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Abstract

In recent years, it has become accepted that α-synuclein (αSyn) has a key role in the microglia-mediated
neuroinflammation, which accompanies the development of Parkinson’s disease and other related disorders, such as
Dementia with Lewy Bodies and Alzheimer’s disease. Nevertheless, the cellular and molecular mechanisms
underlying its pathological actions, especially in the sporadic forms of the diseases, are not completely understood.
Intriguingly, several epidemiological and animal model studies have revealed a link between certain microbial
infections and the onset or progression of sporadic forms of these neurodegenerative disorders. In this work, we
have characterized the effect of toll-like receptor (TLR) stimulation on primary murine microglial cultures and
analysed the impact of priming cells with extracellular wild-type (Wt) αSyn on the subsequent TLR stimulation of cells
with a set of TLR ligands. By assaying key interleukins and chemokines we report that specific stimuli, in particular
Pam3Csk4 (Pam3) and single-stranded RNA40 (ssRNA), can differentially affect the TLR2/1- and TLR7-mediated
responses of microglia when pre-conditioned with αSyn by augmenting IL-6, MCP-1/CCL2 or IP-10/CXCL10
secretion levels. Furthermore, we report a skewing of αSyn-primed microglia stimulated with ssRNA (TLR7) or Pam3
(TLR2/1) towards intermediate but at the same time differential, M1/M2 phenotypes. Finally, we show that the levels
and intracellular location of activated caspase-3 protein change significantly in αSyn-primed microglia after
stimulation with these particular TLR agonists. Overall, we report a remarkable impact of non-aggregated αSyn pre-
sensitization of microglia on TLR-mediated immunity, a phenomenon that could contribute to triggering the onset of
sporadic α-synuclein-related neuropathologies.
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Introduction

The synucleinopathies are a group of pathologies
increasingly affecting the population over 65 years old,
comprising various progressive, neurodegenerative disorders
including Parkinson’s disease (PD), dementia with Lewy bodies
(DLB) and multiple system atrophy (MSA) [1]. Despite the
particular characteristics regarding the type of cells and brain

areas affected, these disorders have in common the
accumulation of α-synuclein (αSyn) insoluble aggregates as
the main pathological feature [2]. Moreover, αSyn has also
been identified as a component of amyloid brain tissues in AD
patients [3]. PD, the most prevalent of these pathologies, is
characterized pathologically by the presence of intraneuronal
inclusions highly enriched in αSyn (known as Lewy bodies) in
the substantia nigra (SN) of the brain [4-6], and the loss of
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dopaminergic neurons [7]. Three missense mutations of αSyn,
A30P, E46K, and A53T, as well as multiple copies of the wild-
type (Wt) gene, are linked to rare, early onset PD cases [7].
Even though αSyn is now recognized as a key player in the
pathogenesis of PD and other αSyn-related disorders, the
cellular and molecular events underlying its pathological
actions are not understood in detail. Moreover, the underlying
mechanisms driving the development of sporadic PD and other
synucleinopathies and which constitute the vast majority
clinical cases, remain largely unknown [2,8].

Accumulated evidence shows that inflammation is involved in
the pathogenesis of a number of neurodegenerative diseases
including PD, AD, and multiple sclerosis (MS), among others
[9]. Indeed, it is now well established that the onset and
progression of PD is accompanied by a robust inflammatory
response essentially mediated by activated microglia in
affected areas of the brain, which is thought to precede
neuronal degeneration [10-12]. Moreover, several in vitro
studies have revealed the ability of exogenous αSyn, especially
the PD-linked mutational variants and the oligomeric forms of
αSyn, to induce such a response by stimulated microglia
[13-15]. This finding is particularly important as the presence of
αSyn has been detected in extracellular biological fluids
including human cerebrospinal fluid (CSF) [16-19] and also
shown to be secreted from neuronal cells [19-21]. Importantly,
imbalances in Wt extracellular αSyn levels –both aggregated
and monomeric- have been detected in CSF from patients with
PD, AD, DLB and certain forms of prion diseases [22-26]. Even
though it is unclear to what extent such variations in CSF
mirrors the concentrations within key brain regions and whether
they arise at the very initial stages of disease, they indicate that
non-aggregated extracellular αSyn within the local environment
could be highly relevant for pathogenesis.

Intriguingly, several epidemiological and animal studies have
revealed a link between certain bacterial, viral and parasitic
infections and the development or progression of sporadic PD
[27-33] and AD [34-36]. Nevertheless, the mechanism by which
infectious agents or inflammatory stimuli could exacerbate or
modulate these microglial phenotypes is not well understood.

Activation of microglia and inflammation in the context of PD,
amyotrophic lateral sclerosis (ALS), and AD is currently thought
to involve the toll-like receptors (TLRs) [37-39], a group of
transmembrane proteins known to detect invading pathogens
[40]. TLRs have been reported to be up-regulated in α-
synucleinopathy-derived brain tissue from mouse and human
subjects [41,42], and have been proposed to mediate different
pathways leading to either neuroprotective or neurotoxic
phenotypes [42-45]. Although it has recently been shown that
treatment of cells with aggregated αSyn is able to alter the
TLRs gene expression in microglial cells [46], there are as yet
no reported studies on the cellular mechanisms modelling a
pre-oligomeric stage of the disease that could recapitulate the
setting of neuroinflammation and neurodegeneration. This fact
highlights the importance of studying the impact of extracellular
αSyn on the innate immune response following TLR
stimulation. In this work, by characterizing the effect of a set of
TLR agonists on primary microglia cultures, we report a
remarkable impact of Wt αSyn priming of cells on TLR-

mediated immunity that might reflect a causal link between
certain infections and the initiation of sporadic
neurodegenerative disease.

Materials and Methods

TLR ligands
TLR ligands were purchased from InvivoGen (San Diego,

USA) and prepared according to the manufacturer’s
recommendations. The TLR ligands were: bacterial
lipopolysacharyde (LPS), type B CpG oligonucleotide ODN
1688 (CpG), low molecular weight polyinosine-polycytidylic
acid (poly(I:C-LMW)) (PolyI:C), lipoteichoic acid from B. subtilis
(LTA), synthetic bacterial lipoprotein Pam3CSK4 (Pam3),
peptidoglycan from B. subtilis (PGN), imiquimod (Imiq), and
ssRNA40/LyoVec (ssRNA).

α-synuclein protein overexpression, purification and
characterization

Human Wt αSyn was overexpressed in E. coli BL21(DE3)
cells using plasmid pT7-7 and purified as described previously
[14]. The purity and monomeric state of the αSyn preparation
(>95%) was assessed by 15% SDS-PAGE, mass spectrometry
analysis, and 4-10% native PAGE (Lonza, Basel, Switzerland),
as previously described [14]. The preparation and
characterization of soluble α-synuclein oligomers was carried
as reported previously [47] and purified oligomeric fractions
were stored at 4 °C for up to 24 hrs. Endotoxin levels in the
protein preparations were measured by the ToxiSensor
Chromogenic LAL Assay Kit (GenScript, Piscataway, USA),
and values obtained were <1 EU/mg protein in all cases. The
protein concentration of non-aggregated and oligomeric αSyn
was determined by means of Micro BCA Reagent Kit (Pierce,
Rockford, IL, USA).

