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Abstract 

Activated carbons with different textural and chemical surface characteristics were synthesized 

from waste biomass and low rank coals, and furthermore used as a host matrix for cobalt species, 

varying the preparation and modification methods. The obtained activated carbons and modified 

samples were characterized by complex of various physicochemical methods, such as: low 

temperature physisorption of nitrogen, XRD, EPR, XPS, UV-Vis and TPR with hydrogen. Boehm 

method was applied for qualitative and quantitative determination of oxygen-containing groups on 

the carbon surface before and after cobalt deposition. The catalytic properties of cobalt 

modifications were tested in methanol decomposition. The dominant effect of activated carbon 

texture over the surface chemistry on the state and catalytic behaviour of cobalt species was 

discussed.  
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1. Introduction 

As a catalyst support, activated carbon has many advantages, such as high surface area, tunable pore 

structure and surface chemistry, resistance to acidic or basic media, stability at high temperatures in 

inert or reduction atmosphere, as well as ability to recover the supported active metals [1, 2]. 

Activated carbons structure is developed by imperfect aromatic sheets of carbon atoms, as well as 

incompletely saturated valences and unpaired electrons on the surface. This determines high 

adsorption capacity of carbon materials, especially towards polar or polarizable molecules [3].  

The surface functional groups, formed as a result of thermal or chemical treatments, influence the 

acid-base properties of carbon surface and could be considered as potential active sites for 

adsorption and catalysis [4, 5].  

Carbon precursor selection and treatment conditions are feasible way for tuning the surface 

chemistry of carbon materials. On the other hand, porous structure of activated carbon is an 

important factor for preparation of efficient carbon-supported catalysts and it could be successfully 

regulated by the method of carbon synthesis and subsequent activation. It is well known, that the 

synthesis of porous carbon materials from lignocellulose precursors using conventional physical 

and chemical activation is the most economical and easy approach for large-scale production [5]. 

Thus synthesized activated carbons exhibit well-developed, however predominantly microporous 

structure [6, 7]. Previous studies report the benefits of addition of metal species (such as calcium) 

which increases the amount of volatile products during the pyrolysis process, and thus provides 

formation of carbon products with much broader pore size distribution (development of meso- and 

macroporosity) [8].  

Supported cobalt materials have been investigated in a range of catalytic reactions including 

Fischer–Tropsch synthesis (FTS) [9, 10], methane [11, 12] and propane combustion [13], 

cyclohexane [14], ethyl acetate [15], cyclohexanol [16] and CO oxidation [17], etc. It was 



3 

 

demonstrated that the chemical nature of the support [18, 20], the texture and surface acidity [15, 

19, 20], the composition of the metal precursor, the modification method and the intended metal  

loading influence the dispersion, reduction and catalytic properties, and the extent of metal–support 

interactions [15]. Various supports have been used for preparation of cobalt based catalysts, such as 

SiO2, Al2O3, MgO, TiO2, Nb2O5, CeO2, and ZrO2, but in some cases, formation of solid solutions 

between cobalt phase and support significantly changed the coordination and catalytic properties of 

cobalt [21, 22, 23]. The effect of carbon support on the formation of complex mixture of cobalt 

species in different oxidative state was discussed [24].   

There are a lot of reports for the application of activated carbon supported cobalt catalysts for NOx 

reduction [22, 23, 25 - 31], oxidation of phenol with peroxymonosulphate [32], CO- PROX reaction 

[33], etc.  

The aims of this paper are:  

1) To obtain activated carbons with different surface and texture features from different precursors - 

waste agricultural products (peach stones, olive stones) and low rank coal treatment products, using 

various preparation technologies;  

2) The synthesized activated carbons to be modified with cobalt and tested as catalysts in methanol 

decomposition. Recently methanol has been considered as a promising carrier of hydrogen due to 

methanol production by well developed technologies from waste biomass, and possibility for easy 

release of hydrogen if needed [34 - 37].   

