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Abstract 

Cladocora caespitosa is the only reef-forming zooxanthellate scleractinian in the Mediterranean Sea. This 

endemic coral has suffered severe mortality events at different Mediterranean sites, due to anomalous 

summer heat waves related to global climate change. In this study, we assessed the genetic structure and 

gene flow among four populations of this species in the Western Mediterranean Sea: Cape Palos (SE 

Spain), Cala Galdana (Balearic Islands), Columbretes Islands and L´Ametlla (NE Spain). The results 

obtained, from Bayesian approaches, FST statistics and Bayesian analysis of migration rates, suggest 

certain levels of genetic differentiation driven by high levels of self-recruitment, a fact that is enhanced by 

egg retention mechanisms. On the other hand, genetic connectivity among distant populations, even if 

generally low, seems to be related to sporadic dispersal events through regional surface currents linked to 

the spawning period which has been described to occurs during the end of the summer-beginning of 

autumn. These features, together with a certain isolation of the Columbretes Islands, could explain the 

regional genetic differentiation found among populations. These results will help to better understand 

population structure and connectivity of the species, and will serve as an approach for further studies on 

different aspects of the biology and ecology of C. caespitosa.   

 

Introduction 

The Mediterranean Sea is a semi-enclosed sea that has been characterized as a 

“miniature ocean” responding quickly to changes in temperature and increases in 

extreme events (Lejeusne et al. 2009). Global climate change, in synergy with other 

disturbances such as water pollution, coastal development, massive algal blooms, 

pathogenic organisms and invasive species, among others, is expected to have 

significant effects on Mediterranean biodiversity in the near future (Lejeusne et al. 

2009; Templado 2014). For over a decade, mass mortality events have recurrently 

impacted Mediterranean benthic communities due to prolonged heat waves, affecting 

some emblematic sessile invertebrates (Perez et al. 2000; Cerrano et al. 2009; Garrabou 

et al. 2009; Lejeusne et al. 2009). The scleractinian coral Cladocora caespitosa is 

among these affected species, and mortalities have been noted in some of its most 

remarkable reefs, such as those in the Adriatic Sea (Kružić et al. 2012), Gulf of La 
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Spezia (Rodolfo-Metalpa et al. 2005) and Columbretes Islands, where over 50 % of the 

coral cover has been affected by necrosis during the last decade (Kersting et al. 2013a). 

 Cladocora caespitosa (Linnaeus, 1767) is the sole Mediterranean colonial and 

zooxanthellate scleractinian with reef-forming capacity (Morri et al. 1994). It is 

considered a relict species from the subtropical late Pliocene and Quaternary periods 

(Kühlman et al. 1991; Peirano et al. 2009) according to the fossil record (e.g., Fornós et 

al. 1996; Bernasconi et al. 1997; Aguirre and Jiménez 1998). Nowadays, the total 

abundance of C. caespitosa is reduced overall in the Mediterranean. The remaining 

populations of this coral are patchily distributed across the entire Mediterranean Basin 

and only few living banks (large colonies more than 1 m high and covering several 

square meters in surface area) and/or beds (groups of small globose to hemispherical 

colonies) of this coral been recorded in some spread locations (Laborel 1961; Schiller 

1993; Morri et al. 1994; Peirano et al. 1999; Kružic and Benković 2008; Özalp and 

Alparslan 2011; Kersting and Linares 2012). The decrease of the geographical range of 

C. caespitosa reefs in the Mediterranean with respect to its fossil distribution prompted 

Augier (1982) to include this coral in a list of marine species under extinction risk. 

Furthermore, this regression is still in progress enhanced by the mortality events that the 

coral has suffered in recent decades due to heat waves and other threats such as the 

proliferation of invasive algal species (Kružic et al. 2008b, Kersting et al. 2014a).  

The reproductive ecology of C. caespitosa was described in populations from 

the Adriatic Sea (Kružic et al. 2008) and Western Mediterranean Sea (Kersting et al. 

