the former are less
numerous or are closer to those produced by the latter.

On the other extreme, when the sensitivity parameter is high,

all the escapes are almost equivalent and at some point the
thresholding method outperforms our approach, though the
difference is relatively marginal. As a matter of fact, both
methods saturate to an almost similar value.

IV. CONCLUSION

It has been shown in this paper that go/no-go Alternate Test
based on machine learning classifiers may significantly ben-
efit from the introduction of asymmetric cost considerations
within the pass/fail boundary learning process. Indeed, our
experiments on a LNA showed that the cost-optimized classi-
fier, either through the straightforward technique of decision
thresholding or through the use of a built-in test escape/yield
loss imbalance, consistently outperforms a similar symmetric
classifier in 10% to 70% over a wide range of cost model
parameters.

ACKNOWLEDGMENT

This work has been partially funded by the Ministerio
de Economia y Competitividad project TEC2011-28302, co-
financed by the FEDER program.

REFERENCES

[1] G. Roberts and S. Aouini, “An overview of mixed-signal production
test from a measurement principle perspective,” IEEE Design & Test,
pp. 1–1, 2013.

[2] P. N. Variyam and A. Chatterjee, “Enhancing test effectiveness for
analog circuits using synthesized measurements,” in Proc. of IEEE VLSI
Test Symp., 1998, pp. 132–137.

[3] P. N. Variyam, S. Cherubal, and Chatterjee, “Prediction of analog
performance parameters using fast transient testing,” IEEE Trans. on
CAD, vol. 21, no. 3, pp. 349–361, 2002.

[4] H. Stratigopoulos and S. Mir, “Adaptive Alternate Analog Test,” IEEE
Design & Test of Computers, vol. 29, no. 4, pp. 71–79, 2012.

[5] H.-G. Stratigopoulos and Y. Makris, “Nonlinear decision boundaries for
testing analog circuits,” IEEE Trans. on CAD, vol. 24, no. 11, pp. 1760–
1773, Nov. 2005.

[6] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction., 2nd ed. Springer,
2009.

[7] W. M. Lindermeir, H. E. Graeb, and K. J. Antreich, “Analog testing
by characteristic observation inference,” IEEE Trans. on CAD, vol. 18,
no. 9, pp. 1353–1368, 1999.

[8] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,”
Journal-Japanese Society For Artificial Intelligence, vol. 14, no. 771-
780, p. 1612, 1999.

[9] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits
and Systems Magazine, vol. 6, no. 3, pp. 21–45, 2006.

[10] G. Leger, “Combining Adaptive Alternate Test and Multi-Site,” in Proc.
of Design, Automation and Test in Europe Conference(DATE), Mar.
2015, pp. 1–6.

[11] H. Masnadi-Shirazi and N. Vasconcelos, “Cost-sensitive boosting,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no. 2, pp.
294–309, Feb. 2011.

[12] L. Abdallah, H. G. Stratigopoulos, C. Kelma, and S. Mir, “Sensors for
built-in alternate RF test,” in Test Symposium (ETS), 2010 15th IEEE
European, 2010, pp. 49–54.

[13] M. J. Barragan, R. Fiorelli, G. Leger, A. Rueda, and J. L. Huertas,
“Alternate test of LNAs through ensemble learning of on-chip digital
envelope signatures,” Journal of Electronic Testing, vol. 27, no. 3, pp.
277–288, Jan. 2011.

[14] M. Barragan, R. Fiorelli, G. Leger, A. Rueda, and J. Huertas, “Improving
the accuracy of RF alternate test using multi-VDD conditions: Applica-
tion to envelope-based test of LNAs,” in IEEE Asian Test Symp., Nov.
2011, pp. 359 –364.