3) Finally, this investigation is focused on the possibility for fine tuning and improving catalyst 

behavior by tailoring the properties of carbon support, by varying the nature of the precursor and 

the preparation procedures. In this way, the scope of this study is related to the problem of hydrogen 

production and storage by utilization of waste biomass and coal treatment products.  
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2. Materials and methods 

2.1 Synthesis of activated carbons 

Olive stones based activated carbon, denoted as OSAC, was produced by one-step hydro-pyrolysis 

process, which is well studied and used for a long time in our laboratory [38 – 42]. Crushed olive 

stones are used as a precursor. Carbonization and subsequent activation procedures were performed 

in the presence of water vapor at 1023 K for 1 h. The flow of water vapor was started at 573 K.  

Peach stones based activated carbon, denoted as PSAC, was produced by two-step process, 

including carbonization of crushed peach stones at 823 K for 1 h and subsequent activation of the 

carbonizate with water vapor at 1023 K for 1 h.  

The synthetic activated carbon, denoted as SACS, was prepared by method, developed in our 

institute [42], using the following procedure: treatment of a mixture from coal tar pitch and furfural 

(1:1 by weight) with H2SO4 at 393 K until solidification. The solid product was subjected to further 

carbonization up to 873 K; the activation of the obtained carbonizate was performed at 1073 K in 

the presence of water vapor, followed by thermal treatment in Ar (99.996% purity, SIAD) 

atmosphere at 1473 K for 1 h.  

The synthetic activated carbon, denoted SACN, was prepared from mixture from coal tar pitch and 

furfural (1:1 by weight) with HNO3 at 393 K until solidification. The obtained solid product was 

subjected to further carbonization up to 873 K; the activation of the obtained carbonizate was 

performed at 1073 K in the presence of water vapor.  

Ordered mesoporous silica of SBA-15 type (used as a reference support) was prepared according to 

the special synthesis procedure [43], using Pluronic 123 as a structure directing agent and 

decomposition of the template after heating at 823 K for 6 h in air. 
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2.2 Modification of activated carbons 

The activated carbons and mesoporous silica were modified with Co by incipient wetness 

impregnation with aqueous solution of cobalt nitrate precursor. The nitrate decomposition was 

carried out by heating at 773 K for 6 h in a flow of nitrogen (99.96% purity, SIAD). The metal 

content in all samples is about 8 wt %, determined by atomic absorption spectroscopy. The cobalt 

modifications samples are denoted as Co/OSAC, Co/PSAC, Co/SACS and Co/SACN, respectively. 

The reference silica supported sample was denoted as Co/SBA-15. 

 

2.3 Methods of characterization 

The porous structure of all investigated activated carbons was studied by nitrogen adsorption at 77 

K, carried out in an automatic Micromeritics ASAP 2010 volumetric apparatus. Before the 

experiments, the samples were outgassed under vacuum at 300 °C overnight.  

The obtained isotherms were used to calculate the specific surface area SBET, pore volumes and pore 

size distribution by using the method of density functional theory (DFT) [44].  

The amount of various acidic oxygen-containing functional groups was determined by Boehm 

method using aqueous solutions of NaHCO3, Na2CO3, NaOH, and C2H5ONa, according to the 

procedure described by Boehm [45]. The amount of basic sites was determined with 0.05 N HCl, 

according to the procedure described by Papirer et al. [46]. The pH of activated carbons was 

determined after boiling for 5 min in 100 cm3 distilled water, followed by decantation and cooling 

down the solution to ambient temperature. 

The electron paramagnetic resonance (EPR) measurements were performed by a X-band 

spectrometer Radiopan, working at 9.3 GHz and modulation 100 kHz. The measurements were 

taken with attenuation of 20 dB (about 0.7 mW) to avoid microwave saturation. The spectral data 

were processed by an on-line computer. In the EPR investigations ultramarine was used as a 
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reference for the determination of concentration of paramagnetic centers, and a ruby crystal, 

permanently placed in the spectrometer cavity, was the secondary reference.  

