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Abstract

The western area of the Cenozoic Madrid Basin has not been adequately studied. This, combined with the high homogeneity of detrital 
facies makes the stratigraphic correlation with other areas of the basin rather difficult. Consequently, only a detailed characterization of di-
fferent study zones can allow subsequent correlation over this area. Over the last years there have been discovered several vertebrate fossil 
sites in this area that allow the dating of the sediments which host the fossil remains and provide data about palaeoclimatic trends. In this 
paper we present the results of the light minerals petrographic analysis carried out in one of these sites (Somosaguas paleontological site). 
Previous palaeontological and isotopic studies in this site indicate a climate event of cooling and rising aridity that has been described glo-
bally for the period after the Miocene Climatic Optimum. The petrographic data and indices presented here corroborate this trend towards 
a more arid climate through the Somosaguas sedimentary succession. Besides we study the grades of alteration of plagioclase grains as a 
proxy in the evaluation of palaeoclimatic variations. The increase towards the top of the succession of less altered plagioclase grains sug-
gests a decrease in precipitations and thus more aridity. Part of the quartz and K-feldspar grains display several features like embayments 
and alterations pointing to palaeosoils formation and reworking processes. These characteristics and other observations suggest several 
sedimentary pulses in a geotectonic setting of “basement uplift” and a mixed lithological provenance for the Somosaguas deposits (granites, 
gneisses and minor quantities of low-grade metamorphic rocks).
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Resumen
La zona occidental de la cuenca de Madrid no ha sido adecuadamente estudiada. Esto, combinado con la alta homogeneidad de facies de-

tríticas dificulta la correlación estratigráfica con otras áreas de la cuenca. En consecuencia, sólo una caracterización detallada de diferentes 
zonas de estudio puede permitir posteriores trabajos de correlación regional. En los últimos años se han descubierto varios yacimientos de 
fósiles de vertebrados en esta área que permiten la datación de los sedimentos que albergan estos restos y proporcionan datos paleoclimáti-
cos. En este trabajo se presentan los resultados de los análisis composicionales de minerales ligeros realizados en uno de estos yacimientos 
(yacimiento paleontológico de Somosaguas). Estudios paleontológicos e isotópicos previos en este yacimiento registran un evento climá-
tico de enfriamiento y aumento de la aridez que se ha descrito a nivel mundial para el período posterior al Óptimo Climático del Mioceno. 
Los datos e índices petrográficos presentados en este trabajo corroboran la tendencia hacia un clima más árido a lo largo de la sucesión 
sedimentaria de Somosaguas. Además, se estudian los grados de alteración de los granos de plagioclasa como proxy en la evaluación de 
variaciones paleoclimáticas. El aumento hacia la parte superior de la sucesión de plagioclasas poco alteradas sugiere una disminución de 
las precipitaciones y por tanto mayor aridez. Parte de los granos de cuarzo y de feldespato muestran golfos de corrosión o alteraciones que 
indican procesos de formación de paleosuelos y de retrabajamiento. Estas características junto a otras observaciones sugieren varios pulsos 
sedimentarios en un entorno geotectónico de “basamento elevado” y una procedencia litológica mixta (granito, gneis y rocas metamórficas 
de bajo grado).

Palabras clave: Aragoniense medio, Óptimo Climático del Mioceno, aridez, paleosuelos, alteración de plagioclasas, arenas
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1. Introduction

The Cenozoic Madrid Basin forms part of the larger Tajo 
Basin, an intracratonic basin of the Iberian Peninsula. The 
pensinsula’s Cenozoic basins are the outcome of conver-
gence between the African and European plates, the forma-
tion of the Atlantic Ocean and the structuring of the Western 
Mediterranean Basin (Vegas and Banda, 1982; De Vicente 
et al., 1996). All these events are consistent with the Alpine 
Orogeny dynamics that rejuvenated or formed the mountain 
edges limiting the Tajo Basin (De Vicente et al., 2007). The 
Madrid Basin is bounded by three main mountain ranges: the 
Spanish Central System to the north (Somosierra mountains, 
composed of slates, phyllites and quartzites) and west (Gua-
darrama Sierra, mainly composed of granodiorites, biotitic 
granites, gneisses, pegmatites and schists), the Iberian Range 
to the east (mainly composed of limestones, dolostones, 
marls and arenites) and the igneous metamorphic series of 
the Toledo Mountains to the south (Aparicio-Yagüe and 
García-Cacho, 1984; Calvo, 1989a; Villaseca et al., 1993; 
Sopeña et al., 2004). During the Upper Palaeogene, the Tajo 
Basin was subdivided into the Madrid and Loranca Basins by 
north-south uplift of the Altomira Range. The Madrid Basin 
was filled with Tertiary sediments, both Palaeogene (Arribas, 
1985; Arribas and Arribas, 1991) and Neogene (mainly Mi-
ocene) in age (Alonso-Zarza et al., 2004).

During the Miocene, substantial sedimentary infill of the 
Madrid Basin occurred as the result of erosion of the moun-
tain edges of this basin caused by intense tectonic activity in 
the Spanish Central System (De Vicente et al., 1996). The 
different lithologies and origins of such mountainous borders 
gave rise to a variety of facies and to complex lateral changes 
between facies and towards the basin centre (Alonso-Zarza 
et al., 2004). In contrast, sediments at the western margin 
of the basin are relatively homogenous in their composition 
and facies (López-Olmedo et al., 2004). This makes difficult 
the facies correlation within this area and with other areas 
of the basin, where Neogene Major Tectosedimentary Units 
have been defined (Junco and Calvo, 1983; Ordóñez et al., 
1991; Alonso-Zarza and Calvo, 2002). For this reason, only 
a very detailed characterization of the mineralogy, petrology 
and sedimementology of different zones on the western part 
of the Madrid Basin can allow future reliable stratigraphic 
correlations.

The Madrid Basin contains many Neogene deposits with 
fossil vertebrate remains facilitating the dating of sedimen-
tary formations and their correlation (Peláez-Campomanes 
et al., 2003; Hernández-Ballarín et al., 2011, and references 
therein). Further, these palaeontological sites offer consider-
able palaeoenvironmental and palaeoclimate information on 
this particular time period, especially for the Miocene (Van 
der Meulen and Daams, 1992; Calvo et al., 1993; Hernández 
Fernández et al., 2006).

