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ABSTRACT 19 

Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little 20 

is known about Tl concentration and speciation in soils. An understanding of the source, 21 

mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl 22 

pollution cases. In this paper, we examine the Tl source and dispersion in two areas 23 

affected by abandoned mine facilities whose residues remain dumped on-site affecting 24 

to soils and sediments of natural water courses near Madrid city (Spain). Total Tl 25 

contents and partitioning in soil solid phases as determined by means of a sequential 26 

extraction procedure were also examined in soils along the riverbeds of an ephemeral 27 

and a permanent streams collecting water runoff and drainage from the mines wastes. 28 

Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable 29 

technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly 30 

bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, 31 

Tl was also frequently found associated to organic particles and diatom frustules in all 32 

samples from both mine scenarios. These biogenic silicates may regulate the transfer of 33 

Tl into the soil-water system. 34 

 35 

 36 

 37 

 38 

1. INTRODUCTION 39 

Thallium (Tl) and its compounds are highly toxic to animals, plants, and 40 

microorganisms (Jakubowska et al., 2007). In humans, Tl is absorbed through the skin 41 

and mucous membranes, it is widely distributed throughout the body and accumulates in 42 

bones, renal medulla and, eventually, in the central nervous system. Also, Tl passes 43 

through the placenta, occurs in milk, and is excreted mainly in urine. The biological 44 

half-life of Tl in man is 3-8 days (Zitko, 1975). In spite of it, there has been relatively 45 

little research on the chronic toxicity of Tl and the tissue levels of Tl, resulting from a 46 

chronic exposure and little is known about Tl concentration and speciation in soils. An 47 

understanding of the source, mobility, dispersion, and exposure to humans of Tl is 48 

necessary to evaluate the environmental impact of Tl pollution cases and implement 49 

appropriate remediation strategies (Xiao et al., 2012) as the conventional removal of 50 

heavy metals from wastewater has little effect on Tl (Peter and Viraraghavan, 2005). 51 
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Several studies on Tl incidence in French, Austrian and Chinese soils have shown a 52 

range of Tl concentration between 0.08 and 1.5 mg kg
-1

 in non-polluted soils (Tremel et 53 

al., 1997). However, in highly polluted soils affected by mine activities, Tl 54 

concentration may reach up to 70 mg kg
-1

 (Lis et al., 2003). More recently, the 55 

ecotoxicological importance of Tl emissions to the atmosphere after coal use for energy 56 

production has also been pointed out (Lopez Anton et al., 2013) and translocation and 57 

mobility of Tl from Zn-Pb ores to surrounding soils has been assessed by Karbowska et 58 

al. (2014) showing that the majority of Tl was found probably bound to sulfides 59 

(oxidizable fraction). 60 

In geochemical systems, Tl(I) is dominant and as such, it substitutes for K(I) or Rb(I) in 61 

silicates (Gomez-Gonzalez et al., 2015). In hydrothermal systems, Tl is frequently 62 

associated to sulfide phases such as pyrite whose weathering releases Tl to the media 63 

including sedimentary rocks, Fe and Mn hydroxides, organic matter and coals (Lis et 64 

al., 2003). Thallium(III) is reported to be the most abundant species in sea and lake 65 

waters (Scheckel et al., 2004). Biological-driven oxidation of Tl(I) to Tl(III) has been 66 

described in freshwater due to the formation of stable complexes with inorganic and 67 

organic ligands (Scheckel et al., 2004). Recently, Peacock and Moon (2012) 68 

demonstrated the molecular-scale mechanism of Tl sorption to Mn oxides and marine 69 

ferromanganese precipitates through outer-sphere surface complexes in the case of Tl(I) 70 

uptake by ferrihydrite, triclinic birnessite and todorokite, or inner-sphere surface 71 

complexes for Tl(I) uptake by hexagonal birnessite previous oxidation to Tl(III). 72 

Overall, Tl is often undetected and has been studied to a lesser extent than other toxic 73 

elements in soils and sediments even though it is highly toxic and usually discarded as 74 

part of the tailings in the environment.  Moreover, naturally occurring Tl in soils and 75 

water has been considered a hidden geoenvironmental health hazard (Xiao et al., 2004) 76 

and the combined use of X-ray energy-dispersive spectrometer (EDS) and 77 

cathodoluminescence (CL) probes in the environmental scanning electron (ESEM) 78 

microscope allow for thallium elemental detection on thallium-bearing rocks (Gomez-79 

Gonzalez et al., 2015). Also, a crucial factor of the potential toxic effect of Tl in the 80 

investigated soils is Tl mobility and this can be determined by a sequential extraction of 81 

soil (Lis et al., 2003). 82 

A systematic research of Tl occurrence in soils and stream sediments nearby sulfide ore 83 

mining and smelting areas is thus important specially if they are close to water 84 

reservoirs or urban centers. To the best of our knowledge, there is no information on Tl 85 
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occurrence and solid-phase partitioning in mine-affected polluted areas of Madrid 86 

(Spain) province. Our objective is to investigate the Tl content in two mine-affected 87 

catchments and its speciation in the solid phase of soils and river sediments identifying 88 

the main mineral scavengers as well as to study Tl dispersion processes from the 89 

hosting minerals to the soils. 90 

 91 

2. MATERIALS AND METHODS 92 

2.1. Sites description  93 

2.1.1. Site 1 (S1).  El Verdugal area 94 

The experiment was conducted in a shrubland situated in the upper portion of a small 95 

sub-catchment of the Guadalix River (Madrid, Spain), which feeds into the Madrid 96 