2013b). In the Adriatic Sea, the colonies of C. caespitosa have been described as 

hermaphroditic and the spawning time was observed at the beginning of the summer, in 

coincidence with rising seawater temperatures (Kružic et al. 2008). Contrary to the 

Adriatic Sea, in the Western Mediterranean this coral has been regarded as gonochoric 



4 

and the spawning period seems to occur at the end of summer (August-October) 

coinciding with the beginning of the cooling of the seawater (Kersting et al. 2013b). In 

situ observations in the Adriatic Sea indicated that the release of male and female 

gametes was not synchronous for each hermaphroditic colony. Eggs were released by 

the polyps in a mucus coating, also called “clumps”, that bound the eggs together, while 

sperm were freely released in sperm bundles (Kružic et al. 2008a). According to the 

authors, fertilization may be enhanced by synchronous spawning and eggs retention on 

the colony surface.   

 The ability of marine populations to resist and recover from environmental 

disturbances depends in part on population connectivity and recruitment processes, 

which contribute to the addition of new individuals to populations and therefore to the 

population resilience of marine organisms (Caley et al. 1996), particularly corals 

(Adjeroud et al. 2007) including C. caespitosa in the Mediterranean (Kersting et al. 

2014b). In order to improve our knowledge on the recovery potential of this 

bioconstructive species, C. caespitosa, a better understanding of the resilience of its 

populations is needed. Population genetics studies enable the estimation of the structure 

and connectivity of populations and identify the associated processes, detecting 

populations self-recruitment, barriers to gene flow, introgression, isolation and 

fragmentation of the populations (Baums 2008). It should be noted that these features 

are linked to species life history traits, such as species dispersal capacity at each stage of 

its life cycle, and their interaction with associated biotic and abiotic factors (DiBacco et 

al. 2006). Moreover, dispersal among populations can be affected by physical barriers 

(hydrographic fronts, upwelling systems, eddies or counter currents), or enhanced by 

oceanographic features such as global and local water currents or rafting events (Pineda 

et al. 2007). 
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The present study aims to examine the genetic structure and connectivity 

patterns of some populations of the Mediterranean reef-forming coral C. caespitosa 

from the Western Mediterranean Basin. The egg retention mechanisms described for 

this coral may increase self-recruitment and evidences of it can be found in the 

distribution and recruitment patterns of its populations (Kersting and Linares 2012, 

Kersting et al. 2014b). Therefore, it is hypothesized that populations of C. caespitosa in 

the Western Mediterranean basin are isolated showing different levels of genetic 

differentiation between them.  

 

Material and Methods 

Study area and sample collection 

Colonies of C. caespitosa were sampled at four localities in the Western 

Mediterranean Sea: Cape Palos (Murcia, SE Spain), Cala Galdana (Menorca, Balearic 

Islands), Columbretes Islands (at the edge of the continental shelf 60 km off the nearest 

coast of E Spain) and L´Ametlla (Tarragona, NE Spain) (Table 1, Fig. 1).  

At each sampling locality, individual polyps from 13 to 37 colonies were 

collected at depths between 10-15 m, using SCUBA diving. Sampled colonies were 

randomly chosen within a given area of 300-500 m2, considering a minimum distance 

between colonies of 1-2 m to avoid sampling the same colony twice. To minimize the 

damage to the sampled colonies, 1-2 polyp tips were carefully detached from one of the 

edges of each colony with a hammer and chisel and placed in labeled bags. Samples 

were stored in vials of absolute ethanol until laboratory analyses. It should be noted that 

the small number of samples from Cape Palos is due to the low number of colonies 

found in the area.  
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DNA extraction, microsatellite amplification and genotyping 

Total DNA was extracted from a total of 108 polyps using a Qiagen BioSprint 

IT 15DNA Blood Kit (Table 1). Eight microsatellite loci specifically developed for C. 

caespitosa (Casado-Amezua et al. 2011) were amplified with eight primer pairs with a 

fluorescently-labeled forward primer, following the PCR conditions described in 

Casado-Amezua et al. (2011). PCR products were visualized with an automated 

sequencer (ABI PRISM 3730 DNA Sequencer, Applied Biosystems) with the 

GeneScan-500 (LIZ) internal size standard. Electropherograms were analyzed for allele 

scoring with GeneMapper software 3.0 (Applied Biosystems). 

