
1 
 

Laying date, incubation and egg breakage as determinants of bacterial load on bird 1 

eggshells. Experimental evidences 2 

 3 

Short title: Eggshell bacterial load, laying date and incubation  4 

 5 

Juan José Soler1,2, Magdalena Ruiz-Rodríguez1, Manuel Martín-Vivaldi3,4, Juan Manuel 6 

Peralta-Sánchez2,4, Cristina Ruiz-Castellano1, Gustavo Tomás1 7 

 
8 

1 Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas 9 

Áridas (CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, 10 

Spain. 2 Grupo Coevolución, Unidad asociada al CSIC, Universidad de Granada, 11 

Granada, Spain. 3 Departamento. Zoología. Universidad de Granada. 18071 Granada, 12 

Spain. 4 Departamento de Microbiología, Universidad de Granada, 18071 Granada, 13 

Spain 14 

 15 

Word count: 8704 16 

 
17 

* To whom correspondence should be addressed: e-mail jsoler@eeza.csic.es, Tf: 34 18 

950281045, Fax: 34 950277100 19 

 20 

 21 

Author contributions: JJS, MRR and MMV designed the study, JJS, MRR, JMPS, CRC 22 

and GT collected field samples, MRR, CRC, JMPS and GT performed the laboratory 23 

work, JJS performed the statistical analyses and wrote the first draft of the manuscript, 24 

and all authors contributed substantially to revisions. 25 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36212177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract 26 

Introduction: Exploring factors guiding interactions of bacterial communities with 27 

animals has become of primary importance for ecologists and evolutionary biologists 28 

during the last years because of their likely central role in the evolution of animal life 29 

history traits.  30 

Hypothesis/objectives: Here we explored the association between laying date and 31 

eggshell bacterial load (mesophilic bacteria, Enterobacteriaceae, Staphylococci, and 32 

Enterococci) in natural and artificial magpie (Pica pica) nests containing fresh-33 

commercial quail (Coturnix coturnix) eggs.  34 

Methods: We manipulated hygienic conditions by spilling egg contents on magpie and 35 

artificial nests and explored experimental effects along the breeding season. Egg 36 

breakage is a common outcome of brood parasitism by great spotted cuckoos (Clamator 37 

glandarius) on magpie nests, one of its main hosts.  38 

Results: We found that the experiment did increase eggshell bacterial load in artificial, 39 

but not in magpie nests with incubating females, which suggests that parental activity 40 

prevent the proliferation of bacteria on the eggshells in relation with egg breakage. 41 

Moreover, laying date was positively related with eggshell bacterial load in active 42 

magpie nests, but negatively in artificial nests. 43 

Conclusions and significance: Results suggest that variation in parental characteristics 44 

of magpies rather than climatic variation along the breeding season explained the 45 

detected positive association. Because eggshell bacterial load is a proxy of hatching 46 

success, the detected positive association between eggshell bacterial loads and laying 47 

date in natural, but not in artificial nests, suggests that the generalized negative 48 

association between laying date and avian breeding success can be, at least partially, 49 

explained by differential bacterial effects. 50 
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Introduction 53 

We live in a bacterial world and exploring factors guiding interactions between bacterial 54 

communities and animals has become of primary importance for ecologists and 55 

evolutionary biologists during the last years (McFall-Ngai et al. 2013). Bacterial 56 

environment has traditionally been considered an important selective force acting on 57 

offspring viability in birds (Baggott & Graeme-Cook 2002; Mennerat et al. 2009; Soler 58 

et al. 2012), and have likely played a central role in the evolution of many animal life 59 

history traits, some of them directed to reduce probability of bacterial infection (Cook et 60 

al. 2005a; Peralta-Sánchez et al. 2012; Møller et al. 2013). 61 

Temperature, humidity and hygienic condition in nests are known to determine 62 

bacterial colonization and growth on the eggshells of birds and hence trans-shell 63 

bacterial infection of embryos (Bruce & Drysdale 1994; Bruce & Drysdale 1991; Cook 64 

et al. 2003; Godard et al. 2007). Particular nest attributes such as nest location or 65 

nesting materials protect and insulate developing offspring from climatic environmental 66 

conditions (Hansell 2000) and can affect bacterial environment of nests. Thus, green-67 

aromatic plants (Clark & Mason 1985; Mennerat et al. 2009; Møller et al. 2013) and/or 68 

feathers (Soler et al. 2010; Peralta-Sánchez et al. 2011; Peralta-Sánchez et al. 2010; 69 

Peralta-Sánchez et al. 2014) employed in nest building may confer direct defensive 70 

properties against bacterial infection. Egg incubation also contributes to protect 71 

developing offspring from the environment, given its effect reducing humidity which 72 

otherwise favours eggshell bacterial colonization and may compromise embryo viability 73 

(Cook et al. 2003; D'Alba et al. 2010). However, incubation or nest insulating properties 74 

of nest building material do not fully counteract for climatic environmental conditions 75 

as shown by comparisons of incubation influence on eggshell bacterial loads and/or 76 

embryo viability in tropical (Cook et al. 2005a; Shawkey et al. 2009) and temperate 77 
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areas (Wang et al. 2011; Lee et al. 2014). Thus, variation in climatic conditions is still 78 

likely affecting bacterial environments of avian nests. 79 

In temperate areas, breeding success of birds typically decreases as the season 80 

progresses (Price et al. 1988; Moreno 1998). The association between laying date and 81 

breeding success has traditionally been explained as a consequence of the seasonal 82 

decline in resource availability for offspring and parents, and/or because parents of 83 

poorer phenotypic quality reproduce later (Wardrop & Ydenberg 2003; De Neve et al. 84 