Preparation and characterization of primary microglial
cell cultures

Mixed glial cultures were prepared from cerebral cortices of
1-3 day-old C57BL/6 male mice (University of Seville Animal
Core Facility, Seville, Spain), and the microglial fraction was
isolated, according to previously described methods [14].
Purified microglial cells were characterized by
immunocytochemistry as cells of the haematopoietic lineage on
the basis of their expression of the pan haematopoietic marker
CD45 and of the monocyte/macrophage markers CD11b,
F4/80 and CD68, as described elsewhere [14]. Additionally, the
absence of glial fibrillary acidic protein (GFAP)-positive
astrocytes in purified microglial cell cultures was also assessed
according to a previously reported method [14].

Treatment of microglial cell cultures
Stimulation of microglial cultures in 12-well plates was

performed by replacing the medium by adding 1 mL Wt αSyn
(or medium alone in the case of the following controls:
‘untreated microglia’ and ‘TLR ligand alone’ controls), at a final
concentration of 1 µg/mL (equivalent to 70 nM) diluted in
complete DMEM-F12 medium. After a 6-hour incubation at 37
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°C, 110 µL aliquot of TLR ligand solutions (at 10x higher
concentration) in complete DMEM-F12 medium was added to
each well containing either αSyn-primed, or non-primed cells.
In the case of some controls, 110 µL of medium alone was
instead added to the wells. The final concentrations of the
ligands being tested correspond to conditions reported
previously [48], and were: LPS, 1 µg/mL; CpG, 1 µg/mL; Poly
(I:C), 50 µg/mL; LTA, 10 µg/mLl; Pam3, 1 µg/mL; PGN, 10
µg/mL; Imiq; 1 µg/mL; and ssRNA, 0.25 µg/mL. Cell culture
samples with αSyn-primed cells but with no subsequent TLR-
ligand stimulation, as well as cells with no addition of αSyn or
TLR ligands, were used as controls. Cells were then incubated
for a further period of 18 hrs. In addition, some controls were
prepared in parallel by incubating cells for 24 hrs with 1 µg/mL
A30P αSyn or oligomeric Wt αSyn. In all cases, after incubation
for a total of 24 hrs, the supernatants were harvested and the
cells were frozen and stored at -80 °C.

Cytokine release measurements
After treatment and incubation of cells for a total of 24 hrs as

explained in the previous subsection, culture supernatants
were harvested and centrifuged at 700 g for 5 min. The
supernatants from treated cultures were recovered and stored
at -80 °C before measurement of cytokine levels. IL-6, TNFα,
IL-1ß, IL-10, IL-13 and IL17 levels were assayed using the
mouse IL-6/IL-10 BD OptEIA ELISA set (BD Biosciences,
Franklin Lakes, NJ, USA), the murine IL-13 ELISA
Development Kit (Peprotech, London, UK), and the mouse
IL-17 DuoSet® ELISA Development System (R&D Systems,
Minneapolis, USA), according to the manufacturer's protocols.
Chemokine levels in the culture supernatants were determined
by a specific sandwich ELISA by using capture/biotinylated
detection antibodies obtained from Peprotech (London, UK)
according to the manufacturer’s recommendations.

Determination of TLR gene expression
Expression levels of the genes for TLRs 1, 2, 3, 4 and 7, and

for hypoxanthine-phophoribosyltransferase (HPRT), were
determined by using a two-step quantitative real-time PCR
(qRT-PCR) method. Total RNA from treated microglial cells
was extracted using the Tripure Isolation Reagent (Roche,
Basel, Switzerland) according to the manufacturer's protocol.
RNA (1 µg) was reverse-transcribed by using the Quantitect
Reverse Transcription kit (Qiagen GmbH, Hilden, Germany)
according to the manufacturer's protocol. qRT-PCR was
performed with SensiFAST™ SYBR Lo-ROX Kit (Bioline,
London, UK) on an ABI Prism 7500 Real Time PCR System.
Primer pairs were designed to anneal in different exons, and
were: HPRT_For: 5’-GTAATGATCAGTCAACGGGGGAC-3’,
HPRT_Rev: 5’-CCAGCAAGCTTGCAACCTTAACCA-3’;
primers for TLR genes were purchased from Sigma (Sigma-
Aldrich, St. Louis, USA). TLR4_For: 5’-
ACCAGGAAGCTTGAATCCCT-3’; TLR4_Rev: 5’-
TCCAGCCACTGAAGTTCTGA-3’; TLR7_For: 5’-
TCAAAGGCTCTGCGAGT-3’; TLR7_Rev: 5’-
AGTCAGAGATAGGCCAGGA-3’. TLR1, TLR2 and TLR3
primers were purchased from Qiagen (Hilden, Germany).
Multiple transcripts were analyzed simultaneously for 40 cycles

using an optimized qRT-PCR thermal profile. Changes in gene
expression were determined using the ∆Ct value taking hprt as
endogenous control. The ∆∆Ct values were calculated by
subtracting ∆Ct values of non-primed samples followed by TLR
stimulation (‘TLR ligand’) from samples treated with αSyn-
priming followed by TLR stimulation (‘Wt+TLR ligand’).

Phagocytosis assays
FluoresbriteTM carboxylate microspheres of 0.75 µm diameter

(2.64 % Solid-Latex; Polysciences Inc, Warrington, USA) were
used as fluorescein-conjugated tracker microparticles for
measuring the phagocytosis capacity of differentially activated
microglial cells. 1 hr before starting the phagocytosis assay,
FITC-labelled microspheres (1.08 x 1011 particles/mL) were
mixed at a ratio of 1 µL microspheres: 20 µL FBS for 1 hr at 37
°C into inactivated FBS (BioWhittaker, Verviers, Belgium) and
incubated for a further 1 hr at 37 °C in order to opsonise fully
the carboxylate groups. The mixtures of microspheres and FBS
were then resuspended in fresh DMEM-F12 medium
(BioWhittaker, Verviers, Belgium), with L-glutamine and P/S
antibiotics supplements to obtain normal 10% FBS-
supplemented media containing 5.4 x 108 microspheres/mL.
After removal of 500 µL of supernantant from the αSyn-
stimulated microglial cell cultures for cytokine release analyses,
a volume of 150 µL of resuspended microspheres was added
to the remaining 600 µL in each well to obtain a final
concentration of 1x108 particles/mL. Particles were then
homogenously distributed throughout the well by gentle
movement of the plate and incubated for 1 hr at 37 °C. Medium
containing non-phagocytosed microspheres was then removed
and the cells were washed with PBS prior to fixation with 4% p-
formaldehyde in PBS for 30 min at 4 °C. A volume of 1 mL of
PBS containing the nuclear fluorescent dye bisBenzimide H
33342 tri-hydrochloride (Hoechst 33342; 1 µg/mL) was then
added to the cells, and the plates were stored at 4 °C for a
minimum of 24 hrs until being analyzed. For this purpose, an
Olympus IX71 fluorescence microscope equipped with the
digital image processing softwares DPController and
DPManager (Olympus Europa, Hamburg, Germany), was
used. For each sample, the phagocytic capacity of microglial
cells was determined by analysing fluorescent images of
phagocytosed FITC-labelled microspheres and Hoechst-
stained nuclei from four randomly chosen fields (each
containing ~85 cells). For each random field, the total numbers
of spheres and nuclei were determined using the Granularity
application of the digital imaging analysis software Metamorph
(MDS Analytical Technologies, Toronto, Canada), and the
number of spheres per nucleus, as an indicator of the
phagocytic capacity, was calculated for every field analysed.
The values shown correspond to the mean from two or three
independent experiments (N=2 or 3), each one containing
duplicate samples.