Tertiary Detrital Aquifer (Fig. 1a). From a geological point of view, the Verdugal 97 

mining area belongs to a granite pegmatite field hosted in the sillimanite-migmatite-98 

gneis bodies. These pegmatites are complex exhibiting (1) border zones with 99 

tourmaline, (2) wall zones of quartz and perthite feldspars, (3) intermediate zones with 100 

apatite triplite and beryl, and (4) cores with rose quartz. These pegmatite structures were 101 

probably formed at circa 700-600ºC by fractional crystallization of granite melts 102 

enriched in volatile elements. In the Verdugal area case, this progressive process 103 

produced hydrothermal veins of mineralized quartz (W-Sn-As), epithermal deposition 104 

(Ag-Bi-Cu-Zn-F-Pb) and a final metasomatic fluid filling the pegmatite rock with Fe, 105 

Mn, Ba and Tl giving a final color brown to the samples rock. 106 

In this area, arsenopyrite [FeAsS] encapsulated in quartz was mined and processed for 107 

wolfram extraction during the Second World War (Fig. 1c) (Recio-Vazquez et al., 108 

2011). The site includes an abandoned smelting factory and the mining wastes, rich in 109 

scorodite [FeAsO4·2H2O], contain up to 190 g·Kg
-1

 of As (Gomez-Gonzalez et al., 110 

2014; Helmhart et al., 2012) and currently remain where they were dumped on the soil 111 

surface, thus subjected to erosion and weathering processes. Bovine cattle have long 112 

been raised in a farm adjacent to the area in which high As concentrations has been 113 

determined in previous studies (Gomez-Gonzalez et al., 2014). 114 

 115 

2.1.2. Site 2 (S2). Mónica Mine 116 

Site 2 is located along the La Mina stream gorge (Bustarviejo village, NW Madrid, 117 

Spain) that collects water drainage from an abandoned mine. From a geological point of 118 

view, the As-Ag-bearing mineralized veins of quartz are hosted in gneisses displaying a 119 
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characteristic high-temperature assemblage of biotite, sillimanite, and garnet, together 120 

with quartz, K-feldspar and plagioclase. The veins are characterized by multistage ore 121 

deposition belonging to four mineralizing stages, as follows: (I) (As-Fe) with 122 

arsenopyrite, pyrite, quartz and muscovite, (II) (Zn-Cu-Sn) with sphalerite, chalcopyrite, 123 

pyrrhotite and pyrite, (III) (Pb-Ag) Galena, Ag-Bi sulphosalts, native bismuth, quartz 124 

and (IV) supergenic alteration with marcasite, covelline, scorodite and goethite (Martin-125 

Crespo et al., 2004). The As-(Ag) sulphide vein system of Mónica mine was exploited 126 

from the seventeenth to the twentieth century (closed in 1980), mainly for Ag and Cu 127 

extraction (Fig. 1b). The pyritic residues remain dumped outside and heavy metal 128 

contamination of the mine surroundings has been previously reported (Moreno-Jimenez 129 

et al., 2010; Moreno-Jimenez et al., 2009) although no reference to the presence of Tl 130 

has been done before. Monitoring metal pollution level in these soils is necessary as the 131 

area has been classified as a leisure site inside an environmental reservoir proposed for 132 

the ecological network Natura 2000, following the environmental directives of the 133 

European Union (Council-Directive). 134 

 135 

2.2. Sampling and soils properties 136 

From S1, 0-15 cm depth bulk samples were collected at: (1) the main waste pile (WP) 137 

dumped on the soil surface (S1-WP); (2) at 17 m downstream from the WP from the 138 

riverbed (RB) of a small ephemeral stream that collects runoff originating at the wastes; 139 

(S1-RB); (3) the sediment from a downstream pond (SP) at 58 m from the WP (S1-SP), 140 

and (4) a flat area of land at ~100 m from the WP, on an adjacent farm for cattle 141 

breading that receives the excess runoff that overflows the pond during intense rain 142 

events (S1-F). At the sampling time, there was no surface waterflow. Approximate 143 

distances between sampling points and a general overview of the area are shown in Fig. 144 

1C. Similarly, from S2, 0-15 cm depth bulk samples were taken from: (1) the arsenic-145 

bearing waste pile (S2-WP), and (2) three additional sampling points located at 135, 146 

380, and 740 m from the mine residues along the La Mina gorge downstream (S2-A, 147 

S2-B, S2-C, respectively) and adjacent to the water course (Fig. 1B). Additional rock 148 

samples from the waste piles of S1 and S2 sites were taken for their observation and 149 

analysis by electron microscopy and cathodoluminescence.  150 

All soil samples were taken to the laboratory, air-dried, homogenized, and sieved (2-151 

mm mesh) prior to analysis. Texture was determined by the pipette method after 152 

removing soil organic matter (Gee and Bauder, 1986). Soil pH and electrical 153 
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conductivity were measured in deionized water (1:5 m/m suspension). Total organic 154 

carbon (TOC) was determined by wet digestion (Walkley and Black, 1934). 155 

Exchangeable bases were extracted with 1 M NH4OAc (at pH 7) (Thomas, 1982), and 156 

exchangeable Al was extracted with 1 M KCl (Barnishel and Bertsch, 1982). The Ca, 157 

Mg, Na, K, and Al concentrations in the extracted solutions were determined by 158 

inductively coupled plasma-optical emission spectrometry (ICP-OES) on a Perkin-159 

Elmer OPTIMA 4300DV. In addition, all samples were dissolved by the application of 160 

two sequential digestion steps, followed by a microwave assisted digestion at 200ºC 161 

during 15 min (Ethos Series 1, Milestone): Step I – HF/HNO3/HCl (volume ratio 162 