Powder X-ray diffraction patterns were collected by a Bruker D8 Advance diffractometer with 

CuKα radiation and LynxEye detector; the average crystallite size was evaluated according to 

Scherrer equation. The ultraviolet-visible light (UV–Vis) spectra were recorded using a Jasco V-

650 UV-Vis spectrophotometer equipped with a diffuse reflectance unit. X-ray photoelectron 

spectra (XPS) measurements have been carried out on ESCALAB MkII (VG Scientific) electron 

spectrometer with pressure of 5x10-10 mbar in the analysis chamber, using twin anode MgKα/AlKα 

X-ray source with excitation energies of 1253.6 and 1486.6 eV, respectively. The spectra are 

recorded at total instrumental resolution (as it was measured with the FWHM of Ag3d5/2 

photoelectron line) of 1.06 eV and 1.18 eV, for MgKα and AlKα, respectively. Temperature-

programmed reduction and thermo-gravimetric (TPR-TG) analysis was performed in a Setaram 

TG92 instrument in a flow of 50 vol% H2 in Ar (100 cm3 min-1) and heating rate of 5 K min-1.  

 

2.4 Catalytic tests 

Methanol decomposition was carried out in a fixed–bed reactor at atmospheric pressure. The 

catalyst (0.055 mg) with a particle size of 0.2-0.8 mm was diluted with three-fold higher amount 

(by volume) of glass spheres. The catalysts were tested under conditions of a temperature-

programmed regime within the range of 350–770 K with a heating rate of 1 K min-1.  

Typically, the catalytic experiments includes: (i) catalyst  pretreatment at 373 K in Ar for 1 h; (ii) 

GC analysis of the non-converted reaction mixture of methanol (1.57 kPa) in argon (50 ml/min); 

(iii) inserting the reaction mixture into the reactor at 350 K. After GC analysis of the output 

composition, the temperature in the reactor was increased with 20 K (1K/min). The last procedure 

was repeated every 20 K in the whole investigated temperature interval (350–770 K).  
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The changes in the catalysts during catalytic test were elucidated by in-situ measurements of the 

catalytic activity of the used catalysts at selected temperatures.  During the experiments the reactant 

(methanol) as well as all carbon-containing products (CO, CO2, methane, methyl formate and 

dimethyl ether) were in a gas phase and their amounts were determined by on-line GC analyses, 

using HP apparatus equipped with flame ionization and thermo-conductivity detectors, and a 30 m 

PLOT Q column. The methanol conversion X(T) at specific temperature T was calculated by the 

equation X(T) = 100% (Cinput-Coutput)/Coutput, where Cinput and Coutput are the methanol concentrations 

in the gas mixture at the input and output of the reactor, respectively. The selectivity to CO, which 

formation was directly related to the production of hydrogen from methanol, was calculated by the 

equation SCO = 100% YCO/X(T), where YCO was the yield of CO and X(T) was the conversion at 

selected temperature T. 

 

3. Results and discussion 

3.1 Activated carbons  

3.1.1 Structure and texture characterization 

Nitrogen adsorption isotherms of the obtained carbons are presented in Fig. 1a and the textural 

parameters are listed in Table 1. All isotherms are of hybrid I/IV type, according to the IUPAC 

classification [4], with a clear opening of the knee at low relative pressures. This indicates that all 

carbon materials have a complex microporous/mesoporous structure with domination of 

micropores. The highest BET surface area and pore volume with presence of extremely high 

amount of micropores are registered for OSAC (Table 1).  

From all samples, SACN has the highest extent of developed mesoporosity, while the carbon treated 

at 1473 K (SACS) is characterized by the lowest BET surface area and pore volume.  
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Figure 1. Nitrogen physisorption isotherms of the obtained activated carbons (a) and their cobalt 
modifications (b). 
 

 

Table 1. Textural parameters of activated carbons and their cobalt modifications. 

Vmic+Vmes Sample SBET 

m2g-1 

ΔSBET 

% 

Vmic
a
 

m3.g-1 

Vmes
a
 

m3.g-1 m3.g-1 

Δ(Vmic+Vmes) 

% 

Vmic/Vmes 

OSAC 950  0.415 0.031 0.446  13.39 

PSAC  830  0.345 0.054 0.399  6.39 

SACS 680  0.215 0.030 0.245  7.17 

SACN 820  0.301 0.104 0.405  2.89 

Co/OSAC 604 36 0.235 0.039 0.274 38 6.03 

Co/PSAC 617 26 0.241 0.042 0.283 29 5.74 

Co/SACS 462 32 0.158 0.016 0.174 29 9.88 

Co/SACN 556 32 0.196 0.022 0.218 46 8.91 

SBA-15 807  0.120 0.860 0.980  0.14 

Co/SBA-15 781 3 0.230 0.650 0.880 10 0.35 

a - evaluated by DFT method. 
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Figure 2 shows X-ray diffraction (XRD) patterns of the activated carbons. The reflections around 

23o (002 plane) and 43o (100 plane) are generally assigned to the formation of crystalline 

carbonaceous structure [47].  