Data analysis 

The possibility of the presence of clone mates (i.e., individuals with the same 

genotypes) was estimated from the allele frequencies observed in the multilocus 

genotypes in each population using GenAlEx (Peakal and Smouse 2006). In addition, 

the probability that the two randomly chosen individuals in a population had identical 

genotypes by chance was calculated with the Probability of Identity (PID) index using 

GeneAlEx software. This index resulted in a low average value across populations of 

3.04 x 10-5. Therefore, since individuals that showed identical genotypes could be 

considered as clones, each distinct eight-locus genotype in the data set was included for 

statistical analysis.  

Linkage disequilibrium (LD) was tested among all pairs of loci at each of the 

sampled locations with a permutation test using GenePop version 3.4 (Raymond and 

Rousset 1995). Analysis of significance was tested with Markov Chain Monte Carlo 

(MCMC that was run using 1,000 dememorizations with 100 batches and 1,000 

iterations per batch). MICRO-CHECKER v.2.2.3 software (van Oosterhout et al. 2004) 
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was used to check for scoring errors due to stuttering, large allele dropout and to 

estimate null allele frequencies.  

Genetic diversity 

Parameters of genetic diversity for each population and for the global sample 

were estimated. Allelic diversity (Na) was quantified as the number of alleles per locus 

over all loci and localities using GenAlEx 6.0 software (Peakall and Smouse 2006). 

Allelic richness and private allelic richness were estimated with a rarefaction procedure 

using HP-RARE software (Kalinowsky 2005), with the minimum number of genes set 

at 24 (NS(24); P(24)). Analyses of departures from Hardy-Weinberg equilibrium (HWE) 

within populations for each locus and over all loci were quantified as the observed (Ho) 

and expected (He) heterozygosities using GenAlEx 6.0 software (Peakall and Smouse 

2006). Estimations of the inbreeding coefficient, FIS, an estimate of the deficit or excess 

of heterozygotes, within each population for each locus and over all loci were computed 

with Genetix (Belkhir et al. 2004). Significance of the estimation analysis was tested 

with 10,000 permutations.  

Step-down Bonferroni (Holm 1979) correction was applied to p-values in all the 

statistical analyses that included multiple comparisons.  

Inference of population differentiation 

POWSIM v4.0. (Ryman and Palm 2006) was used to estimate the statistical 

power provided by the microsatellite dataset for correctly testing for population genetic 

differentiation. The four localities sampled were used for testing allele frequency 

homogeneity at the eight loci and combining information for the multiple loci using 

Fisher´s exact and chi-squared tests. Simulations were run using various combinations 

of Ne (effective population size) and t (time since divergence), leading to FST values of 
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0.001 to 0.05, reproducing the magnitude of FST values estimated from the data. 

Simulations were carried out for effective population sizes Ne =2,000, Ne =5,000 and 

Ne=10,000 to yield FST values of 0.001, 0.025 and 0.05. One thousand replicates were 

run and the power of the analysis was indicated by the proportion of tests that were 

significant at p < 0.05 using the respective allele frequencies at the eight loci studied.  

For the measures of genetic differentiation, sample sites were used as a 

population unit. FST values between sampling localities were estimated using 

ARLEQUIN 3.1.1. software (Excoffier et al. 2005), and their statistical significance 

calculated 10,000 bootstrap replicates (Weir and Cockerham 1984). As null alleles can 

induce overestimation of genetic distances (Chapuis and Estoup 2007), pairwise 

estimates were computed with and without correction for null alleles (Brookfield 1996).  