1.5:0.75:3.5) and Step II – H3BO3 (5%). Solutions from the digestion process were 163 

filtered and analyzed for total As, Mn, Pb and Tl content by inductively coupled 164 

plasma-mass spectrometry (ICP-MS) on an ELAN DRC-e (Perkin Elmer) and for total 165 

Fe content by inductively coupled plasma-optical emission spectrometry (ICP-OES) on 166 

an Iris & Intrepid Radial (Thermo Fisher Scientific). A reference material (NIST SRM 167 

2711) was employed to check the validity of the digestion method. 168 

All the chemicals used for sample preservation, analysis and reagent preparation were 169 

of reagent grade quality or higher. Deionized water (18 MΩ-cm, Milli Q+, Millipore 170 

Corp) was used for all solutions and dilutions. For all elemental determinations 171 

performed by ICP-MS/OES, calibration curves were run before and after each sample 172 

series (20 samples including matrix-matched blanks and in-between calibration checks). 173 

The calibration solutions covered the range of concentration in the samples and were 174 

prepared in the same matrix as the extracting reagents from certified stock solutions. 175 

Sample blanks were analyzed for correction of background effect on instrument 176 

response. Trace metal standards were used to assess instrument precision. We calculated 177 

metal concentrations in unknown solutions on the basis of the external calibration 178 

averaging the concentrations from two repetitions for each experimental replication. 179 

Limits of detection were calculated as three standard deviation of the instrument 180 

response from 10 repeated analyses of sample matrix-matched blank solutions.  181 

 182 

2.3. Sequential extraction procedure 183 

A crucial factor of the potential toxic effect of Tl in the investigated soils is Tl mobility. 184 

This can be determined by a sequential extraction of soil (Lis et al., 2003). Samples 185 

were subjected to a three-step sequential chemical extraction scheme proposed by the 186 

Standards Measurement and Testing Programme (Rauret et al., 1999), modified by 187 
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Yang et al. (2005) (Table 1): (FI) fraction extracted with 0.11 M acetic acid 188 

corresponding to exchangeable and weak acid soluble fraction; (FII) fraction extracted 189 

with 0.1 M hydroxylamine hydrochloride at pH 2 targeting poorly crystalline or 190 

reducible Al, Fe and Mn (oxihydr)oxides; and (FIII) fraction extracted in 30% hydrogen 191 

peroxide and 1 M ammonium acetate targeting organic matter or oxidizable phases 192 

(sulfides). The residual fraction (R) was analyzed for total Tl concentrations after the 193 

FIII extraction using microwave-assisted digestion as described above. All 194 

determinations of Tl concentrations were done by inductively coupled plasma-mass 195 

spectrometry (ICP-MS).  196 

The NIST SRM 2711 (Montana soil) certified reference material (CRM) from the 197 

National Institute of Standards and Technology (USA) was also subjected to the 198 

sequential extraction procedure in order to perform a quality assessment. This CRM is 199 

only certified for total Tl content, but can be useful for evaluating the Tl extractability. 200 

Results from Tl fractionation in SRM 2711 reference material can be found in Villar et 201 

al. (2001). 202 

 203 

2.4. Environmental scanning electron microscopy (ESEM). 204 

Polished sections of Tl-bearing rocks associated to hydrothermal metallic sulfides and 205 

all soil samples were analyzed in the Environmental Scanning Electron Microscope 206 

(ESEM XL30, FEI Company) with an X-ray energy-dispersive spectrometer (EDS) 207 

(Oxford Instruments) and coupled to a MONOCL3 Gatan probe to collect Tl 208 

cathodoluminescence (CL) spectra from the samples. The ESEM enables high-209 

resolution observation, chemical analysis and spatially-resolved spectral 210 

cathodoluminescence of nonconductive specimens operating in low vacuum mode. For 211 

the Tl samples case we chose to avoid gold coverings facilitating the 212 

cathodoluminescence emission from the sample inside. The ESEM resolution at low 213 

vacuum was 3.0 nm at 30 kV (SE), 4.0 nm at 30 kV (BSE), and <12 nm at 3 kV (SE). 214 

The accelerating voltage was 200 V to 30 kV and the probe current up to 2 μA was 215 

continuously adjustable. In addition, this microscope has a coupled MONOCL3 probe 216 

to record CL spectra and panchromatic and monochromatic plots with a photomultiplier 217 

attached tube to the ESEM. The photomultiplier covers a spectral range of 185–850 nm 218 

and is more sensitive in the blue parts of the spectrum. A retractable parabolic diamond 219 

mirror and the photomultiplier tube were used to collect and amplify luminescence. The 220 

sample was positioned at 16.2 mm underneath the bottom of the CL mirror assembly. 221 
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The excitation for CL measurements was provided at 25-kV electron beam. 222 

Monochromatic CL plots at 560 nm allow for the identification of Tl in different 223 

minerals by (1) identifying Tl spots by monochromatic CL, (2) EDS analysis including 224 

Tl, and (3) recording CL spectra focused on selected spots to observe emissions at ~280 225 

nm associated to oxygen vacancies produced by the intrinsic inert pair effect of Tl and 226 

peaks at ~560 nm attributed to the electronic dissociation of Tl molecules under the 227 

electron beam. 228 

 229 

2.5. X-Ray Diffraction (DRX). 230 

The semi-quantitative mineralogical composition of the total (≤ 2 mm) and clay (≤ 2 231 

µm) fractions of the soil samples was determined by powder X-ray diffraction (XRD) 232 

with a Philips PW-1710/00 diffractometer using a CuKα radiation source with a Ni filter 233 

and a setting of 40 kV and 40 mA. Samples were carefully milled over a period of 15 234 

min and pressed to produce pellets of powdered aliquots. The XRD data were processed 235 

using the XPOWDER software. XRD patterns were obtained by step scanning, from 3º 236 

to 65º 2θ, with a count for 0.5 s/step, an exploration speed of 7 º/min, and a 40 kV and 237 