2004; Verhulst & Nilsson 2008). However, because temperature and humidity typically 85 

increase and decrease respectively as the season progresses, the associated variation in 86 

bacterial environment along the breeding season might also contribute to explain the 87 

lower reproductive success of late breeders. In addition, the poorer phenotypic quality 88 

of late breeders might per se affect bacterial environment of nests if, for instance, they 89 

construct poorer insulated or defensive nests, or are less efficient in maintaining 90 

appropriate hygienic conditions of nests. These two scenarios therefore predict that 91 

laying date and bacterial environment of nests should be related in nature. 92 

We know that selection pressure due to parasitism increases as the season 93 

progresses affecting development of the offspring immune system as well as strength of 94 

their immune response (Sorci et al. 1997; Saino et al. 1998; Merino et al. 2000; Soler et 95 

al. 2003; Martín-Vivaldi et al. 2006). Here, we argue that breeding time would also 96 

affect bacterial environmental conditions of nests, which would contribute to explain 97 

the frequently observed seasonal decline in reproductive success of birds. Most bird 98 

species have advanced their breeding dates due to climate change (Gordo & Sanz 2006), 99 

phenological changes that may affect reproductive success (Visser & Both 2005; Saino 100 

et al. 2011) and population trends (Reif et al. 2008) of some species. Thus, support to 101 
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our hypothesis may suggest a role for bacteria explaining deteriorated breeding success 102 

of birds associated to climate change and delayed breeding date (Soler et al. 2014). 103 

As far as we know, this hypothesis has never been previously considered. Trying 104 

to fill this gap, we explore the association between laying date and eggshell bacterial 105 

load in magpie (Pica pica) nests and in artificial nests made with magpie nest lining 106 

material and containing fresh-commercial quail (Coturnix coturnix) eggs. Moreover, 107 

simulating the effects of brood parasitism by great spotted cuckoos (see below) we 108 

manipulated hygienic conditions of magpie and artificial nests by breaking and spilling 109 

contents of quail eggs, and explored possible differential effects of this manipulation on 110 

eggshell bacterial loads along the breeding season. As proxy of nest bacterial 111 

environments and risk of embryo infection we estimated density of mesophilic bacteria 112 

on the eggshells of magpies before and after incubation started, and of experimental 113 

quail eggs four days after the experimental spilling of egg contents on eggs in artificial 114 

nests. Prevalence of Enterobacteriaceae, Staphylococcus sp., and Enterococcus sp. in 115 

specific culture media were also estimated on eggshells as indicative of the probability 116 

of egg contamination. These three groups of bacteria included pathogenic strains and 117 

their density on avian eggshells have been used previously as proxies of probability of 118 

embryo infection (Board & Tranter 1986; Kozlowski et al. 1989; Bruce & Drysdale 119 

1991; 1994; Houston et al. 1997; Cook et al. 2003; 2005a; 2005b; Soler et al. 2008; 120 

Shawkey et al. 2009; Peralta-Sánchez et al. 2010; Soler et al. 2011). 121 

Although eggs include abundant antibacterial chemicals (Board et al. 1994; 122 

Bonisoli-Alquati et al. 2010; Saino et al. 2002), egg contents are prime nutrients for 123 

bacterial growth (Stadelman 1994). Thus, we predicted a positive effect of experimental 124 

spilling of egg contents on eggshell bacterial load (Prediction 1, P1). Manipulating 125 

hygienic conditions by egg breakage and spilling egg contents on eggs in magpie and 126 
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artificial nests have the additional interest of experimentally testing consequences for 127 

bacterial environments of magpie nests of the egg breaking behaviour of the great 128 

spotted cuckoo (Clamator glandarius), the brood parasite of magpies (Soler et al. 1997). 129 

We have previously shown that magpie eggshells harboured higher bacterial density in 130 

nests parasitized by cuckoos, and that within the same parasitized nests bacterial density 131 

of great spotted cuckoo eggshells was lower than that of magpie eggshells (Soler et al. 132 

2011). These results were interpreted as consequence of poorer hygienic conditions in 133 

parasitized nests due to egg breakage and egg content spilling of magpie eggs which 134 

would select for eggshell characteristics in cuckoos limiting bacterial contamination and 135 

growth. The experiment performed here allows testing the influence of egg-content 136 

spilling on eggshell bacterial load of magpies. 137 

Temperature increase and humidity decrease as the season progresses in 138 

temperate areas should affect eggshell bacterial loads in artificial and natural magpie 139 

nests. As humidity is a main factor explaining eggshell bacterial proliferation (D'Alba et 140 

al. 2010), we should find that eggshell bacterial loads in artificial and natural magpie 141 

nests should decrease as the season progresses (Prediction 2, P2). Moreover, because 142 

the effect of temperature and humidity on bacterial environment should depend on 143 

nutrient availability for bacterial growth, the predicted association between laying date 144 

and eggshell bacterial loads should depend on experimental treatment (i.e. spilling of 145 

eggs contents). If that was the case, significant interactions between laying date and 146 

experimental treatment are predicted both for artificial and natural magpie nests 147 

(Prediction 3, P3). 148 

If adult phenotypic condition and abilities (i.e. incubation activity and nest 149 

sanitation and maintenance) are important determinants of bacterial proliferation in bird 150 

nests, influences of laying date and of experimental treatment on eggshell bacterial 151 
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loads should vary for artificial (unattended) and natural magpie nests (Prediction 4, P4). 152 