The Middle Miocene experienced remarkable climate 
changes with evidence suggesting a sharp drop in tempera-
tures and an increase in aridity after the Miocene Climatic Op-
timum, a warm and humid period between 17 and 14 Ma (Za-
chos et al., 2001; Böhme, 2003). These climate perturbations 
coincide in time with the formation of the Somosaguas pal-
aeontological site (Domingo et al., 2009, 2012a; García Yelo 
et al., 2014; see Fesharaki et al., 2012 for a complete biblio-
graphic references list about this palaeontological site). Previ-
ous palaeoclimatic and palaeoenvironmental inferences based 
on the abundance and variety of fauna and its characteristics, 
together with sedimentological, mineralogical and isotope 
data obtained for the Somosaguas site, have assigned this site 
to a period of worldwide climate changes (López Martínez et 
al., 2000; Mínguez Gandú, 2000; Hernández Fernández et al., 
2006; Fesharaki et al., 2007; Carrasco et al., 2008; Domingo 
et al., 2009; Perales et al., 2009; García Yelo et al., 2014). 
This available data make it an ideal location to extend palaeo-
climate studies to other scientific fields such as light mineral 
petrology. To make petrological data more reliable for paleo-
climatic studies is important to consider the possible diage-
netic changes undergone by the sediments analyzed. Previous 
studies have indicated little or no influence of diagenesis on 
the sediments of Somosaguas site (Fesharaki, 2005; Domingo 
et al., 2009, 2012b).

Sand and sandstone petrography is a useful tool to deduce 
both the geotectonic setting (Ingersoll, 1978; Dickinson and 
Suczek, 1979; Dickinson and Valloni, 1980; Dickinson et 
al., 1983; Dickinson, 1985) and lithology of a source area 
(Blatt, 1967; Dickinson, 1970; Pettijohn et al., 1972; Basu, 
1976; Mack, 1981; Palomares and Arribas, 1993; Arribas and 
Tortosa, 2003). Factors such as relief, transport and climate 
are likely to modify the final composition of a sand deposit 
(Johnsson, 1993) and, together with source lithology and tec-
tonics, define the concept of provenance (Basu, 1985). Several 
studies have addressed the relationship between climate and 
sandy deposit composition in present-day sediments (Young 
et al., 1975; Basu, 1976; Suttner et al., 1981; Franzinelli and 
Potter, 1983) which serves as a base for palaeoclimatic in-
terpretations of older sediments. To better understanding 
the roles of these factors in determining sand composition, 
actualistic research has addressed fluvial to transitional and 
marine deposits worldwide (Ingersoll and Suczek, 1979; Le 
Pera and Critelli, 1997; Le Pera et al., 2001) including river 
sediments of the Madrid Basin (Arribas et al., 2000; Arribas 
and Tortosa, 2003; Le Pera and Arribas, 2004).

This paper addresses sand petrofacies formed during the 
Middle Aragonian (14.2Ma) at the Somosaguas palaeon-
tological site (Madrid Basin), the evolution of their source 
area (Spanish Central System) and the climate that prevailed 
over the middle Miocene in this area. To this end, we also 
used data reported for recent materials arising from the same 
source area as the sands of the Somosaguas site (Palomares et 
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al., 1990; Palomares and Arribas, 1993; Tortosa et al., 1988, 
1989, 1991) as well as data emerging from sedimentologi-
cal and clay mineralogy studies performed at the site itself 
(Mínguez Gandú, 2000; Fesharaki, 2005; Fesharaki et al., 
2007). Finally, this paper contributes to the existing database 
on the provenance of sands filling intracratonic basins.

2. Geological setting

The Somosaguas palaeontological site lies within the So-
mosaguas campus of the Complutense University of Madrid 
(López Martínez et al., 2000) in the district of Pozuelo de 
Alarcón, on the west side of Madrid (Fig. 1). This site consists 
of two superposed fossiliferous levels of middle Miocene age 
(Biozone E, MN5, middle Aragonian, 14.2Ma; Luís and Her-
nando, 2000) contained in arkosic sands deposited by alluvial 
fan systems of the Spanish Central System mountains found 
in the northwest of the Tajo Basin (Mínguez Gandú, 2000). 
From the middle Miocene and coinciding with the deposition 
of the Somosaguas sediments, alluvial systems associated 

with these mountains penetrated more towards the basin, as a 
result of renewed tectonic activity at this basin’s edge (Calvo 
et al., 1989a,b; De Vicente et al., 1996). 

The Somosaguas site belongs to the Intermediate Tectos-
edimentary Unit (Megías et al., 1983; Mínguez Gandú, 2000) 
and occupies a shaly corridor, the Majadahonda shaly cor-
ridor, which separates two sandy NW-SE trending bands that 
make up the Colmenar and Marchamalo alluvial fans (Torres 
et al., 1995; Carrasco et al., 2008). These sandy fans form 
part of the alluvial fan systems that supply detrital sediments 
to the Madrid Basin. The Central System, presumably the 
source area for the Somosaguas sediments (Fesharaki, 2005), 
in its western and northwestern zones shows a granite/gneiss 
composition while its eastern area contains low-grade meta-
morphic rocks (Calvo, 1989a).

3. Stratigraphic framework

Four NE-SW trending stratigraphic sections of the Somo-
saguas site were examined (Fig. 1b). The maximum eleva-

Fig. 1.- Location maps of the studied sediments. 
A) Geological map showing the distribution 
of facies in the Intermediate Unit of the Ma-
drid Basin Miocene sediments and the loca-
tion of the Somosaguas palaeontological site 
(modified from Calvo et al., 1989); B) De-
tailed localization of the stratigraphic sections 
(S, 3, 4 and N) sampled in this study..
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tion of these sections is 666 m. Geographic coordinates for 
the northermost and southernmost sections (Fesharaki et al., 
2007) are: South Somosaguas (40º25’53”N, 3º47’16”W) and 
North Somosaguas (40º25’56”N, 3º47’14”W). These two 
stratigraphic sections are spaced around 60 m from each oth-
er. Three main units have been reported for the four sections 
(Mínguez Gandú, 2000; Fesharaki, 2005; Fig. 2).

A magnetostratigraphic study (Montes et al., 2006) carried 
out in the Madrid basin estimated for the Miocene Intermedi-
ate Unit (Megías et al., 1983) a sedimentation rate of aproxi-
mately 4.0 to 4.7 cm/ka. As the Somosaguas site shows an 
average thickness of 5 m, a time-span of 105–125 ka can be 
estimated for the Somosaguas succession between the T1 and 
the top of the T3 unit (Domingo et al., 2009).

3.1. Lower Unit (T1)

This unit of variable thickness consists of poorly sorted 
clayey arkosic sands containing pebbles and reworked car-
bonate chips (Mínguez Gandú, 2000). Sands are matrix 
supported, mainly clayey (Fesharaki, 2005). According to 

Fesharaki et al. (2007), this unit contains as much as 70% 
phyllosilicates (di and trioctahedral micas, beidellites and 
montmorillonites, kaolinite, and scarce illite/smectite mixed 
layers). The unit’s microfossil content makes it one of the 
most productive sites in the Madrid Basin (López Martínez 
et al., 2000).

T1 has been interpreted as a mud flow deposit in a mid-
distal arid alluvial fan (Mínguez Gandú, 2000) resembling 
the so-called “Madrid Facies” described by Riba (1959) and 
Benayas et al. (1960).