From the position of the (002) reflection, interplanar spacing d002 was calculated by application of 

Bragg’s Law, while the average values of the crystallite height (Lc) and width (La) are obtained 

using Debye–Scherrer equation (Table 2). 
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Figure 2. X-ray diffraction of the investigated activated carbons. 

 

SACN sample have the lowest d002 and d100 distances and the highest value of Lc. This indicates 

higher degree of graphitization and more ordered and compact structure for SACN sample in 

comparison with the other carbons. Just the opposite, the highest d002 distance and the lowest value 

of Lc are established for SACS. This result seems to be quite surprising, taking into account the 

extremely high temperature treatment, which was applied during the preparation of this sample. It is 
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not excluded the observed effect to be provoked by the catalytic activity of H2SO4 in 

polycondensation reactions, which occur during thermo-oxidation treatment of the precursor. As a 

result, the formation of significant amount of crystallization centers, which hinders the arrangement 

of the aromatic layers, should be expected. 

 

Table 2. XRD parameters for parent activated carbons. 

X-ray parameters Sample 

 OSAC PSAC SACS SACN 

2θ, degrees - Position 002 
 

22.47 22.77 22.46 22.97 

2θ,  degrees - Position 100 
 

43.10 43.38 43.21 43.48 

d002, nm (distance between C 
atoms of adjacent planes) 

0.3957 0.3905 0.3959 0.3872 

d100, nm (distance between C 
atoms in the plane) 

0.2098 0.2086 0.2094 0.2081 

Lc, nm  (002) 
average crystallite height FWHM 

0.6559 0.6335 0.5587 0.7163 

La, nm  (100) 
average crystallite width FWHM 

3.8242 2.1205 3.2256 2.7910 

 

 

3.1.2 Chemical characterization  

In Table 3 some chemical characteristics of the carbons are presented. All samples are characterized 

by low ash content (0.1-0.2 wt.% for the AC from coal tar pitch and 1.1-1.5 wt.% for the AC from 

biomass). Acidic (mainly carbonyl and hydroxyl) and basic groups are detected for OSAC, SACN, 

PSAC. The amount of surface acidic groups is below detection limit for SACS, obviously due to the 

high temperature treatment (which removes heteroatoms) during the preparation procedure.  

Surprisingly, the titration with HCl reveals that the SACS sample is characterized with relatively 

high basicity. This fact can be hardly explainеd with the presence of basic groups on the carbon 
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surface, and in accordance with Petrova et al. [42], formation of surface OH groups, due to the 

interaction of π- sites from the carbon surface with adsorbed water molecules, could be proposed.  

 
 
Table 3.  Chemical characteristics of the obtained porous carbons. 

Sample Acidic groups, meq/g 
 Carboxylic Lactonic Hydroxyl Carbonyl

Basic groups, 
meq/g 

pH Ash 
content 
wt. % 

OSAC 0.02 0.09 0.55 1.07 1.03 9.2 1.15 
PSAC BDLa BDLa 0.49 0.98 1.04 9.4 1.45 
SACS BDLa BDLa BDLa BDLa 0.44 8.1 0.20 
SACN 0.01 0.06 0.41 0.88 0.98 7.9 0.10 
Co/OSAC 0.18 0.21 0.72 1.21 0.78 6.0 - 
Co/PSAC 0.08 0.12 0.60 1.05 0.71 6.1 - 
Co/SACS 0.02 0.05 0.24 0.79 0.68 6.8 - 
Co/SACN 0.20 0.36 0.88 1.43 0.86 5.9 - 
a BDL – below detection limit 
 

 

3.1.3 EPR investigations 

EPR analysis was performed for determination of the amount of unpaired electrons and the presence 

of heteroatoms [48 - 49] in the investigated carbons. These unpaired electrons are stabilized during 

carbonization process, due to bond cleavage at the edges of aromatic graphene sheets, thus forming 

edge carbon atoms, which can bind heteroatoms – O, N, etc. These carbon atoms are highly reactive 

centers, which determine the surface reactivity, surface reactions, and catalytic reactions of carbons. 