40 mA setting for the X-ray tube. The qualitative search-matching procedure was based 238 

on the ICDDPDF2 and the DIFDATA databases. 239 

 240 

3. RESULTS 241 

3.1. Sites characteristics 242 

Both areas were characterized by the presence of mine residues with physical, chemical 243 

and mineralogical properties different than those shown in the downstream sampling 244 

points (Tables 2 and 3). In S1, the WP was acid, saline, poor in organic matter, and rich 245 

in scorodite and gypsum. Downstream, all samples increased their pH and organic 246 

matter while decreased their EC and showed a mineralogy dominated by illite, kaolinite 247 

and quartz. Likewise, in S2 area, the wastes differed clearly from the rest of samples. In 248 

this case, the wastes showed a sandy texture, high EC as well as low pH, ECEC, and 249 

organic matter content. The clay mineralogy was dominated by montmorillonite and 250 

jarosite. Soils sampled downstream were characterized by lower EC and larger ECEC, 251 

high organic matter content and a clay mineralogy dominated by phyllosilicates and 252 

quartz while jarosite was not detected (Tables 2 and 3).  253 

 254 

3.2. Elemental composition 255 
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Total concentrations of As, Mn, Pb, Fe and Tl are given in Table 4. All the element 256 

concentrations were highest in both mine residues decreasing with distance from the 257 

source except for the Mn in site S2 with a concentration in the residues (148 mg kg
-1

) 258 

one order of magnitude lower than those found downstream (averaging 1592 mg kg
-1

). 259 

Although As concentration in the source of S1 site (S1-WP, 143 g kg
-1

) was higher than 260 

in the S2-WP, As concentrations in S2 downstream samples were significantly higher 261 

than those in S1. For both S1 and S2 areas, total Tl concentrations were higher in the 262 

mine wastes than in the samples downstream but there is no tendency to decrease with 263 

the distance with respect to their mine sources.  Thallium concentrations are at or above 264 

the reference concentration legally considered for non-contaminated soils in the area of 265 

the study (0.39 mg kg
-1

; BOCM, 2007).  266 

Montana soil (NIST SRM - 2711) was analyzed following the same procedure as 267 

described for the samples, resulting in similar concentrations values than the certified 268 

ones, especially in the Mn, Pb and Tl concentrations. These analyses validated the 269 

microwave digestion and ICP determination methods used for the environmental 270 

samples. 271 

 272 

3.3. ESEM-EDS-CL observations and quantifications 273 

3.3.1. Thallium-hosting rocks 274 

Selected ESEM images of rocks and soil samples from S1 and S2 are presented in 275 

figures 2 to 5. The combined use of EDS and CL probes coupled to ESEM allow for Tl 276 

detection on thallium-bearing minerals of rocks and soil samples. The analytical routine, 277 

however, must circumvent some difficulties, as follows: (i) the spectral position of the 278 

main EDS line for both, S and Tl elements, is sited at circa 2.4 keV and the accessorial 279 

Tl EDS lines (at circa 1.8, 2.6, 8.9, 10.3, and 11 keV) are under the observation 280 

threshold. As a result, overlapping peaks obstruct a simultaneous detection of Tl and S 281 

and thus, Tl analyses in sulphide phases. Fortunately, late natural hydrothermal 282 

processes usually remobilize Tl from sulphide minerals to the surrounding host sulphur-283 

free minerals, (ii) Tl inclusions in Fe sulphides are common (e.g., pyrite, chalcopyrite) 284 

and their hydrothermal or environmental alteration produces iron oxo-hydroxides which 285 

are luminescence killer solids. The potential detection of Tl areas onto such Fe minerals, 286 

via mono-chromatic CL plots, e.g., centered in the powerful green spectral peak of Tl, 287 

must be disregarded by a shortage of light emission. 288 
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Figure 2 shows EDS analyses and CL spectra of paragenetic minerals in a selected rock 289 

collected in the nucleus of a pegmatite body of El Verdugal area (Guadalix, Madrid – 290 

S1 site) within a red colored hydrothermal vein (Figures 2a and 2b) and accessible 291 

through an abandoned trench opened during the mine exploitation. This rock sample 292 

was formed in a late hydrothermal phase of the pegmatite body geological formation in 293 

which precipitated neo-formed adularia (KAlSi3O8), quartz (SiO2), albite (NaAlSi3O8), 294 

muscovite (KAl2(Si3Al)O10(OH)2) and accessorial micro-crystals of monazite 295 

((Ce,La,Nd,Th)PO4), Mn-nodules rich in Pb, and baryte (CaSO4), rutile (TiO2) and 296 

thallous phases (Figures 2c and 2d). The presence of Tl at trace concentrations was 297 

commonly observed in most of phases through EDS analyses (Figure 2c). The spectral 298 

CL emissions were collected in the same spots (Figure 2d) to confirm the Tl existence. 299 

The characteristic CL spectral bands of Tl at ~280 nm associated to oxygen vacancies 300 

and ~560 nm attributed to the electronic dissociation of Tl molecules was found 301 

associated to Tl presence (Figure 2d).  302 

Figure 3 displays EDS analyses (Fig. 3d), CL spectra (Fig. 3e), monochromatic (560 303 

nm) (Fig. 3c) and backscattering ESEM plots (Fig. 3b) of a mineralized rock collected 304 

from the mine wastes in Mina Mónica (Bustaviejo, Madrid – S2 site). The 305 

representative rock exhibits large phenocrystals of K-feldspar metasomatized by 306 

hydrothermal fluids containing silica and iron oxides together with primary sulphide 307 

and sulphosalts such as arsenopyrite, pyrite, chalcopyrite, sphalerite, galena and 308 

lillianite and secondary covelline, scorodite and goethite (Figure 3a). The 309 

monochromatic plot of CL at 560 nm detaching the maxima CL emitting areas (Figure 310 