Magpie incubation activity might ameliorate the effects of climatic conditions on 153 

bacterial proliferation on the eggs and, thus, the effects of experimental treatment and 154 

laying date should be less obvious in natural magpie nests (P4a). Furthermore, because 155 

nest sanitation aimed to combat parasite infections is an important activity of breeding 156 

birds (Christe et al. 1996; Ibáñez-Álamo et al. 2014), the effect of experimental 157 

treatment of egg contents on bacterial environment, or the strength of the interaction 158 

with laying date, should be reduced in natural magpie nests (P4b). Even more, if the 159 

hygienic conditions of magpie nests (i.e. bacterial environment) are determined by 160 

phenotypic quality of adult birds through differences in nest sanitation ability and/or 161 

reproductive investment, we could even found a positive association between laying 162 

date and eggshell bacterial loads. Finding evidence of such an association would 163 

suggest that the general lower breeding success of late reproductive attempts may be 164 

partially driven by differential bacterial selection pressures mediated by adults, rather 165 

than by climatic-related environmental conditions, at the nests of birds. 166 

 167 

Material and Methods 168 

Study area 169 

The study was performed during the breeding seasons of 2011-2012 in southeast Spain, 170 

in the Hoya de Guadix (37º18’N, 3º11’W), a high altitude plateau (1000 m a. s. l.), 171 

dominated by a semi-arid climate. The typical vegetation in the area is cultivated crops, 172 

olive and almond plantations, sparse holm oaks remaining from the original 173 

Mediterranean forest, small shrubs in abandoned fields, and deciduous trees in streams 174 

and villages. The magpie population is comprised of several subpopulations, some of 175 

them in irrigated and some others in arid environments (De Neve et al. 2007). We 176 
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sampled two of these subpopulations, 15-20 km apart from each other, one in irrigated 177 

(Albuñan) and another one in arid environment (Carretera). Probability of brood 178 

parasitism of magpie nests by the great spotted cuckoo is quite high in the area, but 179 

temporally and spatially variable at the small geographic scale of the study area (Soler 180 

et al. 1999; Soler & Soler 2000; Martín-Gálvez et al. 2007; Soler et al. 2013). 181 

 182 

Field work 183 

Magpie territories known from previous years were visited once a week since the 15th of 184 

March to detect new nests. Once we found a new nest, it was visited twice a week, 185 

which allowed us to know laying date of the first egg and to detect brood parasitism. 186 

Laying date of sampled nests in 2011 extended from the 3rd of April to the 12th of May 187 

and in 2012 from the 31st of March to the 12th of May (average laying date for both 188 

years was the 19th of April). 189 

For eggshell bacterial sampling, we wore new latex gloves sterilized with 96% 190 

ethanol for each nest to prevent inter-nest contamination. Once gloves were dry, we 191 

gently handled and sampled eggs by rubbing the complete eggshell with a sterile rayon 192 

swab (EUROTUBO® DeltaLab) slightly wet with sterile sodium phosphate buffer (0.2 193 

M; pH = 7.2). After cleaning the complete egg surface, the swab was introduced in a 194 

rubber-sealed microfuge tube with 1.2 ml of sterile phosphate solution and transported 195 

in a portable refrigerator at 4-6ºC. Samples were stored at 4ºC until being processed in 196 

the laboratory within 24 h after collection. Estimates of bacterial load were standardized 197 

to number of colonies (CFU’s, Colonies Forming Units) per cm2 (i.e. eggshell bacterial 198 

density) as previously described elsewhere (Soler et al. 2011). 199 

 200 

Experimental procedures 201 
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 Natural magpie nests 202 

Each of the magpie nests found before incubation started was randomly assigned to one 203 

of the following three experimental treatments: (1) Experimental nests: we included a 204 

broken quail egg in the nest. The experimental quail egg was broken inside magpie nest, 205 

making a hole of enough size to assure that most content spilled off when we moved it 206 

together with all other eggs in the nest. In that way, wore gloves used for moving the 207 

eggs come to be besmeared with egg contents, which assure that most magpie egg 208 

surface became in contact with egg contents either, because of direct contact with quail 209 

eggshell or because gently touched with smudged gloves. (2) Control I nests: we 210 

included a non-broken quail egg in the magpie nest and moved it as we did with the 211 

broken egg for the experimental treatment. Quail eggs were cleaned with disinfectant 212 

wipes (Aseptonet, LaboratoiresSarbec, Cod.998077-51EN) before using in magpie 213 

nests. (3) Control II nests: we visited and sampled these nests at the same rate as nests 214 

in other treatments, but no quail egg was added.  215 

On average, magpies start to incubate when laying the fourth egg, but 216 

occasionally it may occur with the third, or be delayed up to the 7th egg (Birkhead 217 

1991). Bacteria from eggshells of experimental and control nests were sampled three 218 

times. First samples were collected 0-5 (mean (SE) = 2.3 (0.04), N = 236) days after 219 

laying of the first egg (i.e. before incubation started – not warm eggs with no sign of 220 

incubation), second samples were collected 4-5 days after the first sampling, i.e. day 5-8 221 

(mean (SE) = 6.2 (0.03), N = 220) after laying of the first egg (i.e. after incubation 222 

started – warm eggs with sign of incubation). Third samples were collected 14-19 223 

(mean (SE) = 17.1 (0.06), N = 100) days after the first eggs was laid (i.e, before 224 

hatching). Broken magpie eggs or with traces of egg content spilling were detected in 225 

28.2 % (N = 220) of the magpie nests sampled after incubation started, most of them in 226 
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nests where cuckoo egg(s) was also found (66.1%, N = 62). Bacterial loads of magpie 227 

eggshell in parasitized and non-parasitized nests with traces of egg content spilling were 228 

used to explore the effect of natural egg-breakage on eggshell bacterial load (see 229 

below). During each visit, we numbered all new eggs with indelible marker and 230 

sampled a single egg per nest that had not been sampled in previous visits. Whenever 231 

possible all three sampled eggs per nest in respective visits were within the first four 232 

eggs in the laying sequence. 233 

Some of the quail eggs introduced in magpie nests as a control treatment were 234 

not rejected by magpies and we were thus able to sample incubated quail eggs in natural 235 

magpie nests during the second visit. Total eggshell bacterial loads of these eggs did not 236 

differ from those of magpie eggs in the same nests (Wilcoxon Matched Pairs test, Z = 237 