Population genetic structure was also inferred using a Bayesian approach. The 

number of genetically differentiated C. caespitosa populations, K, with the highest 

posterior probability given the data was estimated with STRUCTURE 2.3.3 (Pritchard 

et al. 2000). The software was run using the admixture model under the “location prior” 

function (LOCPRIOR) with correlated allele frequencies. LOCPRIOR was considered 

as the most accurate model because even while it learns from a priori assignment of 

individuals into populations, it does not tend to infer structure when none exists 

(Pritchard et al. 2000; Hubisz et al. 2009). Simulations included 20 replicated runs for K 

values,1 to 10 and a mean log probability of the data (lnP(K)) was calculated. MCMC 

of each run consisted of 100,000 burn-in iterations followed by 1,000,000 sampled 

iterations. ΔK values are an index for deciding the probable number of genetically 

clustering populations. ΔK values were calculated under the Evanno et al. (2005) 

method as implemented on STRUCTURE Harvester (Earl and von Holdt 2012)  
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The influence of geographic distance on population genetic differentiation was 

calculated with two models: Rousset (1997) model for two-dimensional habitats with 

the correlation between pairwise population linearized FST (FST/ (1-FST)) and the 

logarithm of the geographical distance (in meters); and Slatkin (1993), which used the 

logarithm of calculated separately for pairs of populations, (where = (1-FST)/4FST) 

as a measure of similarity, versus the logarithm of the geographical distance. This 

parameter corresponds to the number of migrants required to account for observed 

genetic differences if migrants could move directly between populations. In both cases, 

Mantel tests (10,000 permutations) were used to assess the statistical significance. The 

strength of the isolation by distance (IBD) relationship was quantified with the slope 

and intercept of genetic similarity ( ) or distance (linearized FST) against geographic 

distance. Both parameters were calculated using reduced major-axis regression (RMA) 

(Sokal and Rohlf 1981). Asymmetric 95% confidence intervals around the RMA 

regression coefficient were calculated with 10,000 bootstraps around individual 

population pairs. All the analyses were done with IBDWS software (Jensen et al. 2005). 

Geographical distances were measured by means of dead-reckoning distances using 

MatLab software.  

Estimation of migration rates  

We used the Bayesian model implemented in BayesAss+ v1.3 (Wilson and 

Rannala 2003), to estimate recent migration rates, m, among populations. The model 

was run under default parameters.  As suggested by Baums et al. (2005) and Cibrián-

Jaramillo et al. (2010), a jackknife procedure was used sequentially omitting each of the 

sampling localities from the migration matrix. This approach is based on the fact that 

particular population features, such as demographic factors (Cornuet et al. 1999; Wilson 

and Rannala 2003), may affect migration rates of the other localities. Thus, if a 
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population contributes migrants, its exclusion will increase the other population's self-

recruitment rates. If a population contribution is minimal for the rest of the populations, 

its exclusion might decrease mean self-recruitment rates. Self-recruitment migration 

matrices were obtained following the procedure in Baums et al. (2005), by obtaining 

four matrices sequentially omitting each of the sampling localities and one matrix for all 

the populations. The diagonals present in the resulting matrices were summarized and 

compared with the overall population’s matrix. 

 

Results 

A total of 108 individuals were genotyped for 8 microsatellite loci. After 

removing identical genotypes, from all populations except Cape Palos were no identical 

genotypes were found, a total of 101 unique genotypes were considered for the analyses 

(33 in Cala Galdana, 27 in Columbretes Islands, 28 in L´Ametlla and 13 from Cape 

Palos (Table 1)).   Linkage disequilibrium (LD) among loci was found only in three of 

the twenty-eight pairwise comparisons per sampling locality (P < 0.05 after step-down 

Bonferroni correction). None of the analyses were significant at the same time for all 

loci in all populations. Therefore physical linkage can be discarded.  