3c) associated to the electronic dissociation of Tl molecular dimers helps identifying Tl-311 

hosting minerals. The spectral CL let us to record CL patterns of the alkali feldspar 312 

areas showing luminescent K-feldspars by intrinsic defects and accessorial Tl; however 313 

albite phases exhibited richer areas in Tl and stronger Tl-associated luminescent 314 

features probably attributed to cluster micro-inclusions of thallous oxides (Figure 3e). 315 

 316 

3.3.2. Thallium in soils 317 

Primary Tl-hosting minerals described in the rocks were also found in soils from both 318 

S1 and S2 sites (Figures 4 and 5, respectively) with similar Tl content in their 319 

composition as determined by EDS. Albites, feldspars or quartzes were the main Tl-320 

hosting mineral phases in both sampling sites in all cases showing the same 321 

cathodoluminescence (CL) emission features as above described. Besides, Tl was also 322 
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frequently found associated organic particles and diatom frustules in all samples from 323 

both mine scenarios and consequently, the Tl characteristic CL emission peak at 560 nm 324 

was also recorded.  325 

 326 

3.5. Thallium sequential extraction 327 

The results for the sequential extractions of the samples are presented in Table 5. In site 328 

S1, Tl was primarily extracted in step IV or residual fraction (ranging from 89 % in the 329 

samples from the WP to over 97 % in downstream S1-SP and S1-F samples) targeting 330 

alumino-silicates and other well crystallized minerals.  The fraction of the total Tl 331 

concentration associated with step II which targets Fe and Mn (oxyhydr)oxides 332 

decreased from 6 % in the S1-WP sample to 3.6 % in the S1-RB and over 1 % in the 333 

S1-SP and S1-F samples. Thallium removed in step III targeting organic matter and 334 

other oxidizable fractions varied from approximately 3 % in S1-WP and S1-RB samples 335 

to 1 % the samples downstream.  336 

Lastly, no Tl was extracted in the first extraction step (I) targeting the most extractable 337 

and exchangeable fraction of the total Tl content except in the S1-WP sample from 338 

which 1.6 % of total Tl was found associated to this extraction step. 339 

In S2, Tl was also mainly removed in the last step of the sequential extraction scheme 340 

(step IV) targeting Tl bound to well crystallized minerals (Table 5). However, in 341 

contrast to S1 samples, in S2 the amount of Tl associated to this nominal fraction were 342 

greatest in S2-WP (approximately, 94 %) while in the samples downstream this fraction 343 

decreased to a mean value equal to 88 %. Thallium associated to Fe/Mn 344 

(oxyhydr)oxides (step II) was greater in S2 samples than in S1 ones reaching 5 % in the 345 

S2-WP sample and ranging from 4.9 % to 11 % in the downstream samples. The 346 

amount of Tl bound to the oxidizable fraction (step III) was low in the S2-WP sample (1 347 

%) and increased with distance from the waste pile from 2.3 % in S2-A sample to 3.6 % 348 

in S2-C. Lastly, the amount of Tl released by step I varied from 0.1 % to 3.2 % in the 349 

samples downstream while virtually no Tl was associated to this fraction in the S2-WP 350 

sample. 351 

Thallium fractionation in SRM 2711 reference material produced similar results to those 352 

showed by Villar et al. (2001). 353 

 354 

4. DISCUSION 355 

4.1. Geogenic Thallium in mine soils. 356 
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Thallium has been described in hydrothermal quartz veins of metallic ore deposits, 357 

generally associated to primary and secondary minerals (Tatsi and Turner, 2014; Vanek 358 

et al., 2015; Xiao et al., 2012). Thallium element is a guide for ore deposits of 359 

hydrothermal metals since their associated rocks are enriched in Rb, Tl and K elements 360 

(Ikramuddin et al., 1983; Massa and Ikramuddin, 1986; Shah et al., 1994).  361 

Soils developed associated to zones of hydrothermal mineralization in mining areas are 362 

susceptible to contain high background of Tl concentration which when coupled with 363 

favorable hydrological regime, could potentially contaminate the environment. The 364 

similar nature of the main Tl-hosting minerals found in primary rocks and downstream 365 

soils in both S1 and S2 sites, as well as the low chemical extractability of Tl in soils, 366 

indicate that Tl spreading from mine wastes is related to the physical decomposition of 367 

mineralized rocks, natural erosion, and later pedogenic processes giving raised to Tl 368 

contents over natural backgrounds.  369 

In both S1 and S2 sites, there is a gradient of Tl concentration from the residues to the 370 

soils and in the soils downstream indicating that there is a continue Tl dispersion 371 

process from the mineralized wastes area decreasing with distance from the source to 372 

background levels. Overall, our results indicate that Tl in the contaminated studied soils 373 

is related to mineralization natural geogenic Tl enhanced by the exposition of mine 374 

residues to atmospheric conditions.  375 

 376 

4.2. Total Thallium concentration 377 

The presence of mine residues in both S1 and S2 zones produces the release of toxic 378 

elements and their spreading along the ephemeral (S1) and permanent (S2) streams in 379 

concentrations over the established legal limits. However, the spatial distribution of As 380 

and Pb concentrations shows the pollution processes in scenario S2 to be more acute 381 

than in S1 (Table 4). Differences in the hydrological regime between both areas may 382 

explain the greater dispersion of toxic elements in S2. Ephemeral and seasonal water 383 

course in S1 area could limit the contamination downstream.  384 

Compared to As and Pb concentrations, those determined of Tl are apparently low. 385 