3.2. Intermediate Unit (T2)

The thickness of the T2 unit is highly variable (25 cm to 
over 2 m) and the unit pinches out and disappears towards the 
north and east of the area (Mínguez Gandú, 2000; Díez-Can-
seco et al., 2012). It is comprised of levels of arkosic sands 
very rich in micas interbedded with brownish muddy levels.

The sand fraction of the sandy levels ranges from very fine 
to medium grain size, and experiments a gradual drop in mica 
content towards the top of the unit. Climbing ripples are fre-

Fig. 2.- Stratigraphic sections of the 
Somosaguas palaeontological site 
and GPR profile N27E (modified 
from Fesharaki et al., 2007). Black 
arrows indicate the positions of the 
samples in each level.
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quent and are replaced with high-energy parallel lamination 
towards the top (Mínguez Gandú, 2000; Fesharaki, 2005). 
This unit contains as much as 65% phyllosilicates (di and 
trioctahedral micas, beidellites and montmorillonites, kaoli-
nite, and scarce illite/smectite mixed layers; Fesharaki et al., 
2007). According to Mínguez Gandú (2000), its lithology is 
equivalent to that of the so-called “Guadalajara Facies” of the 
Madrid Basin. 

Brownish muddy levels are comprised of clay and silt and 
show a small percentage of fine and medium sand grains and 
carbonate chips. These levels are homogenous and some of 
them show good lateral continuity. Their mineral composi-
tion indicates phyllosilicate contents of up to 80% (Fesharaki 
et al., 2007). In addition, they are the richest levels in organic 
matter but lack fossil remains (López Martínez et al., 2000).

This unit has been interpreted as sheet flood deposits origi-
nating in a distal arid alluvial fan, alternating with episodes of 
clay settling in shallow lake environments (Mínguez Gandú, 
2000). Further interpretations include lacustrine deposits be-
tween coalescent alluvial fans or stream mouth lobes depos-
ited in a shallow mass of stagnant water (Hernández Fernán-
dez et al., 2006; Díez-Canseco et al., 2012, and references 
therein).

3.3. Upper Unit (T3)

The thickness of this unit varies from a few centimetres in 
the South Somosaguas section to more than 3 m in the North 
Somosaguas section. Dipping 2º to 3° southwards the unit 
has an erosive base overlying T2 and shows cross-bedding 
locally close to the base (Minguez Gandú, 2000). It consists 
of coarse grained arkosic sands with a silty-clay matrix, inter-
bedded with irregular clay levels. Phyllosilicates account for 
up to 60% of minerals. Their composition is similar to that 
described for the previous units (Fesharaki et al., 2007). Peb-
bles of granite, gneiss, quartzite and slate rock fragments 
(larger than 4 mm) have been observed. At the top of the unit, 
laminar calcretes interbedded with clastic sediments occur 
(Mínguez Gandú, 2000; Fesharaki, 2005). This facies is simi-
lar to the so-called “Madrid Facies” (Riba, 1959; Benayas et 
al., 1960; Mínguez Gandú, 2000).

The unit has been interpreted as the outcome of debris flow 
deposits generated in an arid alluvial fan system (Mínguez 
Gandú, 2000). Élez (2005) carried out a Geographic Informa-
tion System reconstruction of the layout of the fossil remains 
excavated between 1998 and 2004 field campaigns. This lay-
out evidenced three distinct levels in T3 unit (which were 
named by this author T3-1, T3-2 and T3-3 from the bottom 
to the top) with high fossil remains concentration (mainly 
macrovertebrates), separated by levels with lower contents of 
fossils.  Fesharaki (2005) also noticed that T3 have different 
levels with variable grain size distributions. This authors’ and 
subsequent researchers (Domingo et al., 2009) suggest that 
these variations have been related to a multiepisodic depo-

sitional process due to different pulses that produce several 
arkosic sedimentary bodies. To confirm this fact from a pet-
rographic point of view we have selected 6 samples (named 
N-4.1 to N-4.6; see Fig. 2) that are representative of the three 
levels of high fossil contents and the other three levels with 
lower fossil concentration. 

4. Methods

From the four stratigraphic sections, 18 samples representa-
tive of the three stratigraphic units (T1, T2, and T3) described 
by Fesharaki et al. (2007) were obtained (see Figs. 1b and 2 
for detailed stratigraphic locations).  

Sand samples were washed with 10% diluted H2O2 to re-
move organic matter leading to a complete disaggregate frac-
tion. The samples were then sieved to obtain the sandy frac-
tions (2-0.062 mm). All samples were artificially cemented 
with epoxy resin and thin sectioned for microscopy observa-
tion and analysis. Each thin section was etched and stained 
using HF and Na-cobaltinitrite to help identify feldspars 
(Chayes, 1952).  

Detrital modes in the sand fraction were quantified by pet-
rographic analysis of thin sections using the integrated point 
counting method (Gazzi, 1966; Dickinson, 1970; Zuffa, 
1985). This procedure combines the traditional method (Pet-
tijohn, 1957) with the Gazzi-Dickinson method (Ingersoll 
et al., 1984). To avoid size-composition effects (Basu et al., 
1975; Young, 1976; Zuffa, 1985) we only used the medium-
sized sand fraction (0.25 to 0.50 mm) for petrographic analy-
sis. More than 400 points were counted on each slide. Twenty 
five petrographic classes were considered and grouped into 
the four main categories defined by Zuffa (1980): noncar-
bonate extrabasinal (NCE), carbonate extrabasinal (CE), 
noncarbonate intrabasinal (NCI) and carbonate intrabasinal 
(CI) (Tables 1, 2). In addition, 4 grades of plagioclase altera-
tion were defined according to mineral transformation per-
centages (<25%, 25-50%, 50-75% or >75%). 

Point counting of grains was performed using a modified 
version of the punctual-micrometric method (Glagolev-
Chayes, 1933-1956): each mineral phase of a grain beneath 
the crosshairs was counted while freely moving the petro-
graphic stage in successive trajectories following the main 
dimension of the slide. 

In addition, we considered each of the four types of quartz 
grain (undulatory quartz, non-undulatory quartz, pollycrys-
talline quartz with 2-3 crystals per grain, pollycrystalline 
quartz with more than 3 crystals per grain) defined by Basu et 
al. (1975). Attention was also paid to other textural features 
of the quartz grains such as corrosion features (embayments), 
roundness, and fluid and solid inclusions (heavy minerals and 
micas).