Determination of Arg1/iNOS gene expression
Total RNA from treated microglial cells was extracted and

reverse-transcribed as described before in this section. The
primers used were as follows: for mouse arginase-1/Arg1
(band size: 264 bp): Forward: 5´-
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CAGAAGAATGGAAGAGTCAG-3´; Reverse: 5´-
CAGATATGCAGGGAGTCACC-3´, for mouse iNOS (band
size: 373 bp): Forward: 5´-
GCCTCATGCCATTGAGTTCATCAACC-3´; Reverse: 5´-
GAGCTGTGAATTCCAGAGCCTGAAG-3´, and for mouse
actin (band size: 165 bp): Forward: 5´-
TGTTACCAACTGGGACGACA-3´; Reverse: 5´-
GGGGTGTTGAAGGTCTCAAA-3´. DNA Marker: Fermentas*
phiX174 DNA/BsuR I (Hae III) Marker, 9.

The positive controls for the Arg and iNOS PCR assays
(PCR+) were bone marrow derived macrophages either non
stimulated or stimulated 24 hrs with IL-4 (10 ng/mL),
respectively. Macrophages were isolated from bone marrow
from Balb/c mice and cultured as follows: bone marrow cells
(0.4 x 106/mL) were cultured in DMEM (2 mM L-glutamine, 100
units/mL penicillin/streptomycin and 20% heat-inactivated FCS,
all from Gibco/Invitrogen) containing 20 ng/mL M-CSF
(Peprotech) for 7-8 days. Differentiated macrophages were
detached by incubating the plates with 2 mM EDTA/PBS at 37
°C for 10 min. Cell preparations typically consisted of >95%
CD11b+CD11c- macrophages. Bone marrow derived
macrophages were plated at 8 x 105 cells/well in 6-well plates.
After 4 hrs of adherence, macrophages were washed with PBS
and stimulated with IL-4 (BD Bioscience; 10 ng/mL) for 24 hrs.

Final concentrations in the PCR reaction mixture were: cDNA
template: 60 ng; dNTPs: 0.2 mM; primers: 0.4 µM; MgCl2: 2
mM; Taq polimerase (Biotools): 0.625 units/reaction, in a total
volume of 25 µL. PCR conditions were as follows: for Arg1:
94°C-5 min; 94°C-30 sec, 56°C-30 sec, 72°C-30 sec (30
cycles); 72°C-7 min; 4°C-o/n. For iNOS: 94°C- 35 sec; 62°C-2
min; 72°C-2 min (35 cycles); 72°C-7 min; 4°C-o/n. For actin:
94°C-5 min; 94°C-30 sec, 60°C-30 sec, 72°C-30 sec (30
cycles); 72°C-7 min; 4°C-o/n.

Determination of cleaved caspase-3 levels by ELISA
For detecting activated caspase-3 protein levels by ELISA,

the Human/Mouse Cleaved Caspase-3 (Asp175)-DuoSet
ELISA kit (R&D Systems, Abingdom, UK) was used. For this,
total protein was extracted from treated microglial cells in
culture with ‘lysis buffer’ according to the manufacturer’s
instructions, and quantified with the BCA Protein Assay
Reagent Kit (Thermo Fisher Scientific Inc., Rockford, USA).

Determination of cleaved caspase-3 levels by
immunofluorescence

For immunofluorescence (IF) analysis, highly pure microglial
cell cultures were obtained as described above (in the
‘Preparation and characterization of primary microglial cell
cultures’ section), but in this case cultures were prepared on a
hydrophilic µ-Dish (Ibidi GmbH, Germany). 3-4 days after
isolation, microglial cells were treated as described before (in
the ‘Preconditioning of microglial cell cultures with αSyn and
stimulation with TLR ligands’ section). For the immunolabelling
step, treated microglial cultures were thereafter fixed in cold
PBS containing 4% p-formaldehyde for 15 min at 4 °C and then
washed in PBS prior to being permeabilized and blocked in
PBS containing 3% BSA (Sigma-Aldrich, St. Louis, USA) and
0.5 % Triton X-100 (Sigma-Aldrich, St. Louis, USA) for 1 hr at 4

°C. Cells were incubated o/n at 4 °C with cleaved caspase-3
(Asp175) antibody (Cell Signalling Technology Inc., Danvers,
USA) at a 1/200 dilution in PBS containing 3% BSA and 0.5%
Triton X-100. After 3 washes with PBS, cells were incubated for
1 hr at room temperature in the dark with a donkey anti-rabbit
IgG-AlexaFluor 594 secondary antibody (Invitrogen, Paisley,
UK) at a 1/800 dilution in the same buffer. After three washes
with PBS, the nuclei were counterstained by incubating cells
with PBS containing 1 µg/mL Hoechst 33342 (Sigma-Aldrich,
St. Louis, USA) for 1 hour at 4 °C and examined under the
fluorescence microscope. Fluorescence images were captured
with an Olympus IX71inverted fluorescence microscope
equipped with digital image processing softwares DPController
and DPManager (Olympus. www.olympus.co.uk).
Fluorescence images were taken at x20 magnification from
randomly chosen fields. A rigorous comparative evaluation of
cleaved caspase-3 immunoexpression was achieved by taking
fluorescence images with the same exposure time.
Fluorescence images (cleaved caspase-3 marker and nuclear
Hoechst 33342 stainings) taken for different microglial cell
cultures were finally merged at the same ratio with the use of
DPManager software. Phase-contrast images were also
obtained from the same cultures, at x10 magnification. For
quantitative analysis of cleaved caspase-3 levels by IF, the
imaging software MetaMorph Offline (version 7.5.1.0, MDS
Analytical technologies, USA), was used. Analysis was
performed by using the ratio of the intensity values of Alexa
594 nm (RF) and Hoechst 33342 (BF) above background
(areas lacking cells), and the data were expressed as arbitrary
units (AU) and exported automatically from to Microsoft Excel
program trough a summary log. For measuring the relative
cleaved caspase-3 levels per cell, the total specific RF/BF (red
fluorescence/ blue fluorescence) ratio was calculated.