Across localities, allelic diversity (Na)  ranged from 4.1±1.1 (L´Ametlla) to 

5.9±1.5 (Columbretes Islands) (mean value ± standard error (SE) here and hereafter) 

and private allelic richness from 0.1±0.1 (L’ Ametlla) to 1.5±0.7 (Columbretes Islands) 

(Table 1). After rarefaction, allelic diversity parameters ranged from 3.5±0.9 

(L´Ametlla) to 4.9±1.3 (Cape Palos) and private allelic richness from 0.1±0.1 

(L´Ametlla) to 1.0±0.5 (Columbretes Islands) (Table 1). Departures from HWE, 

measured as FIS, were not generalized over all loci in each population. In cases of 

heterozygote deficiencies, evidence for null alleles was checked and their frequencies 



11 

were computed at each locus for each sampled site. No evidence of allelic dropout or 

scoring errors due to stuttering was found. The analysis detected the possibility of null 

alleles in locus CcL5 in Cala Galdana, Columbretes Islands and L´Ametlla and in 

CcL16 in L´Ametlla, due to an excess of homozygotes in most allele size classes. Null 

allele frequencies for locus CcL5 ranged from 0.09 (Columbretes Islands) to 0.27 

(L´Ametlla). However, applying the corresponding correction for null alleles 

(Brookfield 1996, in all cases) did not qualitatively affect the results (Table S1). Over 

all loci, FIS values ranged from -0.035 (Cala Galdana) to 0.087 (L´Ametlla) (Table 1). 

After null allele correction, the overall loci FIS value from L´Ametlla decreased, 

however the value remained significant for the Columbretes Islands. 

Population genetic structure and gene flow 

Simulations performed with POWSIM v4.0 suggested that the statistical power 

of the microsatellite was high for detecting FST values of 0.01 (91% and 88% 

probabilities according to the chi-square test and Fisher, respectively) and 0.05 (98.2% 

probability according to chi-square and Fisher tests). The α error (type I, proportion of 

false significances) was also estimated by performing simulations of no divergence 

among populations (i.e., setting t=0). This resulted in a proportion of 1% significances, 

which is lower that the intended value of 5%.  

The Bayesian clustering analysis detected the highest likelihood (LnP(K) = -

1760.83±46.83) with K=5. Also, the modal value of ΔK (Evanno et al. 2005) was 

shown at K=5 (Fig.1 supplementary material), showing genetic differentiation among 

the studied population nevertheless with certain levels of admixture. The highest 

proportion of membership of each sampled population within each cluster defined by 

STRUCTURE corresponded to (Fig. 2): Cluster 1- Columbretes Islands, Cluster 2- 

L´Ametlla, Cluster 3-Cala Galdana, Cluster 4- Cape Palos. The fifth cluster (Cluster 5) 
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was shown to be formed on a lesser or greater extent from individuals of the four 

sampled localities, however being the population of L´Ametlla the one contributing 

more to the cluster (Fig. 2).  

Pairwise FST values (Table 2) ranged from 0.012 (Cape Palos-L´Ametlla) to 

0.051 (Cala Galdana-Columbretes Islands). After correction for null alleles, no 

significant differences between pairwise FST values and pairwise FST values corrected 

for null alleles were observed (T-test, p = 0.560). Therefore, it is possible to assume that 

the presence of null alleles did not affect the analyses. The highest FST values were 

found in relation to pairwise comparisons concerning Columbretes Islands and the other 

localities (Table 2), that is in concordance with the clustering analysis which shows two 

groups, one formed by the populations of Cape Palos, Cala Galdana and L´Ametlla and 

the other with Columbretes Islands. 

FST analyses were also performed considering the clustering approach in which, 

even if the optimal K value was 2, three different groups of individuals would be 

considered: a group formed mainly by individuals from L’Ametlla, another one of 

individuals from Columbretes Islands and a third one admixed between the remaining 

two groups of populations (Cape Palos-Cala Galdana). The results indicate levels of 

genetic differentiation from 0.013 (Cape Palos-Cala Galdana vs L’Ametlla) to 0.040 

(Cape Palos-Cala Galdana vs Columbretes Islands) (Table 3). Neither of the two 

isolation by distance models, Slatkin or Rousset, showed significant relationships 

between genetic and geographic distances: (Slatkin model: FST/(1-FST) = 0.025-

0.037log(dist), R2 = 0.20, p = 0.80; Rousset model: log(M) = 1.35-6.24log(dist), R2 = 

0.28, p = 0.95).  