Table 1 shows the petrographic classes and the main pet-
rographic indices and parameters considered in this study. 
Point-count results are summarized in Table 2. 
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PETROGRAPHIC CLASSES
QFR

(Pettijohn 
et al. 1972)

QmFLt
(Dickinson 
et al. 1983)

QmKP
(Dickinson 

1985)

P/F
(Dickinson 

1970)
NCE Monocrystalline non-undulatory quartz (Qmnu) Q Qm Qm ˗

Monocrystalline undulatory quartz (Qmu) Q Qm Qm ˗
Polycrystalline quartz (2-3 crystals) (Qp2-3) Q Qm Qm ˗
Polycrystalline quartz (>3 crystals) (Qp>3) Q Qm Qm ˗

Quartz in plutonic or gneissic (phaneritic) rock fragment  (Qrpg) R Qm Qm ˗
Quartz in meta-sedimentary rock fragment (Qrms) R Qm Qm ˗

K-feldspar (single crystal) (Ks) F F K F
Microcline (Kmic) F F K F

K-feldspar in phaneritic rock fragment (Krpg) R F K F
K-feldspar in meta-sedimentary rock fragment (Krms) R F K F

Plagioclase (single crystal) (Ps) F F P P
Plagioclase in phaneritic rock fragment (Prpg) R F P P

Shales and fillites (Shf) R Lt ˗ ˗
Fine-grained Schists (Sch) R Lt ˗ ˗

Unspecified chert (Ch) Q Lt ˗ ˗
Muscovite (single crystal) (Ms) ˗ ˗ ˗ ˗

Biotite (single crystal) (Bt) ˗ ˗ ˗ ˗
Muscovite in phaneritic rock fragment (Msrpg) R ˗ ˗ ˗

Biotite in phaneritic rock fragment (Btrpg) R ˗ ˗ ˗
Dense minerals (unspecified) (Dm) ˗ ˗ ˗ ˗

NCI Silty-clay soft grains, Intraclasts (In) ˗ ˗ ˗ ˗
Quartz in intraclasts (Qnci) ˗ Qm Qm ˗

K-feldspar in intraclasts (Knci) ˗ F K F
Plagioclase in intraclasts (Pnci) ˗ F P P

CI Micritic calcite (Mc) ˗ Lt ˗ ˗
 Table 1.- Key to petrographic classes and recalculated parameters. 

Petrographic Classes
Samples

T1 Unit T2 Unit T3 Unit
S-1 3-1 4-1 N-1 S-8 S-10 3-9 3-11 4-5 3-13 4-7 4-8 N-4.1 N-4.2 N-4.3 N-4.4 N-4.5 N-4.6

Qmnu Monocrystalline non-undulatory quartz 169 156 155 159 144 139 135 121 152 142 135 133 144 140 139 138 143 131
Qmu Monocrystalline undulatory quartz 38 39 43 42 42 43 38 37 50 33 39 34 35 34 33 31 29 24

Qp2-3 Polycrystalline quartz (2-3 crystals) 25 19 22 24 10 15 12 11 15 12 8 10 12 9 8 12 9 8
Qp>3 Polycrystalline quartz (>3 crystals) 16 17 17 14 14 9 10 10 9 8 10 5 9 11 6 3 5 3
Qrpg Quartz in phaneritic rock fragment 11 9 9 10 12 12 15 14 10 27 16 23 24 23 25 20 28 25
Qrms Quartz in meta-sedimentry rock fragment 1 0 2 2 2 2 2 1 1 2 2 2 1 2 1 0 1 1

Ks K-feldspar (single crystal) 100 90 94 99 86 94 88 77 91 83 75 79 81 85 79 79 84 81
Kmic Microcline 2 6 4 4 6 6 5 6 7 7 9 8 9 4 7 9 7 7
Krpg K-feldspar in phaneritic rock fragment 6 10 5 7 15 17 15 12 13 19 21 18 19 18 22 20 22 25
Krms K-feldspar in meta-sedimentry rock fragment 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1

Ps Plagioclase (single crystal) 44 45 43 48 53 55 57 54 49 59 57 60 57 52 59 61 64 64
Prpg Plagioclase in phaneritic rock fragment 7 10 9 7 9 8 5 7 6 13 10 10 12 11 12 13 15 17
Bt Biotite (single crystal) 7 1 7 7 20 18 26 17 8 3 8 2 11 9 4 5 4 5
Ms Muscovite (single crystal) 5 7 3 3 2 7 6 6 10 6 5 5 6 6 4 4 6 5

Btrpg Biotite in phaneritic rock fragment 0 0 0 0 9 3 3 5 2 0 1 0 4 1 0 0 0 0
Msrpg Muscovite in phaneritic rock fragment 0 0 0 0 0 2 1 0 3 0 2 1 1 0 1 2 1 0

Ch Unspecified chert 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 2 1 0
Shf Shales and fillites 0 1 0 4 1 0 0 0 0 0 0 2 0 0 2 1 0 0
Sch Schist 2 1 2 6 1 1 2 2 1 4 3 1 1 1 4 3 4 2
Dm Dense minerals (unspecified) 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
In Silty-clay soft grains, intraclasts 8 7 6 3 6 6 7 7 2 7 9 7 10 7 7 6 12 6

Qnci Quartz in intraclast 1 5 5 11 4 9 7 7 5 7 7 8 8 3 3 0 2 1
Knci K-feldspar in intraclasts 0 3 2 2 4 1 2 3 1 2 3 2 4 1 1 2 2 0
Pnci Plagioclase in intraclasts 1 0 2 4 4 2 1 1 4 2 2 1 3 5 1 0 4 1
Mc Carbonates (micritic calcite) 6 9 4 7 11 16 15 20 2 9 14 11 15 15 10 9 22 29

TOTAL 449 435 435 463 457 465 452 419 442 446 438 422 466 437 428 421 465 436
Table 2.- Microscopy point counting data. 
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several authors: Pettijohn et al. (1972) (QFR); Dickinson et 
al. (1983) (QmFLt); Dickinson (1985) (QmKP)  ; and Arri-
bas et al. (2003), which is based on the quartz categories de-
fined by Basu et al. (1975) (QmrQmoQp) (Table 4). These 
diagrams describe the main composition of sands and the 
textural types of some species as the quartz types (Qnu, Qu, 
Qp2-3, Qp>3) defined by Basu et al. (1975) and modified by 
Tortosa et al. (1991) for the Spanish Central System.

of all grains, yet towards the top of T3 proportions reached 
7%. Based on their textural features, we interpreted these 
grains as intrabasinal origin grains (CI).