In principle the EPR spectrum of carbon materials represents characteristic singlet with different 

width and intensity. The EPR spectra and calculated data are shown in Figure 3 and Table 4. The 

studied carbons are characterized by different number of paramagnetic centers (PMC) and g-factor 

values. PMCs and heteroatoms are not detected for SACS. This confirms the assumption (see above 

section 3.1.2. ) that the heat treatment up to 1473 K totally removes heteroatoms from the carbon, 

leading to formation of carbon atoms with completely hybridized bonding orbitals. The highest 
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amounts of PMCs and heteroatoms are detected in OSAC sample (Table 4). The high value of g-

factor for this sample is in agreement with the data from the chemical analysis, which indicated the 

highest amount of surface functional groups (Table 3). In the same time, the SACN carbon has 

higher number of PMCs as compared to PSAC. These results accounts for considerable increase of 

the amount of surface oxygen groups for SACN in comparison with PSAC (Table 3), which could 

be due to the oxidation treatment with HNO3 during the preparation procedure.  

 

Table 4. EPR data for the investigated activated carbons. 

Sample g-factor Area/Mn 
Number of paramagnetic centers,

x 1017 

SACS 0 0 0 

PSAC 2.00234   2601.58   7.10 

SACN 2.00225   6387.84 17.71 

OSAC 2.00292 12910.04 35.80 
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Figure 3.  EPR spectra of activated carbons. 

 

3.2 Cobalt modifications of activated carbons  

3.2.1 Structural and chemical characterization 

The nitrogen adsorption isotherms of cobalt modified carbons are presented in Fig.1b and the 

corresponding textural parameters are listed in Table 1. The decrease in the BET surface area and 

pore volume for all carbon samples after modification clearly indicates deposition of cobalt phase 

into the carbon porous structure. The observed significant decrease in the microporous volume with 

the preservation of mesopores for Co/OSAC indicates that there are cobalt particles located into the 

micropores of this carbon support.  
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Just the opposite, despite the observed decrease in the Vmic and V mes for Co/SACN, the Vmic/Vmes 

ratio increases about 3 times which evidences predominant location of cobalt species into the 

mesopores of SACN. The decrease in the BET surface area and pore volume for Co/PSAC and 

Co/SACS is combined with slight changes in the Vmic/Vmes ratio, which could be related to almost 

random deposition of cobalt species into the micro- and mesopores for these carbon supports.  

For comparison, the nitrogen adsorption analysis for the reference SBA-15 support show that it has 

BET surface area close to activated carbons, but with higher pore volume, developed mainly from 

ordered mesopores (Table 1). The modification of SBA-15 with cobalt leads to a significant 

decrease in the mesopore volume, probably due to deposition of cobalt species in the mesopores. 

XRD patterns of activated carbon modifications are presented in Fig. 4. The modified carbon 

samples are characterized by formation of carbonaceous crystalline structure with reflexes at 24o 

and 44o. The low intensity reflections at 36.6 o and 42.4 o indicate presence of finely dispersed CoO 

(PDF 43-1004) particles with average crystalline size 18-20 nm. The appearance of small reflection 

at 44.4 o in the XRD patterns of Co/SACN and Co/OSAC is evidence of formation of small portion 

of metallic Cofcc  nanoparticles (PDF 15-0806) with average crystalline size 20-35 nm. XRD pattern 

of Co/SBA-15 (Fig. 4) represents broad and low intensive reflections at 36.6 o, 59.4 o and 65 o, 

typical for Co3O4 spinel oxide (PDF 3-1003) with average particles size about 15 nm.  

The data from chemical analysis of carbon after cobalt modification are shown in Table 3. A well 

expressed effect of the formation of new portion of surface acidic groups as compared to the 

corresponding parent carbon supports is demonstrated. This observation is not surprising, taking 

into account the possibility for oxidation of carbon surface by the products (O2 and NO2) of cobalt 

nitrate decomposition during the thermal treatment. Despite the lower number of PMCs in SACN in 

comparison with OSAC (Table 4), the increase in the amount of oxygen groups in the former is 

more significant (Table 3). This could be due to the higher number of micropores in OSAC, which 

are inaccessible for NO2 and O2 molecules.  
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Figure 4. XRD patterns of cobalt modifications of activated carbons and reference SBA-15 sample. 