1.12, P = 0.26, N = 47), which support the use of quail eggs in artificial nests (see 238 

below). 239 

 240 

Artificial magpie nests 241 

Artificial nests were constructed with nest lining material (thin roots and grass) 242 

collected from 8 new magpie nests before laying, that were assembled in plastic bags 243 

and used for cover the bottom inside bird cages (15x30x20 cm) to prevent predation 244 

while exposing experimental eggs to environmental climatic conditions. Sixteen bird 245 

cages were fastened 1-2 meters high to almond and pine trees spread over the study 246 

areas of the two magpie subpopulations. Seven of these cages were in the arid zone and 247 

nine in the irrigated zone. 107 pairs of quail eggs, one experimental and one control, 248 

were placed on nest material inside experimental cages along the main egg laying 249 

period of our studied magpie population (from the 20th of April to the 19th of May) 250 

homogeneously (at least one pair of eggs every second day and an average of 2.4 pair of 251 
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eggs per day). Before introduction in the cage, eggs were cleaned with disinfectant 252 

wipes. Afterwards, the control egg was gently handled with gloves cleaned with ethanol 253 

and laid on the nest material of experimental cages, whilst the experimental egg was 254 

handled with the sample gloves but soiled with the content of a broken quail egg. Thus, 255 

the experimental but not the control egg was coated  with egg contents. Experimental 256 

and control eggs within the same cage were not in contact to each other. A new pair of 257 

eggs was added to the experimental cages every four days, and the same cage harboured 258 

up to 4 pairs of experimental eggs. None of the eggs was in direct contact to each other.  259 

With an indelible marker, we painted a line throughout the egg poles dividing 260 

egg surface in two halves; one of them was sampled 4 days after the experiment. The 261 

non-sampled surface of fifty-three pairs of eggs was sampled 16 days after the onset of 262 

the experiment. We failed to analyse samples from five control and three experimental 263 

eggs collected from 7 different egg pairs 4 days after the onset of the experiment. These 264 

losses were due to breakage of quail eggs during sampling or because samples 265 

disappeared before being analysed in the lab. Thus, we obtained a final sample of 100 266 

pairs of eggs for the analyses. 267 

 268 

Laboratory work 269 

Before cultivation, samples stored in microfuge tubes were shaken in a vortex (Boeco 270 

V1 Plus) for at least three periods of 5 seconds. Bacteriology was performed by 271 

spreading homogenously 100 μl of serially diluted samples onto Petri dishes containing 272 

four different solid agar media (ScharlauChemie S.A. Barcelona). We used Tryptic Soy 273 

Agar, a broadly used general medium to grow aerobic mesophilic bacteria, and three 274 

specific media: Kenner Fecal Agar for Enterococcus; Vogel-Johnsson Agar for 275 

Staphylococcus; and Hektoen Enteric Agar for Enterobacteriaceae. The plates were 276 
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incubated aerobically at 37ºC and colonies were counted 72h after inoculation. Bacterial 277 

density was estimated for each of the four media as number of Colony Forming Units 278 

per cm2 following previously described protocol (Peralta-Sánchez et al. 2010; Soler et 279 

al. 2011). We estimated eggshell bacterial density for all samples collected during 280 

magpie egg laying, onset of incubation, and end of incubation, and for samples obtained 281 

from quail eggs. 282 

 283 

Statistical Analyses 284 

Log10 transformed density of mesophilic bacteria differed from normal distribution and 285 

we conservatively used ranked values for statistical analyses. Specific group of bacteria 286 

(Enterobacteriaceae, Staphylococcus and Enterococcus) were not detected for many 287 

samples (see results) and, thus, frequency distributions were far from Gaussian shape. 288 

Thus, we used information on prevalence of each bacterial group in the analyses. To 289 

statistically account for inter-year variation in laying date, values for each date were 290 

standardized by deducting observed to mean values and dividing by standard deviation. 291 

We used these values in subsequent analyses. 292 

 The expected effects of having experimental or natural broken eggs (and/or trace 293 

of egg contents (i.e. yolk)) and of laying date in magpie eggshell bacterial loads were 294 

analysed in Repeated Measures ANOVAS (RMA) with ranked values of mesophilic 295 

bacterial loads estimated at different visits (egg laying, onset and end of incubation) as 296 

within factor, experimental treatment (or having or not trace of natural egg breakage), 297 

area (irrigated or arid) and year as between factor, and standardized laying date as 298 

covariable. Because the association with laying date may depend on experimental 299 

treatment (or on egg breakage), we estimated the effect of such interaction in separate 300 

models. The effect of experimental coating commercial quail eggs on eggshell bacterial 301 
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loads (i.e. ranked valued of mesophilic bacterial density) was explored by RMA with 302 

pair of eggs of the same laying date (experimental and control eggs) as repeated 303 

measures, area (irrigated or arid) as discrete between factor, and laying date as 304 

covariable. Prevalence of mesophilic bacteria, Enterobacteriaceae, Staphylococcus, and 305 

Enterococcus in relation to experimental treatment (or natural egg breakage), year (only 306 

for natural magpie nests), area, and laying date were analysed by mean of Generalized 307 

Linear Models with binomial distribution and logic link functions. 308 

Some of the experimental and natural magpie nests were depredated during 309 

incubation or were heavily parasitized by the great spotted cuckoo and, thus, sample 310 

size for third bacterial sampling (i.e., at the end of incubation) was reduced. However, 311 

main effects were detected independently of whether or not information of these third 312 

samples was considered. Thus, we report results of models explaining prevalence and 313 

bacterial density estimated for the first and second samplings because of the higher 314 

statistical power. 315 

 Log10 transformed bacterial density rather than ranked values were used for 316 

figures. All statistical tests were performed with Statistica 10.0 (Statsoft Inc. 2011). 317 