5.2. Modal Composition of Sands

The modal composition of the sands’ framework is repre-
sented in several ternary diagrams following the criteria of 

Units Samples Petrographic Parameters
Q F R Qm F Lt Qm K P Qmr Qmo Qp Qnu Qu Qp2-3 Qp>3

T3

N-4.6 42.7 39.1 18.3 49.4 50.1 0.5 49.6 29.3 21.1 78.9 14.5 6.6 82.9 15.2 --- 1.9
N-4.5 45.3 37.5 17.2 51.7 47.1 1.2 52.3 27.7 20.0 76.9 15.6 7.5 80.8 16.4 --- 2.8
N-4.4 47.2 37.8 15.0 51.8 46.7 1.5 52.6 28.4 19.1 75.0 16.8 8.2 76.2 17.1 6.6 ---
N-4.3 46.7 36.4 16.8 53.5 45.0 1.5 54.3 27.5 18.2 74.7 17.7 7.5 78.1 18.5 --- 3.4
N-4.2 49.6 36.1 14.3 55.6 44.1 0.3 55.8 27.1 17.1 72.2 17.5 10.3 75.7 18.4 --- 5.9
N-4.1 48.9 35.9 15.2 55.6 44.2 0.2 55.7 27.0 17.2 72.0 17.5 10.5 76.6 18.6 --- 4.8
4-8 47.2 38.1 14.8 54.3 44.9 0.8 54.7 27.2 18.1 73.1 18.7 8.2 77.3 19.8 --- 2.9
4-7 49.2 36.2 14.6 54.4 44.9 0.8 54.8 27.8 17.4 70.3 20.3 9.4 73.4 21.2 --- 5.4
3-13 47.6 36.3 16.1 54.9 44.2 1.0 55.4 26.9 17.7 72.8 16.9 10.3 77.6 18.0 --- 4.4

T2

4-5 55.3 35.9 8.8 58.5 41.3 0.2 58.6 27.1 14.3 67.3 22.1 10.6 72.0 23.7 --- 4.3
3-11 50.3 38.3 11.5 55.2 44.0 0.8 55.7 27.1 17.2 67.6 20.7 11.7 72.0 22.0 --- 6.0
3-9 50.3 38.7 11.1 55.6 43.9 0.5 55.9 28.1 16.1 69.2 19.5 11.3 73.8 20.8 --- 5.5

S-10 50.7 38.2 11.1 55.4 44.3 0.2 55.6 28.6 15.8 67.5 20.9 11.7 72.8 22.5 --- 4.7
S-8 52.2 35.7 12.1 55.7 43.3 1.0 56.3 27.4 16.3 68.6 20.0 11.4 72.0 21.0 --- 7.0

T1

N-1 56.1 35.4 8.5 59.1 38.6 2.3 60.5 25.9 13.6 66.5 17.6 15.9 74.0 19.5 --- 6.5
4-1 58.5 34.8 6.7 61.1 38.4 0.5 61.4 25.5 13.1 65.4 18.1 16.5 72.1 20.0 --- 7.9
3-1 57.3 35.0 7.7 59.6 39.9 0.5 59.9 26.7 13.4 67.5 16.9 15.6 73.6 18.4 --- 8.0
S-1 58.9 34.7 6.4 61.7 37.8 0.5 62.0 25.7 12.4 68.1 15.3 16.5 75.8 17.0 --- 7.2

Table 4.- Recalculated petrographic parameters for the Somosaguas sands. Qmr, Qmo, Qp are used sensu Arribas et al. (2003). 

Fig. 3.- Grades of alteration of plagioclase grains. A) Histograms representing the variation in alteration detected in plagioclases from the three 
units (T1, T2, T3) of the Somosaguas sedimentary sequence. Grade 1 = 0-25% alteration; grade 2 = 25-50% alteration; grade 3 = 50-75% 
alteration; grade 4 = more than 75% alteration. B) Microphotographs of four grains representative of these alteration grades. Numbers in 
each photograph indicate the alteration grade (Scale bars 0.1 mm).

A B
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Granite and gneiss rock fragments clearly predominated over 
other rock fragments. In general, phaneritic rock fragment con-
tents increased from base to top in the stratigraphic sequence. 
These fragments mostly contained few crystals (2-5).

Low and medium-rank metamorphic rock fragments (Fig. 
4a) were unevenly distributed, usually representing less than 
5% of the total number of grains (Table 2).

Meta-sedimentary rock fragments appeared in low but con-
stant proportions throughout the levels examined. Crystal 
sizes are highly variable in some fragments (Fig. 4b).

Micas: To this group, we assigned individual crystals of 
biotite and muscovite as well as crystals of these minerals in 
phaneritic rock fragments. Unit T2 showed the highest mica 
content followed by T3 and then T1. In some samples from 
T2, micas accounted for up to 50% of all grains.

Non Carbonate Intrabasinal grains (NCI) 

This category included small silty clay aggregates (intra-
clasts) incorporating quartz, feldspar and mica grains. At all 
levels and in all stratigraphic sections intraclasts represented 
less than 3% of all grains. Within the aggregates, detrital 
grains larger than 0.062 mm were frequently observed. 

Carbonate grains (C) 

Assigned to this class, were small micrite grains of calcite 
composition of rounded irregular shapes. Frequently, quartz 
and feldspar grains were coated with micritic material. Car-
bonate micrite grains also showed clay minerals inclusions 
(Fig. 4c). Commonly, these grains represented less than 4% 

5. Results

5.1. Grain types

Non Carbonate Extrabasinal grains (NCE):

These grains were by far the most abundant and included 
quartz, feldspar, rock fragments, heavy minerals and micas. 

Quartz: In all samples, non-undulatory monocrystal-
line quartz grains (30.7% to 38.5%) were clearly dominant 
over undulatory quartz grains (5.6% to 11.4%). In addition, 
monocrystalline quartz varieties were more abundant than 
pollycrystalline varieties (up to sevenfold in quantity) in all 
the samples examined. Most polycrystalline quartz grains 
showed between 2 and 5 crystals per grain. Polycrystalline 
quartz grains with more than 10 crystals per grain usually 
showed a preferred orientation of crystals. Included in this 
category, were all quartz crystals comprising phaneritic rock 
fragments.

About 10% of the quartz crystals had mica or heavy min-
eral inclusions (mainly tourmaline, rutile and apatite, but also 
opaques, garnet and zircon). The proportions of moderately 
rounded quartz grains were practically constant at less than 
10% throughout all the stratigraphic sections. 

Feldspars: This category included single crystals of K-
feldspar, microcline and plagioclase, as well as potassium 
feldspar and plagioclase included in intraclasts, phaneritic 
rock fragments, and sedimentary rock fragments (meta-aren-
ites). Feldspars with cross-hatched twins were assigned to the 
microcline variety.

Among the feldspars, K-feldspar grains predominated over 
alkaline ones, and orthoclase crystals over the microcline va-
riety. Microcline grain proportions remained fairly constant 
in all the stratigraphic sections, never exceeding 10%. 

From base to top of the stratigraphic sections, we observed 
a significant increase in slightly altered grains (<25% altera-
tion) and a decrease in the most altered grains (> 75% altera-
tion) (see Fig. 3a and Table 3). The extent of plagioclase alter-
ation in a single sample was highly variable. Slightly altered 
crystals coexisted with those completely replaced by phyllo-
silicates. In some crystals preferential alteration on weakness 
planes, fractures and twin planes could be observed (Fig. 3b).

Rock fragments: We considered as rock fragments all ag-
gregates of two or more mineral species, none of which com-
prised 90% of the section. Rock fragments bearing crystals 
smaller than 0.062 mm were recorded as “labile” (L) ac-
cording to the criteria of Dickinson (1970), and were usu-
ally aphanitic fragments of phyllites, slates and schists. Chert 
fragments are also assigned to this group (L) (Dickinson, 
1970; Dickinson et al., 1983; Zuffa, 1980). Rock fragments 
composed of crystalline units larger than 0.062 mm (phan-
eritic rock fragments, R) were interpreted as the constituent 
minerals of the rock fragment (Table 2). This petrographic 
class mainly includes phaneritic rock fragments (granites and 
gneisses). Also included in this category were fragments of 
metasedimentary rocks (Lms). 