Self-recruitment rates showed values of 0.69±0.02 in Cape Palos to 0.90 ±0.02 

in L´Ametlla. Recent migration rates were high only between the population of 
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L´Ametlla and the others, as indicated with immigration rates of ca. 0.3. Migration rates 

between the other populations were very low (≤ 0.04). Despite the overall lack of 

differentiation between localities, the jackknife procedure showed higher rates of self-

recruitment in all the populations when excluding L´Ametlla (Table 4).  

Discussion 

 The population structure of marine organisms reflects the historical and 

contemporary interaction at different spatial and temporal scales among a complex set 

of ecological, demographic, behavioral, oceanographic, climatic and geological 

processes (Grosberg and Cunningham 2001). Past geological and ecological events, 

together with the corals' sexual reproductive traits and their relation to oceanographic 

and geomorphologic processes may explain the present genetic structure of Cladocora 

caespitosa. Our results suggest that the studied populations are highly dependent on 

self-recruitment, likely enhanced by the egg retention mechanisms shown by this 

species (Kružic et al. 2008); all of which is reflected in the distribution and recruitment 

patterns described for this species (Kersting and Linares 2012, Kersting et al. 2014b).  

The clustering analysis shows that C. caespitosa in the Western Mediterranean 

Sea forms five clusters and denotes genetic structure between the studied populations. It 

should be noted that the studied clusters share alleles and allelic frequencies, and 

therefore, are not fully isolated from each other. According to the Bayesian analysis, the 

individuals from the  sampled populations are divided in 4 different clusters and the 

gene flow of individuals from not sampled populations might affect the obtainment of a 

fifth cluster (Slatkin 2005; Hellberg 2007). Even so, this analysis should be considered 

with caution as the performance of STRUCTURE algorithms decreases with sample 

size (Latch et al. 2006), such as might have occurred for the population of Cape Palos 

(N= 13).  
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Small but highly significant FST values were found between the Columbretes 

Islands population and the others, while slight but significant or non-significant values 

were found among the other populations. Migration rates showed the prevalence of self-

recruitment processes within each population (from 0.69±0.02 in Cape Palos to 

0.90±0.02 in L´Ametlla). These features might be influenced by the characteristic 

spawning mechanism of the coral (“clumps” of eggs, Kružic et al. 2008) and may 

suggest that genetic connectivity is somehow maintained by sporadic events of gene 

flow among the studied populations (Hellberg 2002). There is a general lack of studies 

regarding the behavioral mechanisms of C. caespitosa planulae and its relation to 

environmental factors. However, with the obtained results we could assume that 

sporadic gene flow events might be the consequence of variable hydrodynamic 

conditions and of structure and continuity of rocky substrates along the coastline along 

together with other external factors. Another explanation of the small values of Fst 

together with a certain degree of structure could be due the occurrence of recruitment 

pulses, i.e. sporadic events of successful recruitment from external sources which might 

be influenced by the reproductive biology of the species coupled with extrinsic factors 

such as the variable current system, which in some anthozoans and marine invertebrates 

have been shown to have a great impact on the increase in population densities 

(Yoshioka 1996; Connell et al. 1997; Sams and Keough 2012).  

The sampled area is located in the Balearic Basin. This area is dominated by the 

Northern Current, which flows southwards along the Iberian Peninsula until it reaches 

the Ibiza Channel, where it both continues southwards and re-circulates cyclonically, to 

a lesser or greater extent, over the Balearic Islands forming the Balearic Current (Font et 

al. 1990). Both currents, the Northern and the Balearic, have been regarded as the motor 

for the flow surface circulation of the region (Font et al. 1995). The surface layer 