For selected samples XRD patterns after the catalytic test are presented (cat). 

Obviously, both capillary and surface effects control the formation of cobalt phase on activated 

carbons. Contrary to the case of Co/SBA-15, the decomposition of cobalt nitrate precursor in inert 

atmosphere on carbon leads to the formation of reduced cobalt species (Co0 and/or CoO), which 

evidences the specific effect of carbon surface on the formation of cobalt active phase.  

Besides, metallic cobalt particles were observed only for Co/OSAC and Co/SACN. Taking into 

account XRD data (Fig. 2), chemical analysis (Table 3) and texture analysis (Table 1), we could 

assume that the higher reduction effect is due to the presence of considerably higher amount of 

PMCs, better packed structure, dominant presence of micro- and mesopores, and higher amount of 

oxygen functional groups on the surface of these carbons (OSAC and SACN), in comparison with 

other carbons.    
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3.2.2 XPS and UV-vis investigations of cobalt species 

In order to obtain more information for the oxidation state of cobalt species, UV-Vis and XPS 

investigations were performed. The UV-Vis spectrum of reference Co/SBA-15 (Fig.5) contains a 

broad absorption band around 470 nm, which can be attributed to octahedrally coordinated Co3+ 

[15]. The band at around 720 nm is ascribed to the electronic ligand-field 4A2(F)→4T1(p) 

transition of Co2+ in tetrahedral coordination. Thus the UV-Vis study confirms the data from XRD 

analysis, indicating presence of Co3O4 phase in Co/SBA-15. The absorption peaks for all cobalt 

modifications are very complex and the typical bands for the Co3O4 phase cannot be distinguished. 

However the slight absorption features with a maximum at about 460-500 nm could be assigned to 

the presence of Co2+ ions in octahedral coordination [50]. This is in accordance with the XRD data, 

which demonstrates that CoO was detected for all carbon modifications (Fig. 4). 
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Figure 5. UV-Vis spectra of cobalt modifications of various AC. For comparison UV-Vis spectra of 

selected parent AC and Co/SBA-15 are also presented (dashed line). 
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XPS is a useful technique for investigation the surface element composition and oxidation state. 

The XPS spectra of selected samples are presented in Fig. 6. For all carbon based materials the 

Co2p3/2 and Co2p1/2 binding energies are 781.1-781.5 eV and 796.3-797.3 eV, respectively. The 

intensive satelite peaks at about 787 eV and 803 eV, and the spin-orbit splitting between 2p level 

peaks of about 15.8-16.0 eV, are consistent with the presence of Co oxide phase [14], which was 

also proved by XRD and UV-Vis analysis. For comparison, the Co2p3/2 and Co2p1/2 binding 

energies for Co/SBA-15 are 780.7 eV and 795.7 eV, respectively. 

 

Figure 6. High resolution XP Co 2p1/2 spectra of Co/SACS (a), Co/PSAC (b) and Co/OSAC(c) 

compared with standard spectra of Co2+ (curve 1) and Co3+ (curve 2). 

 

Very low satelite peaks are detected, which reveals predominantly presence of Co3O4 (also in 

accordance with XRD and UV-Vis measurements). In order to examine the cobalt oxidation state in 

details, curve fitting of 2p1/2 level was performed. Simulating the standard spectra of Co2p1/2 for 

Co3+ and Co2+, the curve fitting of high resolution XPS spectra to Co2+ and Co3+constituents was 

performed (Fig.6) and their atomic concentrations are presented in Table 5. The binding energies of 
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the main peak, satellite position and the ratio between main peak area and satellite peak area are 

used for deconvolution of Co peaks. Thus, the line shape is included in the curve fitting. Although 

FWHM was not fixed during deconvolution, it is taken into account for the curve fitting shown in 

Fig.6. The curve fitting is based on the standard spectra for Co2+ and Co3+ (Fig.6, curves 1 and 2, 

respectively). The line shape of the curves indicate presence of Co3+ and Co2+ in different ratio with 

domination of Co2+ for Co/SACN and Co/OSAC (Table 5). This result is in agreement with the data 

from the XRD analysis, indicating that cobalt with higher degree of oxidation was detected. The 

surface atomic concentrations for the studied materials are presented in Table 5.  