Units Samples Grades of plagioclase alteration
1 2 3 4

T3

N-4.6 15 43 20 4
N-4.5 12 40 25 6
N-4.4 9 33 28 4
N-4.3 7 30 30 5
N-4.2 5 26 30 7
N-4.1 5 29 32 6
4-8 10 33 24 4
4-7 8 29 25 7
3-13 9 34 26 5

T2

4-5 6 20 24 9
3-11 5 25 27 5
3-9 6 25 27 5
S-10 6 25 28 6
S-8 6 26 29 5

T1

N-1 3 20 29 7
4-1 3 17 26 8
3-1 3 18 27 7
S-1 3 16 26 7

Table 3.- Number of plagioclases in each sample grouped into the 
defined four stages of alteration (phyllosilicate transformation). 
Grade 1 (0-25%) refers to an altered surface area in a plagioclase 
section under 25% and so on for grades 2 (25-50%), 3 (50-75%) 
and 4 (75-100%). Grade 4 indicates very altered grains or those that 
have passed completely to phyllosilicates. 
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Fig. 4.- Photomicrographs (crossed polars) of the components of the Somosaguas sediments. A) Metamorphic rock fragments; B) Meta-
sedimentary rock fragment showing highly variable crystal sizes; C) Carbonate micrite grain with detritus and clay mineral inclusions; D) 
Quartz grain with rutile needle inclusions; E) Quartz grain with mica inclusions; F) Rounded quartz grain; G) Embayed quartz grain (Scale 
bars 0.25 mm).
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middle Miocene (Calvo et al., 1989a,b; De Vicente et al., 
1996). 

The QmKP diagram (Fig. 5c; Dickinson, 1985) reveals 
clear differences in the feldspar contents of the three units, 
showing a similar trend to that indicated by the diagrams de-
scribed above. Thus, average K-feldspar contents increase 
from 26% in T1 to 27.7% in T3, being this increase most evi-
dent at the top of the sequence. Plagioclase (P) grains show a 
greater increase with average contents of 13.1, 15.9 and 18.4 
observed for T1, T2 and T3, respectively.

The QmrQmoQp diagram (Fig. 5d; Basu et al., 1975; Ar-
ribas et al., 2003) shows faint variations that could reflect 
discrete differences in source area composition. T1 appears 
separated from the other two units due to its greater polycrys-
talline quartz (Qp) contents, while T2 and T3 differ in that 
non-undulatory quartz (Qmr) grains predominate over undu-
latory quartz (Qmo) grains in T3.

In the Qnu, Qu, Qp2-3, Qp>3 rhombic diagram (Fig. 6; Basu 
et al., 1975; Tortosa et al., 1991), samples of the Somosaguas 
sediments are plotted in the plutonic-metamorphic high grade 
provenance field. Samples of T2 and T3 sediments show a 
tendency to move away from the Qp2-3 apex and the T3 data 
tend to approach the Qnu vertex.

The main composition shown in the QFR diagram (Fig. 
5a; Pettijohn et al., 1972) indicates an arkosic sediment, ex-
hibiting the prevalence of quartz (Q) and feldspar (F) grains 
over total rock fragments (R), that does not exceed 20% in 
the medium-size sand fraction examined. These fragments 
are more abundant in the T3 unit, and coincide with the lev-
els showing the higher feldspar contents. Sandy levels with 
lower feldspar contents occur in T1, also corresponding to 
levels with high quartz proportions (~ 60%). Sand composi-
tion from T1 to T3 clearly shows a trend towards increasing 
F and R contents.

In the QmFLt diagram (Fig. 5b; Dickinson, 1970), the 
petrofacies of the sand deposits appear quartz feldespathic 
in nature with provenance types related to geotectonic set-
tings described by Dickinson et al. (1983) as transitional 
between “transitional continental” and “basement uplift”. 
The samples are mainly plotted on the QmF side and show 
scarce amounts of labile rock fragments. From T1 to T3, a 
clear trend is observed towards higher feldspar contents in 
the uppermost sandy levels (Fig. 5b). The diagnosis of the 
geotectonic environment is straightforward, as the depos-
its are related to “basement uplift” environments created 
in response to the activity of the Central System during the 

Fig. 5.- Ternary plots describing the composition of the Somosaguas sands. A) QFR diagram (Pettijohn et al., 1972); B) QmFLt dia-
gram (Dickinson, 1970); C) QmKP diagram (Dickinson, 1985); D) QmrQmoQp diagram (Basu et al., 1975; Arribas et al., 2003).
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metamorphic rocks in the source area (Qmr/Qm; Qp/Qt), and 
are also sensitive to climate (Plagioclase/K-Feldspar; P/F) 
(Dickinson, 1970; Basu, 1976; Suttner and Dutta, 1986). Bi-
variate logratio of Quartz/Feldspar versus Quartz/Rock frag-
ments (ln Q/F vs. ln Q/R) plots are used to determine climate 

5.3. Petrographic parameters

To assess changes in sand composition, we established a 
set of indices (Table 5). These indices indicate the maturity 
of a deposit (Qp + Qm/ F + R; Qp/ F + R), the presence of 

Fig. 6.- Point-count data derived from a medium-grained quartz population plotted on the diamond-shaped provenance–discrimination dia-
grams of: A) Basu et al. (1975); B) Tortosa et al. (1991); Qnu = non-undulatory monocrystalline quartz; Qu = undulatory monocrystalline 
quartz; Qp2-3 = polycrystalline quartz with 2-3 crystals; Qp>3 = polycrystalline quartz with more than 3 crystals.