Data analysis
All values are expressed as the mean ± S.E.M. Statistical

significance was evaluated by the Student’s t-test using SPSS
Statistics 19.0 (IBM Company, Chicago, USA). Statistically
significant differences in relative cytokine release levels,
phagocytosis and TLR expression [(Wt+TLR ligand): (TLR
ligand) fold-changes] were calculated with the t-Student test
between two sets of results by comparing the values under
conditions of αSyn-preconditioning followed by TLR stimulation
(Wt+TLR ligand) relative to conditions in the absence of αSyn
preconditioning and TLR stimulation (TLR ligand). Each set of
results originated from several independent experiments
(N=3-7). In addition, in the cases of statistically significant
changes, the absolute values were also compared by applying
a two-way Student’s t-test for each (Wt+TLR ligand) sample
condition to those resulting from stimulation of cells with αSyn
alone (‘Wt αSyn’) or untreated cells (‘Control’). For quantitative
analysis of cleaved caspase-3 levels by IF, three images from
random fields (N=3), each containing 80-90 cells, were used to
calculate the mean RF/BF value and SEM for each sample
condition. For quantitative ELISA assays, results originated
from three independent experiments (N=3). Statistically
significant differences of results from IF and ELISA assays
were calculated by applying the Student’s t test in relation to
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the values obtained with the corresponding TLR ligand in the
absence of αSyn-preconditioning and with Wt αSyn alone. In all
cases, statistically significant differences between the two sets
of results were those with p<0.05.

Ethics Statement
All animals were handled in strict accordance with good

animal practice as defined by the relevant national/EU
guidelines and The CEA-CABIMER Experimental Animal
Committee, and all animal work was approved by the
appropriate committee (file CEA-2010-14).

Results

Priming of microglia with Wt αSyn primarily affects the
TLR2 and TLR7-mediated immune response

Given that the underlying mechanisms initiating and
accompanying the development of sporadic synucleinopathies
remain essentially unknown, we decided to carry out our
studies with Wt αSyn protein. Although various types of cells
have been identified as a source of cytokines in the central
nervous system (CNS), microglia appear to be a principal
source of pro-inflammatory and immune regulatory cytokines
[9]. In order to explore the possible impact of αSyn as a priming
factor in the microglial immune response following pathogen
invasion, we challenged Wt αSyn-primed microglial cultures
with a set of TLR agonists, namely Pam3Csk4 lipopeptide
(Pam3; TLR2/1), peptidoglycan from B. subtilis (PGN; TLR2),
lipoteichoic acid from B. subtilis (LTA; TLR2), Poly(I:C)-LMW
―a synthetic analog of dsRNA- (PolyI:C; TLR3), bacterial
lipopolysaccharide (LPS; TLR4), imiquimod ―a small synthetic
antiviral molecule- (Imiq; TLR7), ssRNA40 oligonucleotide
complexed with LyoVec (ssRNA; TLR7), and type B CpG
oligonucleotide (CpG; TLR9). We omitted the study of TLR5
stimulation based on previous reports of its absence in mouse
microglia [44,49], and on our own observations of a lack of
effect with the TLR5 ligand flagellin as measured by secreted
levels of proinflammatory cytokines (data not shown).

After incubation with 1 µg/mL (equivalent to ca. 70 nM) of
non-aggregated Wt αSyn for 6 hrs (or mock solution in the case
of non-preconditioned samples and untreated controls), the cell
cultures were incubated for a further 18 hrs with standard
concentrations of different TLR agonists, or otherwise treated
with medium alone to serve as controls. The αSyn working
concentration was chosen considering the typical range from
previous reports and especially based on our earlier work in
which a similar experimental setup has been used [14]. After
incubation of cells for a total of 24 hrs, the supernatants were
recovered for later analysis of their interleukin/chemokine
contents. Given that the aggregated αSyn as well as the A30P
αSyn variant have been previously shown to exert a stronger
pro-inflammatory effect on microglia [14,50], control samples
were prepared by incubating cells for 24 hrs with 1 µg/mL A30P
αSyn variant or 1 µg/mL oligomeric αSyn species.

A set of key interleukins, namely pro-inflammatory IL-6,
immunoregulatory IL-10, anti-inflammatory IL-13, and
autoimmunity-related IL-17, were assayed by ELISA (Table 1).
Our results show that, at the concentrations used, all eight TLR

ligands, as well as A30P and oligomeric αSyn, produced higher
IL-6 secretion when added alone to microglial cells, relative to
untreated controls (Table 1). In addition, stimulation with LPS
and Poly I:C caused an increase in IL-10 and IL-13 levels,
respectively, while oligomeric αSyn appeared to cause a
reduction in IL-13 secreted levels (Table 1).

We then sought to assess the impact of αSyn-
preconditioning of microglia on the interleukin secretion profile
(Figure 1A). A general increase trend in TNFα secreted levels
could be observed for the primed cells after TLR stimulation, in
particular with (TLR7) ssRNA, (TLR2/1 Pam3) and (TLR2)
PGN (Figure S1). This effect was not seen for IL-1ß, as only
(TLR3) Poly I:C produced an increase trend in its secretion
levels under αSyn priming conditions (Figure S1). On the other
hand, a significant 4-fold increase in IL-6 release levels was
observed for the Wt αSyn-primed cells after stimulation with
Pam3 (TLR2/1) (p=0.024), relative to the corresponding
controls with the TLR agonists in the absence of priming with
αSyn. Of particular note is that neither IL-10 nor IL-17 levels
displayed changes in Wt αSyn-primed cells for any of the
tested TLR ligands. Interestingly, even though they did not
reach statistical significance, moderate fold-change reductions
of IL-13 anti-inflammatory cytokine levels were observed in the
cases of stimulation of primed microglia with the TLR7 agonists
Imiq and ssRNA40 (Figure 1A).

We then analysed the secretion profile of treated cells for a
set of key chemokines, namely IP-10/CXCL10, RANTES/
CCL5, MCP-1/CCL2, and MIP-1α/CCL3 (Table 2). Virtually all
eight TLR ligands tested, as well as A30P and aggregated
αSyn, produced an increase in chemokine secretion for all four
chemokines tested when added to cells, relative to untreated

Table 1. Values of secreted interleukins in primary
microglia 24 hrs after treatment.