However, Tl concentrations in our experimental sites are higher than the background 386 

and baseline Tl concentration levels (0.2 and 0.64 mg kg
-1

, respectively) in soils from 387 

south-east Spain (Martinez-Sanchez et al., 2009). Moreover, total Tl concentrations 388 

determined in this study are within the range encountered in both acidic and neutral or 389 

slightly alkaline soils affected by pyrite tailings after the mining spill at Aznalcóllar 390 
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(Spain) in 1998 and considered moderately contaminated (1 - 5 mg kg
-1

) (Martin et al., 391 

2004). Likewise, Jakubowska et al. (2007) found ca. 0.4 mg kg
-1

 of Tl in soils from 392 

foodplain terraces near a Pb-Zn ore deposit area and Yang et al. (2005) also found 3 to 393 

15 mg kg
-1

 of Tl in topsoils and ca. 2 mg kg
-1

 of Tl at more than 14 cm depth in soils 394 

affected by a pyrite slag pile. Stafilov et al. (2013) found up to 1.4 mg kg
-1

 of Tl in soils 395 

surrounding a former As-Sb mine. Lastly, Xiao et al. (2004) highlighted that Tl contents 396 

over 1 mg kg
-1

 in arable soils should be considered a geoenvironmental hazard due to Tl 397 

tendency to be absorbed by plants. As a result, in this context, total Tl concentrations 398 

found in scenarios S1 and S2 should be considered indicative of potential hazard for the 399 

soil-water system in the areas.  400 

 401 

4.3. Thallium partitioning in soils 402 

To provide reliable identification of the cause of pollution, it is important to ask what 403 

kinds of base-level data exist concerning the natural migration of toxic elements (Xiao 404 

et al., 2004). Significant information can be given by the element distribution in soil 405 

solid nominal fractions as determined by a sequential extraction procedure. Our results 406 

from the study of distribution of Tl in soil fractions indicate that most of primary Tl 407 

originating in the mine wastes has not been weathered and redistributed into more labile 408 

and extractable fractions. Thallium entrapped in the residual parent material (step IV of 409 

the fractionation procedure) is the major fraction in all samples from both S1 and S2 410 

sites (Table 5). This Tl fraction can be ascribed to aluminosilicates and well crystallized 411 

minerals as the main reservoirs for the natural Tl in the soils which is in accordance 412 

with the results of the SEM observations and EDS analyses. In contrast, Tl bound to 413 

labile fractions (steps I, II, and III) sums up to 11% in the waste pile (WP) and decrease 414 

to 3 % in the farm soil downstream in the S1 site. These proportions are higher in S2 415 

soils reaching 17 %. Within these fractions, that nominally bound to Fe and Mn 416 

(oxyhydr)oxides (step II) is the most important labile Tl fraction reaching 417 

approximately 50 % of the amount extracted in the first three steps in soils from S1 418 

zone and a decreasing proportion from 80 % in the slag (S2-A) to 56 % in the furthest 419 

sampling point downstream in S2 zone (S2-F). However, at the pH of the soils (Table 2) 420 

and in contrast to other toxic elements, Tl does not significantly sorb to Fe oxides 421 

(Jacobson et al., 2005; Smeaton et al., 2012) although Martin et al. (2004) found that 422 

amorphous Fe and Al oxides were the main soil scavengers of Tl in acidic and neutral 423 

soils polluted by pyrite tailings. Instead, Mn oxides may have an important role 424 
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retaining Tl (Jacobson et al., 2005; Peacock and Moon, 2012; Tremel et al., 1997) 425 

although ESEM-EDS analyses do not show any close association of Tl to Mn mineral 426 

phases nor Tl and Mn total concentrations correlate. Only the greater Mn content in S2 427 

than S1 sites may account for the greater proportion of Tl released upon the step II in 428 

the S2 samples as compared to that in S1 ones and be evidence of the tendency of Tl to 429 

be retained in Mn oxides as it is described in the literature (Vanek et al., 2013; Vanek et 430 

al., 2011). However, ESEM-EDS analyses have shown large amounts of pennate diatom 431 

frustules characterized with a typical bilateral symmetry in S1 and more frequently in 432 

S2 soil samples (Figures 4e and 5e). Biological surfaces of diatoms may contain 433 

functional groups with great capacity of reacting with both protons and metal ions 434 

(Gonzalez-Davila et al., 2000). The amphoteric nature and the affinity for metal 435 

adsorption of the siliceous skeleton are largely controlled by organic layers covering the 436 

frustules (Gelabert et al., 2004). As a result, they exert a strong control on the transfer of 437 

metals along the water column to soils and sediments, thereby regulating the 438 

concentration of dissolved metal ions in fresh water and diatoms being at the beginning 439 

of the trophic chains. In natural settings, bacteria degrade the organic membrane of 440 

diatoms after their death thus progressively exposing the underlying silica frustules to 441 

the aquatic environment. This is accompanied by a dramatic shift in metal binding 442 

properties and surface reactivity. For example, up to 90% of total trapped metals, 443 

located in the proton-binding sites of organic coatings (Pokrovsky et al., 2002) are 444 

likely to be released in the environment during diagenesis of diatom cells (Gelabert et 445 

al., 2006). However, when porous polysaccharidic layers decay, silanol groups of 446 

frustules may become exposed to freshwater leading to Tl retention. This fraction could 447 

also be extracted within the second step of the sequential extraction procedure.  448 