 318 

Results 319 

 320 

Bacterial loads of magpie eggshells. Effect of natural and experimental breakage of 321 

eggs in the nest. 322 

Contrary to P1, the occurrence of broken eggs in magpie nests due to brood parasitic 323 

activity did not affect density of mesophilic bacteria on magpie eggshells, which were 324 

mainly explained by study area (higher in the arid subpopulation) (Table 1). Moreover, 325 

laying date was positively associated with density of mesophilic bacteria (Fig. 1), which 326 
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is contrary to our P2, and the effect of incubation activity did depend on the interaction 327 

between study year and area (Table 1). In no case we detected support for the predicted 328 

(P3) interaction between experimental treatment and laying date (Table 1). 329 

When considering magpie nests where quail eggs were experimentally broken, 330 

results were quite similar to those with natural broken eggs by brood parasites (Table 1). 331 

First, we compared eggshell bacterial load between the two types of control nests, with 332 

a non-broken quail egg and without quail egg, and failed to detect statistically 333 

significant differences (identical model that those in Table 1, effect of treatment, F = 334 

2.27, df = 1,116, P = 0.135). Moreover, the interaction between experimental treatments 335 

of the two types of control nests and all other factors did not reach statistical 336 

significance (P > 0.7). Thus, we considered all control nests together for subsequent 337 

analyses. We detected an increase in bacterial density after incubation (Fig. 2), a 338 

significant lower bacterial density of eggs sampled in 2012 and in irrigated areas, and a 339 

significant interaction between study year and area (interaction in Table 1, Fig. 2). The 340 

only detected effect of experimental treatment was indirect, through its interaction with 341 

year, area, and incubation (Table 1, Fig. 2). These results did not change after removing 342 

from the model the non-significant terms (results not shown). Finally, and contrary to 343 

P2 and P3, density of bacteria for this subset of nests did increase as the season progress 344 

(Table 1, Fig. 1) independently of experimental treatments. 345 

Analyses on prevalence of different groups of bacteria offered similar results. 346 

Prevalences of mesophilic bacteria and of Enterobacteriaceae were positively 347 

associated with laying date (Table 2). When considering nests with traces of natural 348 

egg-breakage, prevalence of Enterobacteriaceae did varied among years (Table 2), 349 

being more frequent in 2011 (13 out of 59 nests) than in 2012 (3 out of 70 nests). Traces 350 

of egg breakage on the sampled eggshells did result positively related with probability 351 
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of Enterococcus detection (3 out of 14 nests with traces of egg breakage vs 1 out of 125 352 

nests with no traces of egg breakage), but did not affect prevalence of other considered 353 

bacteria (Table 2). In no case we detected support for the predicted (P3) interaction 354 

between experimental treatment and laying date. 355 

Very similar results came out when considering natural nests with no detected 356 

egg breakage that were subjected to experimental inclusion of broken quail eggs into the 357 

nest (Table 2). The experiment only affected prevalence of Enterococcus positively, 358 

while laying date were positively associated with prevalence of mesophilic bacteria and 359 

of Enterobacteriaceae (Table 2). The former result was therefore in accordance with P1 360 

and the later was contrary to P2. Load of Enterobacteriaceae on the eggshell of 361 

magpies did vary for different years. In no case we detected support for the predicted 362 

(P3) interaction between experimental treatment and laying date. 363 

Taken together, all these results suggest limited effects of egg breakage on the 364 

bacterial density and prevalence of incubated magpie eggshells. They also indicate that 365 

eggshells of late-breeding magpies harboured bacteria at a higher density and 366 

prevalence than early-breeding magpies, suggesting that the low environmental 367 

humidity of nests is not the main determinant of the seasonal changes in bacterial load 368 

of magpie eggshells. 369 

 370 

Bacterial loads of quail eggshells in experimental artificial nests. 371 

Eggshell mesophilic bacterial load was higher in the arid than in the irrigated area 372 

(RMA, F = 25.59, df = 1,97, P < 0.0001) and, contrary to what we detected for natural 373 

magpie nests, but in accordance with P2, eggshell bacterial loads of quail eggs 374 

decreased as the season progressed (RMA, F = 10.98, df = 1,97, P = 0.0013). In 375 

accordance with P1, experimental eggs coated with egg contents harboured bacteria at a 376 
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higher density than control eggs (RMA, F = 13.65, df = 1,97, P = 0.0004) (Fig. 3A). 377 

Interestingly, the effect of the experiment on density of mesophilic bacteria did not 378 

depend on the area (RMA, interaction between experimental treatment and area, F = 379 

1.99, df = 97, P = 0.162), but density of mesophilic bacteria tended to decrease as the 380 

season progressed mainly in experimental eggs (RMA, interaction between 381 

experimental treatment and laying date, F = 3.76, df = 1,98, P = 0.084) (Fig. 3B), which 382 

do not support P3. 383 

Similar results were obtained when analysing bacterial prevalence. Laying date 384 

did significantly associate with prevalence of mesophilic bacteria (negatively) and of 385 