 IL-6 (pg/mL) IL-10 (pg/mL) IL-13 (pg/mL) IL-17 (pg/mL)
Control 64.4 ± 10.3 120 ± 34,4 44.1 ± 12.6 8.6 ± 1.1

Wt αSyn 198 ± 89.8 20.8 ± 12.9 72.3 ± 21.6 9.2 ± 0.8

A30P αSyn 1880 ± 604 150.2 ± 83.2 59.0 ± 19.0 11.6 ± 4.4

Oligomeric Wt αSyna 481 ± 130 N/A 33.1 ± 10.8 N/A

LPS 7719 ± 2231 253 ± 37.5 61.6 ± 8.1 9.8 ± 1.4

CpG 1542 ± 296 182 ± 45.4 65.6 ± 12.5 9.0 ± 1.2

Pam3 1604 ± 283 111.4 ± 57.3 47.8 ± 7.4 11.0 ± 2.0

Imiq 1041 ± 235 66.5 ± 18.6 48.1 ± 6.67 8.9 ± 1.2

ssRNA 256 ± 40 68.5 ± 26.1 66.8 ± 20.6 9.9 ± 1.4

PGN 1037 ± 379 63 ± 25.6 61.0 ± 10.8 7.9 ± 0.9

LTA 1731± 297 118.5 ± 20.1 66.7 ± 17.2 7.9 ± 1.2

Poly I:C 1641 ± 541 64 ± 23.9 178.0 ± 34.2 7.9 ± 1.0

Values of secreted interleukin levels in primary microglia 24 hrs after
treatment. Following treatment of cells with αSyn or with TLR agonists at the
concentrations described in the Materials and Methods section, cell culture
supernatants were harvested after incubation for 24 hrs, and cytokine levels were
assayed by ELISA. Values correspond to the mean of six independent experiments
(N=6) each containing duplicate samples and error corresponds to SEM, except for
(a , in which the values shown are the mean of two independent experiments
(N=2) each containing four replicas and the error corresponds to SD.
doi: 10.1371/journal.pone.0079160.t001
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Figure 1.  Impact of Wt αSyn-priming on microglial cytokine release after TLR stimulation.  After treating the microglial cells
either with Wt αSyn at 1 µg/mL (‘priming’ or pre-conditioning) or with ‘mock’ solution (no pre-conditioning) for 6 hrs, the TLR
agonists were added to their specified final concentrations (see Materials and Methods), and incubated for further 18 hrs at 37 °C.
The culture supernatants were harvested and used to measure (A) the levels of the interleukins IL-6, IL-10, IL-13, and IL-17, or (B)
of the chemokines IP-10/CXCL10, RANTES/CCL5, MCP-1/CCL2, by ELISA. Values are the fold-change calculated as the signal
ratio of αSyn-primed, TLR-stimulated cells (‘αSyn+TLR ligand’) relative to non-primed, TLR-stimulated cells (‘TLR ligand’). The
results shown (mean ± SEM) are the average of several independent experiments (IL-6: N=5-7; IL-10: N=4-6; IL-13: N=3; IL-17:
N=2-3; IP-10, RANTES, MCP-1, and MIP-1α: N=3-5), each containing duplicate samples. Statistically significant differences (*
p<0.05) were calculated by applying the Student t test between the two sets of results, for all the TLR ligands tested. (#) denotes a
result that is significantly different from that obtained after treatment of cells with Wt αSyn alone (p<0.05).
doi: 10.1371/journal.pone.0079160.g001
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controls (Table 2). Remarkably, preconditioning of cells with
αSyn resulted in a 4.5-fold increase in IP-10 levels upon
stimulation with ssRNA (TLR7) (p=0.015) (Figure 1B).
Furthermore, a 2-fold increase in the MCP-1 level was
measured for the case of stimulation with Pam3 (TLR2/1)
(p=0.024), and a similar, although not statistically significant,
trend was seen with Imiq and ssRNA (TLR7) (Figure 1B). On
the other hand, small and non significant increases were
observed in relative levels of RANTES with LTA (TLR2) or
MIP-1α with Pam3, relative levels. Importantly, all of the
increases described above that were statistically significant
proved to be independent of the sole addition of αSyn (in all
cases p values were <0.05), implying that these alterations
arise from a complex combination of αSyn-priming and
subsequent TLR-stimulation effects on microglia.

αSyn-preconditioning of microglia alters TLR
expression when stimulated with Imiq, PGN and Poly
I:C

Given the substantial changes observed in the cytokine
secretion profiles as a consequence of the preconditioning
process, we sought to investigate whether or not such
alterations could result from changes in TLR expression levels.
Therefore, we measured the mRNA levels of TLRs 2, 3, 4 and
7 in the samples after treatment as described above, and
compared the change in TLR expression in αSyn-
preconditioned vs. non-preconditioned, cells. Because

Table 2. Values of secreted chemokines in primary
microglia 24 hrs after treatment.

 IP-10 (pg/mL)
RANTES
(pg/mL)

MCP-1
(ng/mL)

MIP-1α
(pg/mL)

Control 16.9 ± 12.9 315 ± 88 1.8 0.4 11.8 ± 7.2

Wt αSyn 47.2 ± 27.5 505 ± 255 3.8 ± 1.1 4.9 ± 3.3

A30P αSyn 2290 ± 656 1887 ± 395 11.8 ± 5.9 696 ± 276

Oligomeric Wt
αSyna 870 ± 341 N/A 6.8 ± 1.7 N/A

LPS 3693 ± 303 3967 ± 767 27.0 ± 4.6 1832 ± 289

CpG 1503 ± 557 2183 ± 323 14.8 ± 2.8 1276 ± 285

Pam3 610 ± 273 1289 ± 225 15.5 ± 3.9 973 ± 75

Imiq 436 ± 192 1891± 224 18.0 ± 5.0 1277 ± 171

ssRNA 209 ± 114 609 ± 147 4.5 ± 1.1 176 ± 105

PGN 549 ± 229 722 ± 275 9.9 ± 4.8 291 ± 92

LTA 2454 ± 490 2970 ± 620 18.4 ± 3.3 1479 ± 287

Poly I:C 3116 ± 460 3679 ± 725 20.8 ± 2.4 943 ± 178

Values of secreted chemokine levels in primary microglia 24 hrs after
treatment. Following treatment of cells with αSyn or with TLR agonists at the
concentrations described in the Materials and Methods section, cell culture
supernatants were harvested after incubation for 24 hrs, and chemokine levels
were assayed by ELISA. Values correspond to the mean of six independent
experiments (N=6) each containing duplicate samples and error corresponds to
SEM, except for (a , in which the values shown are the mean of two independent
experiments (N=2) each containing four replicas and the error corresponds to SD.
doi: 10.1371/journal.pone.0079160.t002

stimulation with CpG (TLR9) ligand showed essentially no
change trends in either cytokine release levels as a
consequence of priming with αSyn, we omitted further studies
with this ligand and continued our characterization with the
seven remaining TLR agonists tested (Figure 2). On the one
hand, significant suppression of TLR7 and TLR3 expression
levels were detected in αSyn-preconditioned cells upon
stimulation with Imiq (p=0.002) and Poly I:C (p=0.030) ligands,
respectively. On the other hand, a modest increase in TLR2
expression was measured αSyn-preconditioned cells
stimulated with PGN (p=0.031) (Figure 2). However, even
though moderate increases in TLR expression were observed
for samples stimulated with Pam3 (TLR 2/1), and LTA (TLR2),
only a 50% increment in the case of PGN (TLR2) reached
statistical significance (p=0.031), while no changes were
measured for the cases of LPS and ssRNA (Figure 2). These
results suggest that targeting receptor-ligand interactions rather
than TLR expression could provide a better rationale and
strategy for the management of α-Syn-related pathologies.