15 

circulation is seasonal in character. During the spring and summer, the formation of a 

gyre partially deviates the Northern current towards the Balearic Sea, thus lowering 

water flow through the Ibiza Channel. During the autumn-winter season, this gyre is 

less evident due to the weaker character of the Balearic Front and the increase in 

intensity of the Northern Current (LaViolette et al. 1990; Font et al. 1995). The relative 

seasonal intensities of the Northern Current and the mentioned gyre play an important 

role in the gene flow in this region. For example, in the red gorgonian Paramuricea 

clavata, the seasonal gyre that occurs before the Ibiza Channel has been thought to 

reduce southward gene flow between populations, due to the coincidence in the 

reproductive timing of the species (between June and July) and the intensification of the 

gyre (Mokthar-Jamaï et al. 2011). In contrast, in the case of C. caespitosa, our results 

showed that southwards gene flow is not impeded as most of the immigrants were 

determined to come from the area of L´Ametlla. In the fish Serranus cabrilla, it has 

been suggested that this barrier is directional, as gene flow moves from north to south 

and from the southern localities of this channel towards the Balearic Islands (Schunter 

et al. 2011). According to the data obtained here, this barrier also seems to act as a 

directional barrier for C. caespitosa, as the highest level of gene flow was found 

southwards. Therefore, north to south gene fluxes are much more important in 

magnitude than south to north fluxes via recirculation over the Balearic Islands. This is 

in concordance with the spawning period of C. caespitosa in the western Mediterranean, 

which occurs at the end of summer-beginning of autumn (Kersting et al. 2013b), also in 

coincidence with the increase in intensity of the Northern Current. 

The population from Columbretes Islands was shown to have a certain genetic 

differentiation. This might also explain the excess of homozygotes found in the 

Columbretes Islands even after the correction analyses of the null alleles, as 
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heterozygosity deficiencies may be caused by historical and demographic events such as 

selection, population mixing and non-random mating (Luikart et al. 2003). Colonies 

from this population were sampled in the Illa Grossa Bay, which is a semi-enclosed C-

shaped volcanic caldera, open to the direction of winter storm waves, in which the coral 

colonies form banks and beds in a mixed manner (Kersting and Linares 2012). The 

colonies of C. caespitosa in the Columbretes Islands present a highly aggregated 

distribution, since most of the colonies are concentrated inside the volcanic caldera. 

This distribution has been associated with sea bottom morphology and hydrodynamic 

protection together with the reproductive strategies of the species (Kersting and Linares 

2012). The isolated location of the Columbretes Islands (60 km off the nearest coast) 

together with the protection of the bay homing the coral banks and its egg-retention 

mechanisms, which may reduce their dispersal, may be the causes of the differentiation 

of the Columbretes Islands population from the other sampled populations, as 

previously suggested by Kersting and Linares (2012).  

This is the first study dealing with population genetics features of C. caespitosa, 

a relict species in the Mediterranean Sea. The high self-recruitment levels and the low 

and probably intermittent connectivity found, together with the slow dynamics of the 

species (Kersting et al. 2014b), may indicate a reduced recovery potential from the 

recurrent heat wave-induced mortalities that are affecting the species (Kersting et al. 

2013a). The results obtained will promote conservation plans for the populations of this 

coral. An adequate marine reserve network be designed considering source populations 

of the coral, such as L’ Ametlla, and differentiated populations, such as those in the 

Columbretes Islands. This will assure connectivity among populations and genetic 

diversity, as has been suggested for other anthozoans in which populations are highly 

maintained by self-recruitment processes in the Mediterranean, such as the red 
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gorgonian Paramuricea clavata (Mokhtar-Jamaï et al. 2011) and the orange coral 

Astroides calycularis (Casado-Amezúa et al. 2012). Moreover, studies on modular 

growth, planulae behavior and dispersal abilities, and recruitment processes are 

recommended in order to better understand the population dynamics and resilience of C. 

caespitosa in the face of a changing environment, thus informing management and 

conservation strategies.  
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Figures 