Enteroccoccus (positively) (Table 3). Prevalence of mesophilic bacteria, 386 

Enterobacteriaceae, Staphylococcus and Enterococcus was higher in experimental 387 

smeared quail eggs than in control eggs (Fig. 4), and this effect did not depend on the 388 

area (Table 3). The experimental effects on prevalence of mesophilic bacteria did vary 389 

depending on laying date (interaction term in Table 3), which support P3. However, the 390 

effects of laying date on prevalence and density of bacteria on the eggshell depended of 391 

the considered bacterial group. 392 

 393 

Remarks on results from artificial and natural magpie nests. 394 

Effects of experimental smearing with egg contents of quail eggs on eggshell bacterial 395 

loads were detected in artificial but not in natural magpie nests, which is in accordance 396 

with our prediction number four (P4a). The expected negative relationship between 397 

eggshell bacterial loads and laying date was only detected in artificial nests, but turned 398 

to be positive in natural magpie nests, which agrees with P4b. 399 

 400 

Discussion 401 
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Our main results are that the experimental besmearing of eggshells with eggs contents 402 

provokes an increase in eggshell bacterial density and prevalence in experimental-non-403 

active nests, but not in nests with incubating magpies. Moreover, laying date was 404 

positively related with eggshell bacterial density and prevalence in active magpie nests, 405 

but negatively in artificial nests without incubation activity. Quail eggs were used in 406 

artificial nests and, thus, detected differences between artificial and natural magpie nests 407 

could be explained by differences in eggshell properties between magpies and quail 408 

eggshells. This possibility is however unlikely since magpie and control quail eggs in 409 

natural magpie nests harboured similar bacterial density some days after incubation (see 410 

Material and Methods). 411 

Therefore, these two results suggest on the one hand that incubating activity of 412 

magpies prevent the proliferation of bacteria on the eggshells in relation with egg 413 

breakage and spilling of egg contents. On the other hand, these results imply that the 414 

positive association between laying date and eggshell bacterial density or prevalence 415 

was due to particularities of nest attending magpies rather than to climatic 416 

environmental conditions (i.e. temperature and humidity) favouring bacterial growth. 417 

Below we discuss these and some other possible alternative scenarios explaining our 418 

results and its importance for understanding of the role of environmental conditions and 419 

parental influence as determinants of bacterial environments of nests and thus 420 

probability of bacterial infection. 421 

 We knew that brood parasitism by great spotted cuckoos was positively related 422 

to bacterial load of magpie eggshells which, among other possibilities, was attributed to 423 

the egg-breaking behaviour of cuckoos resulting many times in egg-content spilling 424 

(Soler et al. 2011). Here, we found no experimental support for this hypothesis in 425 

magpie nests. However, experimental coating of quail eggs with egg-contents did result 426 
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in significant increases in eggshell bacterial loads and prevalence four days after the 427 

manipulation. These two results therefore suggest that egg-breaking behaviour of 428 

cuckoos provoking egg-contents spilling should affect eggshell bacterial loads of their 429 

magpie hosts, but that the effect is at least partially counteracted by magpie females. 430 

The previously detected association between brood parasitism and eggshell bacterial 431 

loads of magpie eggs would therefore be the consequence, not only of egg breaking 432 

behaviour of cuckoos, but also of input of bacteria from cuckoos on the parasitic eggs or 433 

due to subsequent visits to magpie nests by the brood parasite (Soler et al. 2011). 434 

Incubation or any other parental behaviour influencing bacterial environment of 435 

nests (Clark & Mason 1985; Cook et al. 2005a; Mennerat et al. 2009; D'Alba et al. 436 

2010; Soler et al. 2010; Lee et al. 2014) is likely the cause of the reduced experimental 437 

effects detected in natural magpie nests. Magpies do not use green-aromatic plants or 438 

feathers in their nests for nest building in our study area and, thus, the antimicrobial 439 

properties of these materials (see Introduction) cannot explain detected differences 440 

between artificial and natural magpie nests. However, belly feathers of magpies are 441 

unpigmented and therefore more easily degradable by queratinolitic bacteria with 442 

important antimicrobial activity (Peralta-Sánchez et al. 2010; Peralta-Sánchez et al. 443 

2014), that are in contact with the eggshells and may reduce growth of pathogenic 444 

bacteria (Lee et al. 2014). In addition, magpies build a quite apparent mud cup, and we 445 

know of the use of mud therapies because of the antimicrobial properties of clays (Said 446 

et al. 1980; Maigetter & Pfister 1975). For our artificial nests we used vegetable nest 447 

lining material (i.e. roots), but not the mud cup of magpie nests. Thus, it is possible that, 448 

in addition to incubation activity, mud in the nests of magpies and/or white belly 449 

feathers of incubating females might account for the reduced experimental effects 450 

detected in natural nests, a hypothesis worth to be tested in the future. 451 
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 The second main result is the detected associations between laying date and 452 

eggshell bacterial load and prevalence. Also in this case the associations detected for 453 

magpie nests were contrary to those detected for artificial nests (Fig. 1 and Fig. 3B), 454 

again suggesting an important role of magpie adults determining bacterial environments 455 

in nests. While in natural magpie nests the relationship between eggshell bacterial load 456 

and laying date was positive, in artificial nests the association turned to be negative. 457 

Within the study area temperature increases (2011: R = 0.774, N = 66, P < 0.0001; 458 

2012: R = 0.497, N = 66, P < 0.0001) and humidity decreases (2011: R = -0.602, N = 459 

66, P < 0.0001, but not in 2012: R = 0.120, N = 66, P = 0.33 along the sampling period 460 

(average daily temperature and humidity from 1st of April to 5th of June; data from 461 

Consejería de Medio Ambiente y Ordenacion del Territorio, 462 

http://www.juntadeandalucia.es/medioambiente/servtc5/sica/Estaciones.jsp, station: 463 

Guadix). Thus, our results may indicate a negative influence of temperature and a 464 

positive effect of humidity on eggshell bacterial colonization and growth in the absence 465 

of incubation. In nests with incubated eggs the association between laying date and 466 

eggshell bacterial load was the opposite and, thus, variation of environmental climatic 467 

conditions for breeding as the season progresses are unlikely the direct cause of the 468 

detected higher risk of bacterial infection experienced in late breeding attempts of 469 

magpies. These results therefore reinforce the importance of parental attendance 470 