For almost all activated carbon modifications, the surface concentration of Co (2-3 at.%) is close to 

the bulk concentration, which indicates almost uniform distribution of cobalt phase in the sample. 

Only for Co/OSAC the surface concentration of Co is about twice higher than this expected for the 

bulk material. Taking into acount the nitrogen adsorption data, it could be concluded that this is due 

to the higher dispersion of cobalt phase after cobalt deposition in carbon micropores. Note the 

extremely low surface Co concentration for Co/SBA-15 (bellow 0.5 at.%), which may be attributed 

to the location of cobalt species deeply into the long mesopores of the silica matrix. 

 
Table 5. Surface atomic concentrations (at. %) of presented elements. Co2+ and Co3+ atomic 
percentage are obtained by the curve fitting procedure of Co 2p1/2 peak.  
 
Sample 

C 1s O 1s 
Co 2p1/2  Si 2p Na 1s Cl 2p 

   Co2+ Co3+    

Co/SACS 89 9 1.5 0.5    

Co/PSAC 90 8 1.1 0.9 - - - 

Co/SBA-15 20 51 ~0.3 ~0.1 29 - - 

Co/SACN 87 8 2 0 3 - - 

Co/OSAC 77 13 3 ~0.2 - 5 2 
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3.2.3 Temperature-programmed reduction  

TPR is a powerful method to study the reduction behavior of oxidized phases, and in some cases - 

their dispersion and interaction with the support. Temperature-programmed reduction with thermo-

gravimetric and differential thermo-gravimetric (TPR-TG and TPR-DTG) profiles of all carbon 

modifications are presented in Fig.7. The reduction profile of Co/SBA-15 (reference material) 

contains two main effects with a maximum around 564 K and 730 K, with about 1:3 weight-to-loss 

ratio. According to the XRD, UV-Vis and XPS data, this could be due to stepwise reduction of 

Co3O4 to metallic cobalt.  

Note that the reduction degree in the whole temperature interval is about 50 %. In accordance with 

the XPS data, this could be due to the presence of less accessible cobalt oxide species, located 

deeply into the mesopores of silica support. The existence of strong interaction between the finely 

dispersed cobalt species and surface silanol groups which suppresses their reduction is not excluded 

[51]. The TPR profiles of all carbon supported materials differ significantly from the TPR profile of 

Co/SBA-15.  

For the carbon supported samples: (i) the reduction process starts at about 50-100 K lower 

temperature; (ii) depending on the carbon used one or several reduction effects in the low 

temperature region (400-600 K) are detected; (iii) the observed weight loss in the low temperature 

region is about 3-4 times higher than this for the Co/SBA-15 analogue, but it is lower than the 

calculated one for the reduction of CoO to metallic cobalt;  (iv) extremely high TPR effect above 

650 K is detected.  
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Figure 7. TPR-TG (a) and TPR-DTG (b) profiles for cobalt modifications of various activated 
carbons (the curves are shifted along the y axis). For comparison, TPR-TG and TPR-DTG profiles 
of SBA-15 is also illustrated (dashed lines). 
 

These observations evidence formation of more complex and easily reducible cobalt phase on the 

activated carbon support as compared to the SBA-15 silica.  

Coexistence of metallic cobalt and CoOx species in different state and proportion [52] depending on 

the nature of the activated carbon support is assumed.  The presence of cobalt species on AC 

provokes the release of volatile products under reduction conditions above 650 K. This effect is less 

pronounced for SACS and OSAC, and the highest for PSAC. This assumption is consistent with the 

conception of Rodrigues-Reinoso [1] and should be taken into consideration during the estimation 

of catalyst stability under the reduction reaction medium. 

 

3.2.4 Catalytic tests 

Fig. 8a shows temperature dependence of methanol decomposition on various cobalt modifications. 