Thallium associated to the oxidisable fraction (nominally, organic matter and sulfides) 449 

is less important in accordance to the weak tendency of Tl to bind to organic matter as 450 

compared to other monovalent metals (Jacobson et al., 2005), regardless the large OM 451 

content in S2 soils, and the oxidative conditions found in both experimental sites that 452 

reduces the stability of sulfide mineral phases. Lastly, the amount of Tl released in step 453 

I (exchangeable fraction) is negligible in all samples. 454 

These results are in agreement with those of Yang et al. (2005) who found up to 98% of 455 

total Tl content associated to the residual fraction and help discriminating anthropogenic 456 

vs natural Tl in soils. In contrast, Vanek et al. (2011) found a majority of Tl bound to 457 

the reducible fraction (soil oxides) and a significant amount associated to the labile 458 
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fraction in artificially Tl contaminated soils. Based on this, spreading of Tl in both 459 

studied areas is related to the dissemination of non-weathered natural Tl-bearing quartz 460 

and aluminum-silicate large (i.e. non-colloidal size) particles with low transference to 461 

labile phases and biota. The continuous release of these particles to freshwater courses 462 

produces the accumulation of Tl in affected soils in spite of the limited mobility of Tl 463 

when it is bound to primary mineral particles. In addition, the role of Fe and Mn oxides 464 

as potential Tl scavengers cannot be deduced from our results. Instead, biogenic 465 

amorphous silicates could be significantly contributing to limit the incorporation of Tl 466 

into the soil-water system. 467 

 468 

5. CONCLUSIONS 469 

Soils developed in the vicinity of hydrothermal mineralization zones in mining areas are 470 

susceptible to contain high levels of Tl concentration. The exposition of mine wastes to 471 

atmospheric conditions and a favorable hydrological regime could potentially 472 

contaminate the environment. As a result, total Tl concentrations found in scenarios S1 473 

and S2 should be considered indicative of potential hazard for the soil-water system in 474 

the areas.  475 

Thallium spreading from mine wastes is related to the physical decomposition of 476 

mineralized rocks, natural erosion, and later pedogenic processes giving raise to Tl 477 

contents over natural backgrounds. Based on partitioning studies, spreading of Tl in 478 

both areas is related to the dissemination of non-weathered natural Tl-bearing quartz 479 

and aluminum-silicate large (i.e. non-colloidal size) particles with low transference to 480 

labile phases and biota. Besides, biogenic amorphous silicates could be significantly 481 

contributing to the Tl spreading and therefore may limit the incorporation of Tl into the 482 

soil-water system. 483 

Full knowledge of the source, dispersion, and exposure to humans of Tl is needed to 484 

assess the environmental impact derived from Tl presence and to design effective 485 

remediation protocols.  486 

 487 
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LIST OF FIGURES 498 

Figure 1 – Topographic map of Community of Madrid, with the experimental locations 499 

studied: Guadalix, S1 and Bustarviejo, S2 (a). ‘Mónica mine’ snapshot (Bustarviejo, site 500 

S2) and relative distances between sampling points (b). ‘El Verdugal area’ snapshot 501 

(Guadalix, site S1) and relative distances between sampling points (c). 502 

Figure 2 – Section of natural Tl hosting minerals in rocks from the waste piles of S1 (a) 503 

and in-detail area of study with their relative mineral phases (b) (note that the 504 

experimental plot in 2a is not shown in size scale). ESEM-EDS (c) and 505 

cathodoluminescence (CL) (d) analyses are also presented. 506 

Figure 3 – Section of natural Tl hosting minerals in rocks from the waste piles of S2 507 

with their relative mineral phases (a). Backscattering (b) and monochromatic CL 508 

analyses (c) of the studied area. ESEM-EDS quantification (d) and CL spectra of K- and 509 

Na-feldspar (e) are also shown. 510 

Figure 4 – Examples of Tl-hosting minerals (a and b) and silicon-organic phases (e and 511 

f) in S1 downstream samples, combined ESEM-EDS (c) and CL (d) analyses 512 

Figure 5 – Examples of Tl-hosting minerals (a and b) and silicon-organic phases (e and 513 

f) in S2 downstream samples, combined ESEM-EDS (c) and CL (d) analyses 514 
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Table 1 – Sequential extraction steps for thallium fractionation 
a 

Step Phase desired Extraction conditions 

FI Exchangeable, carbonates and 

hydroxides 

20 mL HOAc (0.11 M, pH 2.8),  

25 ºC, 16 h, continual agitation 

FII Fe/Mn oxide-hydroxides 20 mL NH2OH·HCl (0.5 M, pH 1.5), 

25 ºC, 16 h, continual agitation 

FIII Organic matter or sulfides 5 mL H2O2 (30%), 85 ºC,  

1 h, intermittent agitation; 

25 mL NH3OAc (1.0 M, pH 2.0),  

25 ºC, 16 h, continual agitation 

R Aluminosilicates and other 

crystallized minerals 

HCl:HNO3:HF (ratio 3.5:0.75:1.5), 

H3BO3 (5%), microwave-assisted 

digestion 
a 

Procedure based on Yang et al.(2005). Initial sample weight = 0.5 g 

 

 

 

 

Table 2 – Physical and chemical properties of the bulk samples 

Sample pH 
ECa Ca2+ Mg2+ Na+ K+ Al3+ ECECb TOCc Sand Silt Clay 

S cm-1 cmolc kg-1 % % 

S1-WP 3.3 2330 78.8 0.04 0.04 0.04 0.08 79.0 0.03 53 - 47 

S1-RB 4.6 87.6 0.69 0.30 0.72 0.21 0.88 2.81 0.17 71 16 12 

S1-SP 6.1 110 3.19 1.05 0.22 0.18 0.21 4.84 0.20 70 18 12 

S1-F 6.4 105 1.56 0.45 0.10 0.06 0.81 2.99 0.54 88 3.6 8 

             

