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The role of DICKKOPF (DKK)-1 in human cancer is controversial. DKK-1 behaves as an inhibitor of the 
canonical Wnt/β-catenin signaling pathway acting at the plasma membrane, although several studies have 
proposed effects that are independent of the inhibition of β-catenin transcriptional activity, in some cases 
mediated by the activation of c-Jun N-terminal kinase (JNK). Recently, a proportion of DKK-1 protein has been 
found within the nucleus of human intestinal epithelial cells following an apical-to-basal crypt decreasing 
gradient, and in that of colon carcinoma cells. Moreover, we show here that in the human mammary gland 
DKK-1 is also present within the nucleus of many differentiated luminal epithelial cells and in that of a small 
proportion of myoepithelial cells. Nuclear DKK-1 binds to actively transcribed chromatin and regulates the 
expression of specific genes, some of which are involved in cell proliferation, survival and stemness, and in the 
defense against xenobiotics. This may explain the finding that while DKK-1 is downregulated more rapidly in 
the nucleus than in the cytosol during colon carcinoma progression, its expression remains high in a percentage 
of patients who do not respond to chemotherapy. Available data suggest that the accumulation of DKK-1 in the 
nucleus of colon carcinoma cells depends on signals from the surrounding tumor microenvironment. 
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Dickkopf-1 (Dkk-1) gene, “big head” in German, was 
originally discovered in Xenopus laevis as an embryonic 
head inducer and a potent antagonist of Wnt signaling [1]. In 
agreement, Dkk-1-/- mice are embryonic lethal and lack head 
structures anterior to the mid-hindbrain boundary [2]. Human 
DICKKOPF1 (DKK-1) is the founding member of a family 
composed of four related genes, DKK-1 to 4, and a close 
homologue called DKK-like protein 1 (DKKL1) [3]. DKK-1 
encodes a secreted glycoprotein, DKK-1, of 37 kDa with two 
conserved cystein-rich motifs [3]. DKK-1 binds to Wnt 
co-receptors LRP5 and LRP6 [4-7] and inhibits the 
engagement of Wnt-Frizzled-LRP ternary complexes at the 
plasma membrane, thus avoiding Wnt/β-catenin (also called 

canonical) signaling. DKK-1 also binds a second class of 
high affinity receptors, Kremen 1 and 2 [8]. Kremen proteins 
form ternary complexes with DKK-1 and LRPs, which 
results in endocytosis of the complex and therefore removal 
of LRPs from the plasma membrane and inhibition of 
Wnt/β-catenin signaling [8]. Kremen proteins are not 
universally required for DKK-1 function, as revealed in mice 
deficient in kremen genes [9] and as shown by the capacity of 
DKK-1 to modulate canonical signaling via direct blocking 
of Wnt-LRP interactions [6]. Interestingly, DKK-1 not only 
encodes a Wnt antagonist but is also a β-catenin/TCF target 
gene [10-12], and thus acts as a negative feedback regulator of 
the pathway. 
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Wnt proteins perform a vast number of actions in 
organisms, both during development and in adult life [13]. As 
a Wnt inhibitor, DKK-1 also affects numerous 
developmental processes such as body axis patterning or 
somitogenesis, as well as bone formation in the adult 
organism [14]. Remarkably, several authors have reported 
Wnt-independent actions of DKK-1. Expression of DKK-1 in 
β-catenin-deficient mesothelioma cell lines suppresses cell 
growth and induces apoptosis, apparently through activation 
of the c-Jun N-terminal kinase (JNK) pathway [15]. Likewise, 
DKK-1 induces apoptosis in human placental 
choriocarcinoma cells independently of Wnt/β-catenin 
signaling and requires JNK activity [16]. JNK activation is 
also responsible for neurite formation in Ewing’s sarcoma 
cells treated with DKK-1 [17]. Moreover, ectopic expression 
of DKK-1 in HeLa cervical carcinoma cell line results in 
decreased growth in soft agar and tumor formation in 
athymic mice independently of β-catenin/TCF transcriptional 
activity [18]. In breast cancer cell lines DKK-1 also has 
β-catenin-independent tumor suppressor effects which 
correlate with increased activity of 
Ca2+/calmodulin-dependent protein kinase II pathway [19]. In 
line with these studies, we have reported Wnt-independent 
tumor suppressor effects of DKK-1 in colon carcinoma cells 
[20]. However, recent findings indicate that these cells can 
respond to exogenous and autocrine Wnt factors despite 
having mutations that stabilize β-catenin and thus the 
canonical pathway is activated intracellularly [21]. It is thus 
necessary to re-examine whether those effects are completely 
independent of canonical Wnt signaling. In summary, 
although accumulated evidence suggests that DKK-1 has 
functions other than inhibiting Wnt/β-catenin signaling at the 
plasma membrane, this issue remains open at least in some 
systems. 