Impact of αSyn priming on microglial phagocytic
capacity upon TLR stimulation

Recently, it was reported that, in contrast to the aggregated
form, monomeric αSyn enhances the microglial phagocytic
capacity [51]. Indeed, our previous observation that non-
aggregated Wt αSyn promotes a moderate but significant
increase in microglial phagocytosis [14] is consistent with this
finding. Therefore, we sought to test whether or not the
changes previously observed in the secretion of specific
cytokines for αSyn-primed microglia, following stimulation by
certain TLR ligands, could be accompanied by alterations in
the relative phagocytic capacity of microglia that could be
possibly linked to the pathogenesis of the synucleinopathies.
For this purpose, we used fluorescein-conjugated tracker
microparticles to test the phagocytic capacity of αSyn-primed
vs. non-primed microglia, following stimulation with certain TLR
ligands (Figure 3). Despite the fact that a certain trend towards
moderate increases in microglial phagocytosis was noticed in
the cases of stimulation with (TLR2/1) Pam3 of Wt-primed
microglia (~30%), the differences did not reach statistical
significance (Figure 3) and therefore we can conclude that the
contribution of αSyn preconditioning in the neurodegenerative
process or immune imbalance after TLR triggering, within the
microglial environment, is independent of phagocytosis.

α-Syn preconditioning of microglia followed by
stimulation with TLR ligands leads to differential
profiles of cell polarization

In recent years, it has become clear that, as a result of
exposure to microenvironmental signals, microglial cells can
undergo alternative polarized activation modes. The two
extreme phenotypes of macrophages are defined as M1 (the
classical, proinflammatory macrophages) and M2 (the
‘alternatively activated’/resolving anti-inflammatory cells);
however, a full spectrum of activation states which share some
overlapping properties with those of the poles, are currently
thought to exist [52]. To gain further insight into the effect on
cell phenotype of αSyn-primed microglia after stimulation with
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Pam3 and ssRNA TLR ligands, we assayed the gene
expression of standard M1 and M2 phenotypic markers iNOS
and Arg1, respectively [53]. As can be observed (Figure 4),
treatments with either Pam3 or ssRNA alone produced an
iNOS+/Arg1- phenotype which, in combination with their
cytokine release profiles (higher secreted levels of IL-6 or IP-10
and lower levels IL-10) (Table 1, Figure 1), indicate varying
degrees of polarization towards an M1-like state.

Interestingly, treatment of αSyn-primed cells with ssRNA (as
well as with Wt αSyn alone) produced an iNOS-/Arg1- (double
negative) phenotype, while stimulation of cells with A30P αSyn
induced the expression of the Arg1 marker. Remarkably,
treatment of αSyn-preconditioned microglia with Pam3 agonist,
just like exposing cells to oligomeric αSyn, produced an iNOS+/
Arg1+ (double positive) intermediate phenotype (Figure 4). This
result was also the case for treatment with LPS, which is
consistent with reports of ‘M2 skewing’ and the Arg1+

 phenotype of microglia produced by administration of LPS in
vitro [54] and in vivo [55,56]. The iNOS+/Arg1+ phenotype
observed in these particular samples, together with the
increase in secreted IL-6, TNFα, IP-10 and MCP-1 levels
(Tables 1 and 2) and with an essentially unaltered phagocytic
capacity (Figure 2), suggests a skewing towards an M1/M2
intermediate or mixed microglial phenotype.

αSyn-preconditioning alters activated caspase-3 levels
in microglia following stimulation with Pam3 and
ssRNA

Even though there is a strong link established between the
activation of microglia and the progression of PD, the molecular
pathways linking microglia-mediated neuroinflammation and
neurodegeneration have been elusive. Activated caspase-3
has been observed in the SN of patients with PD [57-59],
specifically in microglia within the SN of human subjects

Figure 2.  Comparison of TLR gene expression levels of Wt αSyn-primed vs.  non-primed microgia, after TLR stimulation.
After treating cells as before (see legend to Figure 1), cells were lysed and the total RNA was extracted. Relative TLR gene
expression levels were then examined by qRT-PCR and the hprt gene was used as the internal control to calculate ∆Ct values. The
∆∆Ct values were calculated by subtracting ∆Ct values of non-primed samples upon TLR stimulation (‘TLR ligand’) from ∆Ct values
of samples treated with αSyn-priming upon TLR stimulation (‘Wt+TLR ligand’), to give the fold-change in TLR expression in cells
with ‘αSyn+TLR ligand’ relative to ‘TLR ligand’ treatments. In all cases the TLR gene analysed (indicated inside bars) corresponded
to the TLR agonist used in that particular sample. Fold-changes represent the average of three independent experiments (N=3),
each one performed with duplicate samples. Bars correspond to SEM. Statistically significant differences (* p<0.05) were calculated
by applying the Student t test between the two sets of results, for all the TLR ligands tested.
doi: 10.1371/journal.pone.0079160.g002
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suffering from PD and AD [60]. Furthermore, caspase-3 was
recently shown to have a key role in the regulation of microglia
activation and neurotoxicity [60]. Therefore, we sought to
compare the expression of activated caspase-3 in primary
microglia produced by the different treatments (Figure 5A).
Except for an increase produced by stimulation of cells with
(TLR7) ssRNA and (TLR3) Poly I:C, the basal cleaved
caspase-3 levels were not significantly altered by treatment
with the TLR ligands or the Wt α-Syn alone. However, higher
cleaved caspase-3 levels were indeed observed for Wt αSyn-
preconditioned microglia upon stimulation with (TLR2/1) Pam3.
Remarkably, the observed increase induced by (TLR7) ssRNA
alone was strongly suppressed by preconditioning of cells with
Wt αSyn (Figure 5A). Furthermore, these alterations were also
observed by immunofluorescence (IF) analyses of primary
microglial cultures that were similarly treated, by using specific
antibodies against cleaved caspase-3 (Figure 5B and Figure
6). As observed for the untreated cells (‘control’), treatment of
microglia with Wt αSyn or (TLR2/1) Pam3 alone barely

produced detectable levels of activated caspase-3. However,
preconditioning of cells with Wt αSyn and subsequent
stimulation with Pam3 produced a general increase in
fluorescence (ca. 2-fold, p=0.031), located primarily in the
cytosol (Figure 6). Finally, stimulation of cells with (TLR7)
ssRNA ligand alone produced an increase in cleaved
caspase-3 protein, which localized essentially in the cytosol. In
agreement with the results obtained by ELISA (Figure 5A),
preconditioning of cells with Wt αSyn was found to suppress
such an ssRNA-induced increase, by IF analysis. Moreover,
this lower level of activated caspase-3 was observed mainly to
localize in the cell nuclei (Figure 6).