S2-WP 3.5 137 0.63 0.26 0.18 0.13 1.11 2.31 0.21 84 9 7 

S2-A 6.6 30.8 28.6 11.2 0.68 1.11 0.04 41.7 1.47 76 16 8 

S2-B 6.7 54.8 26.6 10.4 0.69 1.17 0.01 38.9 4.73 79 16 5 

S2-C 6.5 22.3 8.96 3.00 0.23 0.23 0.01 12.4 5.46 49 40 11 
a 

Electrical conductivity 
b 

Effective Cation Exchange Capacity as calculated from the sum of exchangeable cations
 

c 
Total Organic Carbon determined by wet digestion (Walkley and Black, 1934) 

 

 

 
 

 

Table 3 – Main mineral phases of soil samples (< 2 mm) as determined by XRD analyses 

Sample  Major phases  Minor phases 

S1-WP Scorodite Gypsum    Hematite  

S1-RB  Illite Kaolinite Quartz   Muscovite  

S1-SP  Illite Microcline Kaolinite Albite  Quartz Montmorillonite 

S1-F  Illite Albite Microcline Quartz  Kaolinite  

         

S2-WP  Quartz Microcline Illite Albite  Kaolinite Jarosite 

S2-A  Quartz Albite Microcline   Illite Orthoclase 

S2-B  Albite Quartz Illite   Microcline Kaolinite 

S2-C  Albite Quartz    Illite Microcline 
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Table 4 – Element concentration of soil samples 

Sample 
As 

a 
CV 

b
 Mn 

a
 CV 

b
 Pb 

a
 CV 

b
 Fe 

c
 CV 

b
 Tl 

a
 CV  

mg kg-1 % mg kg-1 % mg kg-1 % mg kg-1 % mg kg-1 % 

S1-WP 143900 0.005 1599 0.9 507 1.1 252300 0.2 2.65 9.3 

S1-RB 6220 0.1 357 7.2 - 
e
 - 

e
 45530 1.0 1.54 10.7 

S1-SP 94.4 1.0 265 8.8 30.3 11.7 16980 1.8 1.34 3.1 

S1-F 60.4 3.1 376 6.3 30.6 8.3 16330 1.7 1.30 0.8 

          

S2-WP 28210 0.03 148 9.7 3428 0.2 59680 0.9 2.19 0.9 

S2-A 4063 0.2 1513 8.6 524 1.3 33100 1.2 1.26 2.7 

S2-B 2458 1.3 2032 1.8 286 1.8 20590 2.0 0.87 9.8 

S2-C 1334 0.3 1242 8.0 306 2.7 27660 1.3 0.94 10.7 

          

CRM 80 7.1 687 11.5 1160 16.7 26190 1.1 2.54 8.4 

CRM values
e
   105 ± 8   638 ± 28   1162 ± 31  28900 ± 600  2.47 ± 0.15 

a 
As, Mn, Pb and Tl concentrations were measured by ICP-MS after microwave-assisted digestion 

b 
Coefficient of variation (CV) defined as the standard deviation (n=3) divided by the mean value which 

represents the instrumental variability of the ICP measurements 
c 
Fe concentration was measured by ICP-OES after microwave-assisted digestion  

d
 Below detection limit 

e
 Reference certified concentrations values and estimated relative standard deviations of SRM 2711 Montana soil 

as certified by the National Institute of Standards and Technology (NIST) 

 

  

 

Table 5 – Solid phase distribution of thallium determined by the BCR sequential extraction 

procedure 
a
 

Sample 
FI FII FIII R 

Sum  

I-R
e
 

Total
f
 

m 
b
 sd 

c
 % 

d
 m sd % m sd % m sd % 

mg· 
kg-1 

mg· 
kg-1 

S1-WP 0.05 0.00 1.69 0.17 0.01 6.09 0.09 0.00 3.13 2.43 0.22 89.1 2.72 2.65 

S1-RB 0.00 0.00 0.07 0.04 0.00 3.62 0.04 0.00 3.61 1.21 0.13 93.5 1.30 1.54 

S1-SP 0.00 0.00 0.08 0.01 0.00 1.09 0.01 0.00 0.90 1.07 0.07 97.9 1.09 1.34 

S1-F 0.00 0.00 0.08 0.02 0.00 1.70 0.01 0.00 1.35 1.09 0.03 97.1 1.13 1.30 

          

S2-WP 0.00 0.00 0.05 0.10 0.01 5.40 0.02 0.00 1.00 1.73 0.09 93.8 1.84 2.19 

S2-A 0.01 0.00 1.02 0.09 0.01 7.94 0.03 0.00 2.32 1.06 0.04 88.7 1.19 1.26 

S2-B 0.03 0.00 3.22 0.09 0.01 11.3 0.02 0.00 2.42 0.67 0.09 83.7 0.80 0.87 

S2-C 0.00 0.00 0.11 0.04 0.00 4.86 0.03 0.00 3.64 0.78 0.08 91.4 0.86 0.94 

          

CRM 0.06 0.00 2.37 0.45 0.02 18.4 0.21 0.00 8.58 1.73 0.06 70.6 2.46 2.54 
a 

The BCR procedure is described in Table 1 
b 
Mean value of extracted Tl in the corresponding BCR step calculated by ICP-MS, in mg·kg

-1
 

c 
Standard deviation of three replicate BCR steps, in mg·kg

-1
  

d
 Percentage of extracted Tl respect to the sum of the BCR steps (I-II-III-R) 

e
 Extracted Tl as the sum of the BCR steps (I-II-III-R) 

f
 Total concentration of Tl in samples measured by ICP-MS (Table 4) 
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