Units Samples Petrographic Indexes
Qp+Qm/ F+R Qp / F+R Q/F Q/R Qmr/Qm Qp/Qt P/F Lm/Rt

T3

N-4.6 0.70 0.05 1.10 2.35 0.85 0.07 0.42 0.03
N-4.5 0.80 0.06 1.22 2.61 0.83 0.08 0.42 0.05
N-4.4 0.90 0.07 1.22 3.02 0.82 0.08 0.40 0.07
N-4.3 0.90 0.07 1.29 2.82 0.81 0.08 0.40 0.09
N-4.2 1.00 0.10 1.34 3.52 0.80 0.10 0.39 0.02
N-4.1 1.00 0.10 1.35 3.35 0.80 0.11 0.39 0.02
4-8 0.90 0.07 1.27 3.33 0.80 0.08 0.40 0.05
4-7 1.00 0.09 1.36 3.49 0.78 0.09 0.39 0.05
3-13 0.90 0.09 1.31 3.06 0.81 0.10 0.40 0.06

T2

4-5 1.30 0.13 1.52 6.42 0.75 0.11 0.35 0.03
3-11 1.00 0.12 1.32 4.43 0.77 0.12 0.39 0.05
3-9 1.10 0.11 1.32 4.70 0.78 0.11 0.36 0.05

S-10 1.10 0.12 1.36 4.78 0.76 0.12 0.36 0.02
S-8 1.10 0.12 1.40 4.20 0.77 0.11 0.37 0.04

T1

N-1 1.30 0.20 1.59 6.94 0.79 0.16 0.35 0.28
4-1 1.40 0.23 1.67 8.96 0.78 0.16 0.34 0.07
3-1 1.30 0.21 1.64 7.61 0.80 0.16 0.34 0.07
S-1 1.40 0.24 1.69 9.22 0.81 0.17 0.33 0.07

Table 5.- Numerical values of the petrographic indices applied to the point counting data.
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eas in the Central System, our results ​​are consistent with ar-
eas defined as mixtures of granites (about 60%) and gneisses 
(about 40 %), though with some influence of medium-low 
grade metamorphic materials as indicated by the labile rock 
fragments observed (Table 2). In addition, the presence in 
Somosaguas of rock fragments composed of oriented quartz 
and mica as well as unstable polycrystalline quartz (Young, 
1976), showing more than 10 crystals in some cases, indi-
cates the existence of low grade metamorphic materials in 
the source area. 

In the sediments examined, non-undulatory quartz pre-
dominated over undulatory quartz, and we detected a smaller 
percentage of polycrystalline quartz (Qnu/Qu/Qp2-3/Qp>3 = 
71/18/6/5), suggesting a gneissic-plutonic provenance (Basu 
et al., 1975; Tortosa et al., 1991). These last authors argued 
that this distinction is not entirely reliable in discerning be-
tween the larger contribution of a granitic versus a gneissic 
origin, as this depends on factors related to each single plu-
ton. While sand samples of units T1 and T2 are plotted in 
middle-upper rank metamorphic fields (gneisses), samples of 
T3 seemed to be more related to plutonic (granites) sources 
(Table 2, Fig. 6). 

Among the polycrystalline quartz grains, a prevalence of 
grains with 2 to 5 crystals, as well as rock fragments showing 
less than 5 crystals supports an origin for the Somosaguas 
sediments in plutonic source areas over high grade metamor-
phic sources. However, among the feldspars, K-feldspars out-
numbered plagioclases. This distribution approaches what we 
might expect for a gneissic provenance area (Palomares and 
Arribas, 1993).  The low proportion of zoned plagioclases 
observed by point-counting (Tortosa et al., 1989) is consist-
ent with this notion. The gradual decrease in the Qp/Qt rate 
(Fig. 7) may be indicative of a slightly greater metamorphic 
contribution at the base of the sequence (T1). The Qmr/Qm 
ratio varies slightly suggesting that T1 and T2 receive more 

and physiographic conditions (Weltje et al., 1998). Another 
indicator used in this study was the ratio of Schist plus Slate 
(labile) to total rock fragments (Lm/Rt). 

Figure 7 provides the values of some of these indices for the 
different units of a synthetic stratigraphic section. The Qmr/
Qm index shows a decreasing pattern across the T1 and T2 
units and then increases, especially towards the top of the se-
quence (T3). Qp/Qt and P/F indices show opposite trends: the 
former decreases upwards through the section and the later 
increases in the same direction. Low rank metamorphic rock 
fragments (labile) expressed in relation to total rock fragments 
(Lm/Rt) are low for units T2 and T3 and slightly higher for 
T1. The Qp + Qm/ F + R index (Table 5) was low for all 
units and levels, although it can be observed that this index 
decreases from T1 (1.4) to T3 (0.7). The Qp/ F + R index dis-
plays extremely low values, but like the previous index, val-
ues decrease from the base of T1 to the top of the stratigraphic 
sections (T3). Both indices were used to represent Suttner and 
Dutta’s (1986) diagram for climate analysis (Fig. 8). All the 
indices and parametres used in this study show differences 
between the six samples (Fig. 2) collected from the T3 unit 
(Tables 3, 4, 5; Fig. 7). All the variations and graphs of figures 
7 and 8 will be explained in the discussion section. 

6. Discussion

6.1. Provenance and geotectonic setting

The average composition of the Somosaguas sands, taking 
into account the enrichment in quartz grains and reduction 
in rock fragment grains during transport (Table 4, Fig. 5b), 
resembles that of the mixed granite-gneiss source areas of 
the Central System characterized by Tortosa et al. (1988). 
Comparing these data with the average values obtained by 
Palomares and Arribas (1993) for different mixed source ar-

Fig. 7.- Vertical composition trends indicated by the indices Qmr/Qm; Qp/Qt; P/F and Lm/Rt. Represented values are averages for 
similar levels (samples) of the T1, T2 and T3 units in a synthetic stratigraphic section representative of the Somosaguas area.
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rocks (Table 2) indicates a mixed composition source area 
(Mack, 1981). However, as several authors have suggested 
(Palomares and Arribas, 1993; Le Pera and Arribas, 2004), 
the abundance of these grains in the sediments is not directly 
related to their abundance in the source area. Even when each 
lithology have a different Sand Generation Index (Palomares 
and Arribas, 1993; Arribas et al., 2000; Arribas and Tortosa, 
2003), we can define the extent of intervention of each lithol-
ogy in the final mixture based on other features. For example, 
a drop is produced in the Lm/Rt index indicating a smaller 
contribution of low-grade metamorphic rocks towards the top 
of the sedimentary succession. This finding may be explained 
by gradual loss of the metamorphic cover in the source area.

Source area lithology is highly dependent on the geotec-
tonic context in which it originated (Dickinson, 1985, 1988). 
Modal data for the Somosaguas samples plotted on the Qm-
FLt diagram (Dickinson et al., 1983) appear between the 
“transitional continental” and “basement uplift” fields and 

from metamorphic source areas than T3. The P/F index (Table 
5), used by several authors as a provenance indicator (Dick-
inson, 1970; Ingersoll, 1978), increases slightly towards the 
top of the Somosaguas sedimentary sequence. This increase 
could indicate the prevalence of granitoids and gneisses over 
low-grade metamorphic rocks towards the T3 unit (Fig. 7). 
Data on mineral inclusions within quartz grains can provide 
additional information. The presence at all levels of quartz 
crystals with mica inclusions (Fig. 4e) is indicative of source 
areas with metamorphic influence (gneissic and schistose; 
Tortosa et al., 1988) while the presence of quartz grains with 
rutile needles inclusions (Fig. 4d) suggests granulite facies 
rocks at the source area (Mason, 1990; Di Giulio et al., 1999). 
The presence of white mica in all the units indicates a gran-
ite provenance, mainly one of peraluminous granitoids (Di 
Giulio et al., 1999). 