Discussion

Despite much progress done in recent years, the underlying
mechanisms that trigger the onset of the sporadic form of
several neurodegenerative diseases including AD, PD, DLB,
and ALS, remain to be elucidated. Given that they all have in

Figure 3.  Relative phagocytic capacity of WtαSyn-primed vs. non-primed microglia after TLR stimulation.  After treatment of
the primary microglial cell cultures and incubation for a total of 24 hrs as described in the legend to Figure 1, cells were incubated
with fluorescent microspheres for 1 hr. After fixing the cells, phagocytosis was assessed by fluorescence microscopy and calculation
of the number of spheres/cell as described in the Methods section. Four images were analysed for each sample in each
independent experiment. The ‘relative phagocytic capacity’ corresponds to the ratio (fold-change) of the number of spheres/cell of
αSyn-primed cells followed by TLR stimulation (‘αSyn+TLR ligand’) relative to the number of spheres/cell of non-primed, TLR-
stimulated cells (‘TLR ligand’). The values shown are an average of three (for ssRNA and PGN) or four (for all the others)
independent experiments (N=3 or 4), and error bars represent the SEM. Statistically significant differences (* p<0.05) were
calculated by applying the Student t test between the two sets of results, for all the TLR ligands tested. (#) denotes a result that is
significantly different from that obtained after treatment of cells with Wt αSyn alone (p<0.05).
doi: 10.1371/journal.pone.0079160.g003
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common a strong inflammatory response mediated by
activated microglia, the existence of additional factors that
could potentially exacerbate such neuroinflammatory process
is currently thought to be pivotal. Indeed, it has been proposed
that microglia in the neurodegenerated brain are somehow
‘primed’, and signals from systemic infection or inflammation
trigger an enhanced response that contributes to disease
progression [61].

In previous studies, by comparing the effects on primary
microglia of Wt αSyn with those produced by the PD-linked
αSyn mutants, we and others have observed a strong pro-
inflammatory microglial response for the A30P and E46K
variants, as compared to Wt αSyn [13,14]. Intriguingly, and for
reasons still unknown, the levels of brain extracellular αSyn,
including its non-aggregated form, have been found to be
largely altered in diagnosed patients for several
neurodegenerative disorders including AD, PD, DLB, and the
prion disease [22-26].

In the present work, we have addressed the question of
whether or not preconditioning with non-aggregated Wt αSyn
could possibly affect the innate immune response of microglia
under conditions of TLR challenge. This issue is of great
relevance as it may provide information on the microglia-
mediated functional innate response upon infection at the very
initial stages of disease onset.

Our results show that the impact of αSyn-preconditioning of
microglia on the innate immune response following stimulation
with TLR ligands largely depends on the nature of the
subsequent TLR agonist challenge. Indeed, we observed no
significant changes in the cytokine secretion profile for certain

TLR ligands tested, including LPS (TLR4). The latter is
consistent with previous reports of the response following a
challenge with LPS performed both on a transgenic mouse
model overexpressing Wt αSyn [10] and after injection of non-
aggregated Wt αSyn into the mouse SN [62], suggesting that
similar inflammatory reactions were induced by LPS
independently of the presence of αSyn. Interestingly however,
we found that Wt αSyn-primed microglia can indeed affect the
immune response mediated by TLR2/1 and TLR7, either by
increasing the secretion of the pro-inflammatory cytokines IL-6
and TNFα, or by lowering the expression of the anti-
inflammatory IL-13. Interestingly, IL-13 has been shown to
reduce dopaminergic neuronal cell mortality within a normal
environment, but to contribute to their loss under oxidative
stress conditions [63].

Very few studies have so far addressed the involvement of
chemokines in PD and other related pathologies. In particular,
analysis of functional polymorphisms in the genes encoding
interleukins and chemokines, and their links with the age of
onset or the overall risk of developing PD, has not resulted in
any clear associations [64,65]. In addition, the search for
chemokine biomarkers of PD in serum has not so far provided
useful candidates for diagnosis [66]. In this sense, our results
highlight the possible implications of locally affected chemokine
environments in primed microglia as a result of specific
infections, that have been involved in the recruitment of
reactive lymphocytes and in promoting neuronal cell death [67].
According to our results, Wt αSyn-priming additionally affects
the Pam3 (TLR2/1)- and ssRNA (TLR7) -stimulated microglia
by increasing the secretion levels of the chemokines MCP-1/

Figure 4.  Arg1 and iNOS PCR gene expression assays of αSyn-preconditioned microglia stimulated with Pam3 or
ssRNA.  Primary microglial cells were either treated with Wt αSyn (Wt), A30P αSyn (A30P), or oligomeric Wt αSyn (oligomers) at 1
µg/mL, or with culture medium alone, for 6 hrs at 37 °C. Subsequently, the TLR agonists or medium alone were added accordingly,
and cells were incubated for a further 18 hrs as described before. After treatment, RNA was extracted and reverse transcribed for
PCR analysis of arginase-1 (Arg1) and iNOS gene expression. Actin expression was used as a reference and the positive controls
for the PCR assays (PCR+) were from bone marrow-derived macrophages stimulated (for Arg1) or not (for iNOS) for 24 hrs with
IL-4 (10 ng/mL).
doi: 10.1371/journal.pone.0079160.g004
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Figure 5.  Quantitation of activated caspase-3 levels in treated microglial cells, by ELISA and immunofluorescence.  (A)
After treatment of the primary microglial cell cultures and incubation for a total of 24 hrs as described in the legend to Figure 1, cells
were lysed and tested by a specific ELISA assay for cleaved caspase-3 levels quantitation. The results shown (ng/mL cleaved
casp-3 per µg of total protein) correspond to the mean of four independent experiments (N=4), each one performed with duplicate
samples. Bars correspond to SEM. A discontinuous line represents the mean value obtained for untreated cells. Statistically
significant differences were calculated by applying the Student’s t test in relation to the values obtained with the corresponding TLR
ligand in the absence of αSyn-preconditioning (* p<0.05) and with Wt aSyn alone (# p<0.05). Treatment with staurosporine from
Streptomyces sp. (5 µM) for 6 hrs was used as a positive control. (B) Cells were cultured in appropriate culture plates and treated
as explained above (see legend to Figure 1) for subsequent labelling of cleaved caspase-3 and nuclear Hoechst 33342 staining for
IF analysis, as described in the Methods Section. Samples were analyzed under the fluorescence microscope and three images
from random fields containing ca. 80-90 cells each, were recorded, and analyzed for fluorescence quantification. The total specific
red fluorescence (RF) and blue fluoresce (BF) were measured and the RF/BF ratio was used as a quantitation method and is
represented in this figure. The results shown (RF/BF ratio) correspond to the mean of three images analysed (N=3) within one
representative experiment, and bars correspond to SEM. A discontinuous line represents the mean value obtained for images from
untreated cells. Statistically significant differences were calculated by applying the Student’s t test in relation to the values obtained
with the corresponding TLR ligand in the absence of αSyn-preconditioning (* p<0.05) and with Wt αSyn alone (# p<0.05). Treatment
with staurosporine from Streptomyces sp. (5 µM) for 6 hrs was used as a positive control.
doi: 10.1371/journal.pone.0079160.g005
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Figure 6.  Immunofluorescence analysis of cleaved caspase-3 levels in treated microglial cells.  Representative images taken
from immunolabeled primary microglial cells treated as described in the legend to Figure 1, with or without preconditioning by Wt
αSyn. The TLR ligands tested were Pam3 and ssRNA40 at the concentrations described before (see Materials and Methods). Cells
treated with 5 µM staurosporine (Strsp) from Streptomyces sp. for 6 hrs served as a positive control. Specific anti-(Asp175) cleaved
caspase-3 primary antibodies and Alexa Fluor 594 secondary antibodies were used to visualize activated caspase-3 (first column),
and nuclei were counterstained with Hoescht (second column). Merged images are shown in the third column and phase-contrast
images of the same cultures are shown in the right column. White scale bars: 50 µm; grey scale bar (inset): 5 µm.
doi: 10.1371/journal.pone.0079160.g006
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CCL2 and IP-10/CXCL10, respectively, which have been found
to be elevated in the CSF of AD brains from the very early
stages of disease and to be linked to neurodegeneration [68].
Overall, the change observed in the cytokine release profiles of
αSyn-preconditioned microglia stimulated with Pam3 and
ssRNA resemble that generated by treatment with αSyn
oligomers and with the A30P αSyn variant, both linked to PD
and known to elicit a strong inflammatory response mediated
by microglia activation [14,50]. In addition, the differential
cytokine secretion profiles upon stimulation with Pam3 and
ssRNA are not mediated by significant changes in TLR
expression in the case of αSyn-primed cells.