The role of DKK-1 in human cancer is controversial. It 
has been shown to be both upregulated and downregulated 
depending on the type of tumor. The strongest evidence of 
DKK-1 overexpression comes from myeloma and 
hepatocellular carcinoma (HCC). Multiple myeloma is 
characterized by the appearance of osteolytic bone disease, 
which is due to augmented bone resorption by osteoclasts 
and reduced bone formation by osteoblasts. The levels of 
DKK-1 in serum of patients with multiple myeloma are 
higher than those in healthy controls and there is a good 
correlation with osteolytic bone disease [22]. Thus, there is 
mounting evidence that DKK-1 might be a good target for 
immunotherapy in myeloma patients [23], and a recent study 
has demonstrated that active vaccination with DKK-1 
induces protective antitumor immunity against multiple 
myeloma in rodents [24]. DKK-1 is also a diagnostic and 
prognostic serum marker in HCC [25-28] and it promotes 
invasion and metastasis of HCC cells [27]. It has recently been 

shown that both DKK-1 and osteopontin enhance the 
diagnostic value of alpha-fetoprotein, the most widely used 
biomarker for HCC [29]. Other tumor types in which 
enhanced expression of DKK-1 has been reported include 
prostate, breast, gastric, ovarian, glioma, esophagic or 
pancreatic cancer [30-36]. Notably, high expression of DKK-1 
frequently correlates with increased invasive and metastatic 
capacity of a variety of tumors [36-39], which suggests that 
DKK-1 might be a metastasis promoter for some neoplasias. 
Moreover, in some cases DKK-1 levels fluctuate during 
cancer progression. Feldmann and colleagues showed that 
DKK-1 increases early in melanoma but then decreases in 
later tumor stages, which was interpreted as a sign of loss of 
tumor control [40]. Likewise, Hall and colleagues reported an 
early increase of DKK-1 expression levels in prostate cancer, 
which then diminished throughout progression from primary 
tumor to metastasis [41]. 

DKK-1 is downregulated in a number of tumors, of which 
colon cancer is the most paradigmatic. We and others have 
reported reduced expression of DKK-1 in colon cancer [11, 42] 
that in a proportion of cases is associated with promoter 
hypermethylation [20, 43, 44]. This was an unexpected finding 
because as a β-catenin/TCF target DKK-1 gene was predicted 
to be upregulated in a malignancy characterized by a 
constitutively hyperactivated Wnt/β-catenin pathway. 
Supporting these data, analysis of DKK-1 expression in 
human colon tumors demonstrated an inverse correlation 
with tumor grade, presence of metastasis, and recurrence [45]. 
Moreover, downregulation of DKK-1 expression is 
concomitant with reduced epithelial-to-mesenchymal 
transition (EMT) phenotype [45], and with reduced 
angiogenesis and VEGF expression [42]. The complex 
behavior of DKK-1 as a tumor suppressor or metastasis 
promoter may rely on the diverse and sometimes opposite 
actions of Wnt/β-catenin signaling in different tissues, 
together with other Wnt-independent effects that may add to 
the array of DKK-1 actions.  