Our observation of labile rock fragments (slates and 
schists) and fragments of meta-sedimentary and phaneritic 

Fig. 8.- Diagrams used for the palaeoclimate inferences. A) Qp + Qm/ F + R versus Qp/ F + R log-diagram (after Suttner and Dutta, 1986); B) 
The effect of source rock and climate on the composition of the Somosaguas samples was determined using Suttner’s et al. (1981) diagram; C) 
Semi-quantitative weathering index based on semi-quantitative estimates for climate and relief (Weltje, 1994).
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specific characteristics of each section of the Somosaguas 
sediments. Here we used the diagrams proposed by Suttner 
et al. (1981), Suttner and Dutta (1986) and Weltje (1994), in 
addition to other indices (Fig. 8) for the interpretation of cli-
mate signals from petrographic data. Figure 8a illustrates the 
variations produced in the Qp/F + R and Qp + Qm/ F + R in-
dices (Suttner and Dutta, 1986) indicating a trend from T1 to 
T3 towards an arid climate according to increasing feldspar 
and rock fragment contents. Figure 8b shows a similar trend 
from the more humid plutonic area (T1 and T2) to the more 
arid plutonic area (T3) (Suttner et al., 1981). The bivariate 
plots of Q/F and Q/R shown in Figure 8c for the Somosa-
guas samples yielded different weathering indices deduced 
from Weltje et al. (1998). Thus, samples from T1 showed the 
higher weathering index (WI = 1 and 2), while indices for T2 
and T3 were lower (WI = 0), but always plotted on the dia-
gram side assigned to the plutonic source area. This tendency 
is indicative of an increase in aridity from T1 to T3.

For a given sedimentary basin with defined geotectonic 
characteristics, differences in alluvial sand composition indi-
cate climate variations and these can therefore be compared 
(Suttner and Dutta, 1986). Assuming a granite-gneissic prov-
enance and medium grain size, the ratios ​​Q/F and P/F can be 
used as climate guides (Basu, 1976; Table 5). Following Basu 
(1976), Q/F values lower than 1 correspond to drier areas and 
those greater than 1 to less arid areas. Hence, the trend ob-
served is once again one of increasing aridity when moving 
from T1 to T3. Similarly, our P/F values increasingly closer 
to 0.5 indicate an increase in aridity towards the top of the 
sequence.

The trend shown in the QFR diagram (Fig. 5b) is indicative 
of a decrease in mineralogical maturity of the Somosaguas 
sandy deposits and thus an increase in dry conditions (Blatt, 
1967; Basu, 1976). The QmFLt and QmKP diagrams (Figs. 
5c,d) indicate the preservation of feldspars towards the top 
of the Somosaguas succession, and a remarkable increase in 
plagioclase grains towards the T3 unit. Contrary to what we 
might expect for distal sediments (Breyer and Bart, 1978; 
Mack, 1978; Cavazza et al., 1993; Ingersoll et al., 1993; 
Arribas et al., 2000), T2 shows no significant reduction in 
rock fragments and feldspars relative to the other units. This 
could reflect the fact that increasing aridity will help preserve 
a higher percentage of feldspar and rock fragment grains. 
Another proof that points to an increse of the aridity is the 
presence of laminar calcretes interbedded with siliciclastic 
debris flow deposits in the upper part of unit T3, because this 
calcretes are indicative of semi-arid conditions (Suttner and 
Dutta, 1986; Alonso-Zarza, 2003). The increase towards the 
top of the succession of less altered plagioclase crystals could 
also suggest a decrease in precipitation and thus in chemical 
alteration of plagioclases (Fig. 3, Table 5).

Climate affects the composition of sands through its influ-
ence on pedogenic processes and chemical weathering-leach-
ing, which destroy the bedrock (Basu, 1976; James et al., 
1981; Suttner et al., 1981). The pedogenesis process converts 

display a composition trend from T1 to T3 towards the “base-
ment uplift” field (Fig. 5c). These intermediate or undefined 
situations were identified by Mack (1984), who related the 
presence of quartzo-feldespathic rock fragments, such as 
those observed in the Somosaguas sediments, with granite-
gneiss source areas in basement uplift contexts and their sub-
sequent erosion. According to Ingersoll and Suczek (1979), 
the prevalence of monocrystalline quartz, feldspar and mica 
suggests an origin for the sands in crystalline uplifted base-
ments of granitic to granodioritic terrains and inputs from 
low to high-grade metasediments. This inferred provenance 
is consistent with the regional geological setting, as the out-
come of a period of Alpine tectogenesis of the Spanish Cen-
tral System (Álvaro et al., 1979). 	

The importance of recycling processes in the genesis of de-
tritic material (sedimenticlastics sensu Arribas and Tortosa, 
2003) has been stressed by several authors (Blatt and Jones, 
1975; Ingersoll, 1983; Garrels, 1986) and several criteria for 
the petrographic differentiation of recycled sediments have 
been defined (Folk, 1974; Zuffa, 1987; Arribas et al., 1990; 
Arribas and Tortosa, 2003). The presence of meta-sedimen-
tary rock fragments (Fig. 4b), of rounded quartz grains (Fig. 
4f) together with other highly angular grains, etc., could be 
indicative of recycling processes occurring in the Somosa-
guas sediments. These would be perhaps related to tectonic 
reactivation of the Spanish Central System mountains during 
the middle Miocene. 

Finally, the indices and parameters used in this study (Ta-
bles 3, 4 and 5) serve to identify  differences between the six 
samples collected from the unit T3 (N-4.1 to N-4.6), confirm-
ing the variations observed by Fesharaki (2005), Élez (2005) 
and Hernández Fernández et al. (2006) between the different 
T3 levels. Such differences could point to a multi-episodic 
process, with sediments deposited by different pulses.

6.2. Palaeoclimate analysis

As revealed by Fesharaki et al. (2007), who examined se-
quences of phyllosilicate alteration and neoformation, physi-
cal and chemical alteration in the Somosaguas area is likely 
to have been moderate with a tendency towards reduced 
chemical weathering when approaching unit T3 (sensu the 
physicochemical alteration diagram proposed by Wilson, 
1969). In work by Carrasco et al. (2008) conducted on clays 
associated with calcretes in Somosaguas, results indicate an 
average annual rainfall of 100-500 mm, reflecting a semiarid 
to arid environment during the middle Miocene of this area 
according to the criteria of Khadkikar et al. (2000). Moreo-
ver, Hernández Fernández et al. (2006) defined a seasonal 
environment with low torrential type precipitations, and 
temperatures falling from 26.6 to 15.7 degrees in the period 
represented by the deposition of T1 to the top of the T3 unit 
(Domingo et al., 2009). 

In order to confirm this palaeoclimatic evolution several 
diagrams have been used to obtain general trends but not the 
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distinguished in the analyzed sediments, which is consistent 
with the multiepisodic deposition of the Somosaguas depos-
its. All these processes are consistent with the geotectonic 
setting of an “uplifted basement” infered for this area. 
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