It is now accepted that multiple forms of activated microglia
exist, and whether the roles that such differential patterns of
activation play in the pathobiology of neurodegenerative
diseases are beneficial or detrimental, is currently the subject
of much debate [52]. Microglial phagocytosis has traditionally
been related to steady-state tissue homeostasis by preventing
the release of proinflammatory intracellular components from
dead or dying cells, and by contributing to the resolution of
inflammation [69,70]. More recently, microglial phagocytosis
has also been shown to have a role on neuronal death during
inflammation triggered by TLR stimulation [71]. Our present
results show that there is no clear effect of αSyn-
preconditioning on the phagocytic capacity of TLR-stimulated
microglia. In addition, assessment of Arg1 and iNOS gene
expression, together with analysis of cytokine release, has
revealed a skewing towards an M1/M2 mixed or intermediate
activation phenotype for αSyn-preconditioned microglia upon
stimulation with ssRNA or Pam3 (Figure 7). It is noteworthy
that an intermediate M1/M2 microglial phenotype has been
found in vivo in AD murine models [69]. However, the double
negative or double positive character of these resulting
activation phenotypes suggest that they are of a different
nature depending on the particular TLR ligand involved. Our
results also indicate that the mixed M1/M2-like response
elicited by treatment of αSyn-primed microglia with Pam3 is
reminiscent of that displayed after treatment with αSyn

oligomers, which are thought to be the most inflammatory and
toxic forms of αSyn [2,72,73]. This finding is highly relevant as
it has been demonstrated recently that the inoculation of
aggregated forms of Wt αSyn into mouse brains is sufficient to
trigger PD-like neurodegeneration and the development of PD
characteristic symptoms [74,75].

In recent years, a link between activated caspase-3 and PD
and AD has been put forward; higher activated caspase-3
levels have been detected in the SN of PD patients [57-59] and
specifically in microglial cells within the SN of PD and AD
human subjects [60]. Furthermore, activated caspase-3 was
recently shown to play a key role in the regulation of microglia
activation and to correlate positively with neurotoxicity, initially
as a result of TLR stimulation [60]. In this context, our findings
indicate that αSyn-primed microglia result in increased
activated caspase-3 levels after TLR2/1 engagement by Gram
(+) bacteria-related Pam3. On the other hand, virus-like ssRNA
produces the opposite effect in addition to relocation from the
cytosol to the nucleus, which might suggest an activation of the
apoptosis pathway [76], and therefore our findings could also
be of potential interest for selective manipulation of apoptotic or
neurotoxic signalling pathways in a synucleinopathy-prone
scenario.

In summary, our results show that extracellular wild-type
αSyn could potentially act as a priming factor for microglia to
produce an altered TLR response as compared to the same
challenge in the absence of such priming. Moreover, we show
that the features of this altered response are highly dependent
on the identity of the agonist engaging such TLR-mediated
responses (Figure 7). We propose that this priming effect could
be especially relevant in the case of sporadic
synucleinopathies and other related disorders with αSyn
imbalances since it postulates that specific infections or
inflammatory stimuli, even at the pre-oligomeric stage of the
αSyn aggregational process, could potentially act as a trigger
of an altered microglial response and accelerate the onset of
the disease.
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Figure 7.  Proposed model of the impact of αSyn-priming and TLR stimulation on microglial phenotype and
neuroinflammation.  Surveyling microglia undergo polarization towards an M1-like phenotype after exposure to (TLR7) ssRNA and
Imiq, and (TLR2/1) Pam3, TLR agonists, characterized by a lack of expression of Arg1, expression of iNOS, and high IL-6
production (see Results). On the one hand, αSyn-preconditioning of microglia and subsequent stimulation with (TLR7) ssRNA (and
probably Imiq) produces an Arg1-/iNOS- (double negative) mixed or intermediate phenotype, and causes an increase in IP-10 and
TNFα secretion, and a reduction of IL-13 levels. In addition, this treatment leads to a reduction in activated caspase-3 levels
accompanied with a change in its intracellular location from the cytosol towards the nucleus of the microglial cell. On the other hand,
exposure of αSyn-primed microglia to (TLR2/1) Pam3 agonist induces a skewing towards a different M1/M2 mixed or intermediate
phenotype, exhibiting an Arg1+/iNOS+ (double positive) expression pattern, together with higher IL-6 and MCP-1 secretion levels.
Remarkably, this phenotype agrees with the one observed for microglia that have been exposed to oligomeric αSyn. In addition, the
‘αSyn + Pam3’ treatment causes increase in activated caspase-3 levels in microglial cells.
doi: 10.1371/journal.pone.0079160.g007
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Supporting Information

Figure S1.  Impact of Wt αSyn-priming on microglial TNFα
and IL-1ß release after TLR stimulation. After treating the
microglial cells either with Wt αSyn at 1 µg/mL (‘priming’ or pre-
conditioning) or with ‘mock’ solution (no pre-conditioning) for 6
hrs, the TLR agonists were added to their specified final
concentrations (see Materials and Methods), and incubated for
further 18 hrs at 37 °C. The culture supernatants were
harvested and used to measure the levels of TNFα and IL-1ß
cytokines by ELISA. Values are the fold-change calculated as
the signal ratio of αSyn-primed, TLR-stimulated cells (‘αSyn
+TLR ligand’) relative to non-primed, TLR-stimulated cells

(‘TLR ligand’). The results shown (mean ± SD) are the average
from duplicate samples and is representative of three
independent experiments for each cytokine measurement.
Untreated cells and treatment of cells with Wt αSyn alone were
used as controls in both cases.
(TIF)
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