The recent demonstration by our group that DKK-1 is 
present within the nucleus of human enterocytes and colon 
cancer cells may help us to understand its biological 
functions [46]. Besides its expected localization in the 
cytoplasm and plasma membrane, DKK-1 protein has been 
found in the nucleus in a high proportion of differentiated 
cells (i.e. enterocytes and mucosecretory goblet cells) located 
in the upper half of colon and small intestine crypts. In the 
latter, nuclear DKK-1 expression was also detected in 
enteroendocrine cells at the bottom of the crypts. In contrast, 
stem cells at the bottom of the crypts and proliferating 
undifferentiated cells in the basal epithelia contained 
cytoplasmic but not nuclear DKK-1 in both colon and small 
intestine [46]. Moreover, new studies on DKK-1 expression in 
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the human mammary gland show that nuclear DKK-1 is 
present in 83.8% of differentiated cytokeratin (CK)7-positive 
luminal epithelial cells but almost absent (2.9%) in 
CK5-positive basal and myoepithelial cells (P < 0.001) 
(Figure 1). Stromal cells in both intestine and mammary 
gland showed very low DKK-1 expression. This association 
between nuclear presence and differentiated cell stage 
suggests that nuclear DKK-1 could be involved in 
modulating the switch between proliferation and 
differentiation in the intestine and mammary gland epithelia. 
Nuclear DKK-1 binds to actively transcribed chromatin and 

regulates the expression of many genes, some of which are 
involved in cell proliferation, survival and stemness, and in 
xenobiotic defense [46]. In colon cancer, downregulation of 
nuclear DKK-1 at early steps of cancer progression is faster 
than that of DKK-1 outside the nucleus [46]. This favors the 
idea that DKK-1 within this compartment contributes, 
through regulation of its target genes, to the antiproliferative 
and global tumor suppressive action that is classically 
attributed to inhibition of Wnt signaling at the plasma 
membrane. Paradoxically, despite its protective effects in 
normal tissue and at early stages of progression, we have 

Figure 1. DKK-1 locates within the nucleus of human mammary luminal epithelial cells. Immunofluorescence 
images of DKK-1 (Ab: Cell Signaling Technologies, #4687) expression in mammary glands that show nuclear 
location in CK7-positive luminal epithelial cells (Ab: Dako, clone OV-TL12/30) but not in CK5-positive basal 
myoepithelial cells (Ab: Santa Cruz Biotechnology, A-16). Cytoplasmic staining was diffuse in both luminal and 
basal cell layers. Scale bars: 25 µm. Nuclei were stained with DAPI. Images are representative from 120 randomly 
distributed microscopic fields from 12 non-tumoral mammoplasties. Quantification of cells showing nuclear DKK-1 
staining is shown below the images. 
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shown that a proportion of colorectal carcinomas retain 
nuclear DKK-1 expression and this is associated with a 
resistance to chemotherapy. Upregulation of genes such as 
aldehyde dehydrogenase 1A1 (ALDH1A1) and Ral-binding 
protein 1-associated Eps domain-containing 2 (REPS2), 
which are involved in detoxification of chemotherapeutic 
agents, most probably explains this resistance to 
chemotherapy and lower survival rates of patients whose 
tumors express nuclear DKK-1 [46]. The presence of a 
proportion of DKK-1 protein in the nucleus regulating gene 
expression adds complexity to the proposed 
β-catenin-dependent and -independent mechanisms of action. 
It is thus necessary to re-evaluate previous studies based on 
the analysis of DKK-1 RNA or total cellular protein levels. 
Techniques to measure the subcellular localization of 
proteins such as immunohistochemistry, 
immunofluorescence or Western blotting of purified cellular 
fractions are required to yield an appropriate pattern of 
DKK-1 expression. 

Finally, both the existence of a gradient in vivo in the level 
of nuclear DKK-1 along the intestinal crypts and of a higher 
amount of nuclear DKK-1 in tumor cells of chemoresistant 
colorectal cancer patients than those in cultured carcinoma 
cells [46] suggest that nuclear accumulation of this protein is a 
non-cell-autonomous effect but, in contrast, is regulated by 
external signals probably coming from the stroma in normal 
tissue and from the tumor microenvironment in cancer 

patients (Figure 2). Given the role that nuclear DKK-1 
appears to have for the response to chemotherapy in colon 
cancer [46], identification of the nature and origin of such 
proposed signals is of utmost importance. 
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