(including nest building) that protects offspring from environments influencing bacterial 471 

colonization and growth. 472 

Negative associations between laying date and different breeding parameters of 473 

birds reflecting breeding success such as clutch size, brood size, and fledging success, 474 

are normally found for birds reproducing in temperate areas (see Introduction). This 475 

association has been traditionally explained by deterioration of environmental 476 
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conditions (i.e., decreasing and increasing availability of resources and probability of 477 

parasitism respectively) (Sorci et al. 1997; Siikamäki 1998; Merino et al. 2000; Verhulst 478 

& Nilsson 2008) and/or parental quality and adult condition as the season progresses 479 

(Hochachka 1990; Christians et al. 2001; Winkler et al. 2014). Our results suggest that 480 

deterioration of nest bacterial environments as the season progresses would contribute 481 

to explain the reduced breeding success of late breeders, a possibility never suggested. 482 

Variation in food availability and/or phenotypic condition of parents (including parasite 483 

infection status) would affect parental activity (Winkler & Allen 1996), including nest 484 

building effort (Soler et al. 1995; Soler et al. 1998), incubation attendance (Chastel et al. 485 

1995) and, perhaps, nest sanitation. All these activities potentially determine bacterial 486 

communities of nests, at least partially (see Introduction). Moreover, birds of poor 487 

phenotypic condition would harbour bacteria at a higher density (Møller et al. 2012) and 488 

infect nest contents during reproduction. Thus, extensive theoretical background 489 

allowed predicting positive covariation between the well-known, and widely accepted, 490 

seasonal decline in breeding success in temperate areas and nest bacterial environment. 491 

Our results suggest that the seasonal increase of bacterial density may be caused by a 492 

decrease in nest parental attendance, which would suggest a role of bacteria driving the 493 

seasonal decline in breeding success for which we have detected pioneering evidence. 494 

Experimental manipulation of factors affecting parental attendance (i.e. incubation) are 495 

however necessary to reach firm conclusions. 496 

Summarizing, our experimental approaches allowed us to detect different 497 

dynamics in bacterial communities of eggshells in artificial and natural nests in relation 498 

to hygienic conditions, incubation activity and laying date. Since laying date resulted 499 

positively associate to bacterial density in natural, but not in artificial nests, we 500 

conclude that this association is mediated by parental characteristics which suggests a 501 



22 
 

central role for bacteria explaining the generalized negative association between laying 502 

date and avian breeding success. 503 
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Table 1: Repeated measures ANOVA explaining variation in density of mesophilic bacteria (ranked values) of magpie eggshells in natural 
magpie nests before and after incubation started in relation to laying date (standardized values accounting for year variation), study year, study 
area, and whether or not experimentally or naturally broken eggs, or traces or egg contents due to brood parasitism activity, were detected or 
experimentally provoked. First and second order interactions were included in the models and elimination of non-significant terms did not 
qualitatively affect results. The interaction between broken eggs and the covariable, laying date, was estimated in separated models. 
 

 
Naturally broken eggs  

Repeated measures (before vs after incubation)  

 

 
 Incubation Laying date Year (1) Area (2) 

Egg 
breakage 

(3) (1)x(2) (1)x(3) (2)x(3) (1)x(2)x(3) 

Laying 
date x (3) 

Between effects  

F(1,130) 23.55 2.38 6.02 0.13 0.14 0.20 0.07 0.31 0.51 

P  < 0.0001 0.125 0.015 0.716 0.711 0.657 0.792 0.579 0.473 
 

Within effects  

F(1,130) 1.39 0.03 1.02 0.32 0.10 4.84 1.61 0.40 0.78 0.07 

P  0.241 0.854 0.314 0.570 0.758 0.030 0.206 0.527 0.379 0.793 
 

Experimentally broken eggs 
Repeated measures (before vs after incubation)       

 

Between effects  

F(1,176) 30.40 24.99 26.51 0.82 7.07 0.01 1.90 0.16 0.106 

P  < 0.0001 < 0.0001 < 0.0001 0.366 0.009 0.928 0.170 0.690 0.745 

Within effects  

F(1,176) 5.47 0.28 0.12 0.50 0.05 1.50 0.96 0.30 4.01 0.904 

P  0.020 0.594 0.726 0.480 0.819 0.222 0.328 0.587 0.047 0.343 



29 
 

 
  



30 
 

Table 2: Results from Generalized Linear Models with binomial distribution and logit link function explaining prevalence of mesophilic bacteria, 
Enterobacteriaceae, Staphilococcus and Enterococcus on magpie eggshells in control nests with and without naturally broken eggs detected (i.e 
control magpie nests). Results from comparisons of magpie nests with and without a broken quail egg added (i.e. experimental vs control nests) 
are also shown (only nests without traces of natural egg breakage were considered here). The model included laying date (standardized values 
accounting for year variation) as a covariable and study year, study area, and whether or not broken eggs (i.e. experimental treatment) or traces of 
egg contents due to brood parasitism activity were detected (Broken eggs) as discrete independent factors. Due to the low prevalence of most 
bacteria we did not test for all but only for the interaction between broken eggs and laying date, which were included in the models but estimated 
separately.  
 