CO is detected as main carbon-containing product and selectivity towards CO is shown in Fig. 8b.  
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Figure 8. Methanol conversion (a) and CO selectivity (b) vs temperature for various cobalt 
modifications. 
 

CH4 and CO2 are also registered as by-products. The conversion curve for Co/SACN is about 100 K 

shifted to lower temperature as compared to the other catalysts, clearly indicating the highest 

activity in methanol decomposition, combined with about 90% selectivity to CO.  

Co/OSAC also demonstrates catalytic activity in the same low temperature region, but it is 

relatively lower than Co/SACN. Both carbons are distinguished with considerably higher amount of 

PMCs and oxygen functionalities. This fact indicates the important role of these characteristics for 

the catalytic activity of the samples. The presence of surface oxygen-containing groups on activated 

carbon (Table 3 and Table 4) seems to facilitate the formation of highly dispersed and partially 

reduced (to metallic Co) active phase (Fig. 4), which decompose methanol at relatively low 

temperatures. However, the location of cobalt phase into mesopores reveals formation of more 

uniform and accessible to reactants cobalt species (Table 1, Fig.4), which provides higher catalytic 

activity for Co/SACN. Just the opposite, the predominant location of cobalt species into micropores 

of OSAC hinders their participation in the catalytic process. This is well illustrated not only with 
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the smoother profile of the conversion curve for this sample but also with the appearance of 

maximum in it. The conversion curves for Co/PSAC and Co/SACS are similar. They are much 

steeper and shifted to higher temperatures as compared to other two modifications. Obviously, the 

predominant presence of cobalt oxide phase, randomly distributed into micro- and mesopores of 

these carbon supports, facilitate the catalytic activity and stability, but at relatively higher 

temperatures. Taking into account the physicochemical characteristics of these samples, it can be 

assumed, that surface functionalities of activated carbons do not have dominant effect on the 

formation of cobalt phase and its catalytic activity, however the crucial role of texture 

characteristics of carbon supports is demonstrated. 

For comparison, Co/SBA-15 has lower catalytic activity, but higher stability and selectivity to CO, 

in comparison with Co/SACN. According to physicochemical analysis, this catalytic behaviour is 

assigned to the formation of Co3O4  spinel species (Figs. 4-6), which are located deeply into the 

mesopores and are in strong interaction with surface silanol groups.  

Additional catalytic tests with used activated carbon based materials after catalytic process clearly 

demonstrate a decrease in the catalytic activity. This decrease  is about 3 and 6 times, for Co/SACN 

and Co/OSAC, respectively, and  it is much lower for Co/SACS and Co/PSAC. Just the opposite, 

no significant changes with the catalytic activity are registered for the used  Co/SBA-15. Тhe XRD 

patterns of the used catalysts confirm reduction changes with the formation of metallic Co for the 

AC supported materials and disappearance of crystal Co3O4  phase (Fig.4) with the formation of 

finely dispersed CoO species for the SBA-15 analogue (Fig.4). 

 

4. Conclusions 

The synthetic activated carbon (SACN), prepared by thermo-chemical treatment of a mixture of 

coal tar pitch and furfural with HNO3, is characterized by relatively high amount of mesopores, 

which facilitate the deposition of uniform, accessible and highly active in methanol decomposition 
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cobalt species. Similar preparation procedure, but in the presence of H2SO4, leads to formation of 

highly disordered carbon structure. The treatment of this material above 1447 K (SACS) fully 

releases the surface functional groups and favors formation of highly dispersed and relatively highly 

active cobalt particles The activated carbon, prepared by two-step carbonization-activation 

procedure from peach stones (PSAC), after further modification with cobalt, exhibits low thermal 

stability in reduction atmosphere above 700 K. The activated carbon, obtained by one-step 

carbonization-activation procedure from olive stones (OSAC), demonstrates extremely high amount 

of surface functional groups and predominantly microporous structure, which promotes the 

formation of highly dispersed cobalt species, located mainly into the micropores.  

This makes them less accessible for the reactant molecules and as a result decreases their catalytic 

activity. Despite the important role of carbon paramagnetic centers and oxygen functionalities on 

the catalytic activity of cobalt modifications, especially at low temperature, the dominant effect of 

carbon texture over the surface functionalities is considered. 
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