Figure 1 Left panel, schematic map showing the distribution range of Cladocora caespitosa in the 
Mediterranean as well as the main known living reefs of the species. CL, Columbretes Islands (Kersting 
and Linares 2012); MA, Port- Cross, Gulf of Marseille (Zibrowius 1980); SP, Gulf of La Spezia (Morri et 
al. 1994); PI, Bay of Piran (Schiller 1993); IZ, Iz Island; PG, Pag Island; PR, Prvic; ML, Mjlet (Kružić 
and Benkovic 2008); EU, Eubeé, Gulf of Atalante (Laborel 1961); MR, Marmara Sea (Özalp and 
Alparslan 2011). Right panel: sampled populations of Cladocora caespitosa. A schematic of sea-surface 
currents and main oceanographic barriers is shown. BF: Balearic Front; IC: Ibiza Chanel; MC: Mallorca 
Chanel. Continuous arrows indicate main currents; discontinuous arrows indicate mesoscale currents 
throughout the year (modified from Ruiz et al. 2009)  

 

 

 

 

 

 

 

 

 

 

Figure 2.  

Bar plot of the Bayesian clustering analyses performed with STRUCTURE 2.3.3. software. Cluster 1 is 

represented by green, cluster 2 by violet, cluster 3 by pink cluster 4 by yellow and cluster 5 by red. The 

values above the figure indicate the proportion of membership of each pre-defined population (i.e. 

sampled locality) in each of the 5 clusters. 
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Tables 

Table 1 Data of sampled populations of Cladocora caespitosa. N: number of collected 
and analyzed individuals. Ng: number of unique multilocus genotypes. Na: average 
number of alleles per population. NS(24): mean allelic richness standardized to the 
smallest sample size. PS(24): number of private alleles per population standardized to the 
smallest sample size. Ho and He: mean observed and expected heterozygosities. FIS: 
inbreeding coefficient. Bold FIS: significant values of probability estimates. * 
Significant FIS values after Brookfield (1996) null allele correction.  

 

Basin Population Location N Ng Na Pa NS(24) PS(24) Ho He FIS 

Algerian 
Basin 

Cape Palos 
37º34'34.98''N 

0º46'32.64''W 

13 13 
5.0 

(1.3) 
0.5 

(0.2) 
4.9 

(1.3) 
0.8 

(0.3) 
0.528 

(0.085) 
0.511 

(0.088) -0.035 

Balearic 
Sea 

Cala Galdana 
39º52'52.62''N 

3º59'31.20''E 

37 33 
5.8 

(1.6) 
0.6 

(0.3) 
4.4 

(1.1) 
0.4 

(0.1) 
0.543 

(0.095) 
0.543 

(0.095) 
0.002 

Balearic 
Sea 

Columbretes 
Islands 

39º53'38.55''N 

0º41'10.37''E 
28 27 

5.9 
(1.5) 

1.5 
(0.7) 

4.4 
(1.1) 

1.0 
(0.5) 

0.412 
(0.098) 

0.444 
(0.107) 

-0.073 
(0.057)* 

Balearic 
Sea 

L´Ametlla 
40º50'27.20''N 

0º44'58.90''E 

30 28 
4.1 

(1.1) 
0.1 

(0.1) 
3.5 

(0.9) 
0.1 

(0.1) 
0.413 

(0.107) 
0.452 

(0.099) 
0.087 

(-0.046) 

 

 

 

Table 2. Pairwise FST values between populations. Significant values after step-down 
Bonferroni correction are highlighted in bold (p < 0.01). 
 

 Cape Palos 
Cala 

Galdana 
Columbretes Islands 

Cala Galdana 0.016   

Columbretes Islands 0.028 0.051  

L’ Ametlla 0.012 0.020 0.027 
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Table 4. Migration rates of Cladocora caespitosa (means ± SD) among sampled 
populations estimated by BayesAss+. Source populations are given in columns, 
recipient localities in rows. Values along the diagonal are populations' self-recruitment 
rates.  
 

From 

Into 
Cape Palos Cala Galdana 

Columbretes 
Islands 

L´Ametlla 

Cape Palos 0.69±0.02 0.02±0.01 0.02±0.02 0.27±0.03 

Cala Galdana 0.01±0.01 0.70±0.01 0.01±0.01 0.29±0.02 

Columbretes Islands 0.01±0.01 0.01±0.02 0.75±0.02 0.23±0.02 

L´Ametlla 0.04±0.01 0.04±0.01 0.01±0.01 0.90±0.02 
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