   Control magpie nests 

(N = 139) 
  Experimental vs control nests 

(N = 185) 
  Wald 

Statistic
Estimate 

CI 
(95%) 

Estimate 
- CI 

(95%) 

P  Wald 
Statistic 

Estimate 
CI  

(95%) 

Estimate 
- CI  

(95%) 

P 

Mesophilic bacteria*           
 LAYING DATE (1) 8.25 0.620 3.281 0.0041  10.29 0.677 2.803 0.0013 
 YEAR 0.94 -0.396 1.168 0.3331  2.31 -0.162 1.282 0.1283 
 AREA          
 BROKEN EGGS (2) 2.44*   0.1184  0.62 -1.060 0.451 0.4296 
 (1) X (2)      0.51 -0.700 1.499 0.4766 
Enterobacteriaceae           
 LAYING DATE (1) 8.11 0.272 1.471 0.0044  16.22 0.670 1.940 <0.0001 
 YEAR 9.34 0.386 1.767 0.0022  14.61 0.616 1.912 0.0001 
 AREA 0.01 -0.577 0.630 0.9321  0.01 -0.511 0.564 0.9237 
 BROKEN EGGS (2) 0.23 -0.754 1.239 0.6348  0.03 -0.623 0.520 0.8598 
 (1) X (2) 1.14 -0.334 1.133 0.2860  1.76 -1.274 0.245 0.1845 
Staphylococci**           
 LAYING DATE (1) 0.21 -0.811 1.311 0.6441  <0.01 -0.778 0.747 0.9687 
 YEAR 0.43 -1.243 0.618 0.5105  0.18 -0.908 0.585 0.6717 
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 AREA 2.89 -2.086 0.148 0.0891  4.86 0.133 2.263 0.0274 
 BROKEN EGGS (2) 1.08   0.2982  <0.01 -0.747 0.757 0.9893 
 (1) X (2)      0.59 -1.078 0.469 0.4408 
Enterococci***        
 LAYING DATE (1) 0.05 -1.270 1.020 0.8306  2.26 -0.187 1.415 0.1330 
 YEAR 1.11 -1.918 0.577 0.2924  0.74 -1.299 0.508 0.3909 
 AREA      2.99 -0.130 2.071 0.0839 
 BROKEN EGGS (2) 4.92 0.160 2.594 0.0266  4.84 -2.315 -0.134 0.0277 
 (1) X (2) <0.01 -1.171 1.196 0.9830  0.61 -1.663 0.714 0.4337 
 
* Mesophilic bacteria were absent in only eight out of 139 non-manipulated magpie nests and all of them were from the same study area and with 
no remains of broken eggs. Similarly, for nests with experimentally broken quail eggs, mesophilic bacteria were absent in three out of 60 nests, 
all of them from the same study area. Thus, the effect of study area, and of egg breakage or the interaction between laying date and egg breakage 
cannot be estimated in the GLZ model. Rather we estimated the effect of egg breakage in separate log-linear models. 
** Staphylococci bacteria were detected in 5 natural magpie nests, none of them with rests of broken eggs. Thus the effect of egg breakage or the 
interaction with laying date cannot be estimated in the GLZ model. Rather we estimated the effect of egg breakage in separate log-linear models 
*** Enterococci were only detected in four natural magpie nests from the same study area. Thus the effect of study area was not possible to 
estimate in the GLZ model. 
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Table 3: Results from Generalized Linear Models with binomial distribution and logit 
link function explaining prevalence of mesophilic bacteria, Enterobacteriaceae, 
Staphylococcus and Enterococcus on the shells of experimental quail eggs. The model 
included laying date (1 = 1st of April) as a covariable and whether or not the eggs were 
coated with egg contents of a broken egg. The interaction between experimental 
treatment and laying date was included in the models, but estimated separately. 
 
  Wald 

Statistic 
Estimate 
CI (95%) 

Estimate 
- CI (95%) 

P 

Mesophilic bacteria     
 LAYING DATE (1) 4.00 0.001 0.079 0.0455 
 AREA (2) 10.17 -1.255 -0.300 0.0014 
 EXPERIMENT (3) 7.88 0.206 1.163 0.0050 
 (2) X (3) 0.09 -0.552 0.403 0.7599 
 (1) X (3) 4.84 -0.098 -0.006 0.0284 
Enterobacteriaceae     
 LAYING DATE (1) 0.29 -0.038 0.067 0.589 
 AREA (2) 250.90 -5.016 3.911 <0.0001
 EXPERIMENT (3) 158.13 4.266 5.842 <0.0001
 (2) X (3) *    
 (1) X (3) 0.15 -0.091 0.061 0.7000 
Staphylococci     
 LAYING DATE (1) 2.10 -0.013 0.089 0.1471 
 AREA (2) 2.48 -1.161 0.126 0.1150 
 EXPERIMENT (3) 6.34 0.183 1.466 0.0118 
 (2) X (3) 0.01 -0.668 0.615 0.9360 
 (1) X (3) 0.81 -0.039 0.107 0.3689 
Enterococci      
 LAYING DATE (1) 7.82 -0.096 -0.017 0.0052 
 AREA (2) 0.57 -0.292 0.657 0.4509 
 EXPERIMENT (3) 12.89 0.395 1.344 0.0004 
 (2) X (3) 1.83 -0.146 0.798 0.1763 
 (1) X (3) 2.49 -0.089 0.010 0.1144 
* Enterobacteriaceae only appeared in one of the study areas and the interaction could 
not be estimated 
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Fig. 1. Relationship between laying date and density of mesophilic bacteria on eggshells 

estimated before (empty circles and continuous regression line) and after (cross marks 

and dotted regression line) onset of incubation in magpie nests. 

 

Fig. 2. Average (± CI 95%) mesophilic bacterial loads of magpie eggshells before and 

after incubation during the two study years at the two study areas. Values for magpie 

nests with (Exp.) and without (Control) experimental broken quail eggs added are also 

shown. 

 

Fig. 3. Density (± CI 95%) of mesophilic bacteria on shells of quail eggs maintained in 

bird cages in the study areas in relation with experimental treatment (A) and laying date 

(B). Experimental eggs were coated with egg contents four days before estimation of 

bacterial loads. Lines in B are regression lines. 

 

Fig. 4. Prevalence (± CI 95%) of mesophilic bacteria, Enterobacteriaceae, 

Staphylococcus, and Enterococcus on experimental (EXP) and control (CONT) quail 

eggs. Experimental eggs were coated with egg contents four days before estimation of 

bacterial loads. Number of experimental and control quail eggs with bacteria detected 

are also shown (total control eggs = 102, total experimental eggs = 104). 
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