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Abstract. The complete chemical composition of atmo-

spheric particulate matter (PM1 and PM10) from a continen-

tal (Montsec, MSC, 1570 m a.s.l.) and a regional (Montseny,

MSY, 720 m a.s.l) background site in the western Mediter-

ranean Basin (WMB) were jointly studied for the first time

over a relatively long-term period (January 2010–March

2013).

Differences in average PMX concentration and composi-

tion between both sites were attributed to distance to an-

thropogenic sources, altitude, and different influence of at-

mospheric episodes. All these factors result in a continental-

to-regional background increase of 4.0 µg m−3 for PM10 and

1.1 µg m−3 for PM1 in the WMB. This increase is mainly

constituted by organic matter, sulfate, nitrate, and sea salt.

However, higher mineral matter concentrations were mea-

sured at the continental background site owing to the higher

influence of long-range transport of dust and dust resuspen-

sion.

Seasonal variations of aerosol chemical components were

attributed to evolution of the planetary boundary layer (PBL)

height throughout the year, variations in the air mass ori-

gin, and differences in meteorology. During warmer months,

weak pressure gradients and elevated insolation generate re-

circulation of air masses and enhance the development of the

PBL, causing the aging of aerosols and incrementing pollu-

tant concentrations over a large area in the WMB, includ-

ing the continental background. This is reflected in a more

similar relative composition and absolute concentrations of

continental and regional background aerosols. Nevertheless,

during colder months the thermal inversions and the lower

vertical development of the PBL leave MSC in the free tro-

posphere most of the time, whereas MSY is more influ-

enced by regional pollutants accumulated under winter an-

ticyclonic conditions. This results in much lower concentra-

tions of PMX components at the continental background site

with respect to those at the regional background site.

The influence of certain atmospheric episodes caused dif-

ferent impacts at regional and continental scales. When long-

range transport from central and eastern Europe and from

north Africa occurs, the continental background site is fre-

quently more influenced, thus indicating a preferential trans-

port of pollutants at high altitude layers. Conversely, the re-

gional background site was more influenced by regional pro-

cesses.

Continental and regional aerosol chemical composition

from the WMB revealed (a) high relevance of African dust

transport and regional dust resuspension; (b) low biomass

burning contribution; (c) high organic matter contribution;

(d) low summer nitrate concentrations; and (e) high aerosol

homogenization in summer.
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1 Introduction

The influence of atmospheric particulate matter (PM) on the

Earth’s radiative budget generates a strong scientific interest

because of its effect on climate. Atmospheric PM interacts

with the Earth’s climate system by scattering and absorbing

solar radiation (direct climate forcing effect), and by acting

as cloud condensation nuclei (indirect climate forcing effect)

(IPCC, 2013). Aerosols also have adverse effects on air qual-

ity (Directive 2008/50/EC) and human health (WHO, 2013),

as well as on ecosystems (e.g. Burkhardt and Pariyar, 2014).

The size distribution of aerosol chemical components is a

key factor in modulating these effects, and it provides valu-

able information on the aerosol origins and sources. Aerosol

chemical composition measurements carried out at complex

sites such as urban areas constrain the assessment of the ori-

gin of regional and long-range-transported aerosols, as local

sources prevail. For this reason, measurements performed at

a sufficient distance from large emission sources are needed

to determine background conditions and to evaluate air mass

transport effects. Furthermore, an improved understanding of

synoptic and mesoscale meteorological effects is necessary

to develop a better predictive capability of air quality and cli-

mate models.

Although there is not a well-established definition, conti-

nental background environments can be described as repre-

sentative of the air quality of a wide area of hundreds of kilo-

meters, as proposed by Laj et al. (2009), with the absence

of local emissions. However, aerosols found in this type of

environments are not purely natural; the presence of some

pollutants in these sites indicates that they are affected by

long-range transport of anthropogenic emissions, since gen-

erally they are isolated from large polluted areas (> 50 km)

(Putaud et al., 2010). For this reason, these environments are

also classified as remote sites. In many cases the monitoring

sites chosen to represent this type of environments are lo-

cated in mountaintops over 1000 m a.s.l.; therefore they are

also called high-altitude sites (Nyeki et al., 1998) or free tro-

posphere (FT) environments (Andrews et al., 2011). The ar-

eas located at sufficient distance from large anthropogenic

sources but frequently within the planetary boundary (PBL)

are classified as regional background environments (Putaud

et al., 2010). These environments are representative of the air

quality of a less extensive area, and they are more influenced

by regional transport of polluted air masses than continental

background environments.

Aerosol chemical characterization has been performed at

many locations across Europe, providing information on

PM10 and PM2.5 chemical composition from different types

of environments (e.g. Putaud et al., 2010), improving the

knowledge on the variation and trends of PM composition

(e.g. Cusack et al., 2012) and increasing the understanding

of PM sources (Belis et al., 2013). Nevertheless, the PM1

fraction remains relatively understudied, especially outside

urban areas. Most studies focusing on PM1 have been car-

ried out within the PBL, whereas measurements at continen-

tal background sites in Europe are scarce and were mostly

taken in short-term measurement campaigns (e.g. Carbone et

al., 2010; Marenco et al., 2006). The study of PM1 chemi-

cal composition at continental background sites may be nec-

essary to assess the contribution of regional and long-range

transport, since it is in the PM1 fraction where most of the

anthropogenic constituents are concentrated (Minguillón et

al., 2012; Pérez et al., 2008b).

Among the few long-term European studies at continental

background environments, Cozic et al. (2008) investigated

the chemical composition of coarse and PM1 aerosols for 7

years at the high Alpine site of Jungfraujoch (Switzerland).

Bourcier et al. (2012) studied PM10 and PM1 water-soluble

inorganic components over 1 year at the high-altitude site

of Puy de Dôme (France). Recently, Carbone et al. (2014)

performed a study on long-term measurements of chemical

composition in the continental background environment of

southern Europe/northern Mediterranean. This study was fo-

cused on nocturnal PM1 chemical composition for 3 years at

the high mountain station of Mt. Cimone (Italy).

The Mediterranean region is characterized by particular at-

mospheric dynamics strongly influenced by its topography

(Jorba et al., 2013; Millan et al., 1997). Over this region, el-

evated emissions of anthropogenic pollutants occur, arrival

of natural and anthropogenic aerosols as a result of long-

range transport from Africa and Europe is frequent (Pey et

al., 2010, 2013b; Ripoll et al., 2014), and accumulation and

recirculation processes are recurrently observed (Rodríguez

et al., 2002).

For these reasons, results of PM10 and PM1 chemical

characterization from Montsec (MSC) and Montseny (MSY)

Global Atmosphere Watch (GAW) stations for the period of

January 2010–March 2013 are presented in this study. MSC

is representative of the continental background conditions

of the western Mediterranean Basin (WMB) (Ripoll et al.

2014). This station is located in the FT most of the time due

to its elevation (1570 m a.s.l.); although during the warmer

months that isolation is broken as a result of vertical mix-

ing and mountain breeze regimes (Ripoll et al. 2014). MSY

is a regional background observatory located in the WMB

(720 m a.s.l.) in operation since 2002 (Cusack et al., 2012;

Pérez et al., 2008a), and it is influenced by regional anthro-

pogenic emissions in specific scenarios (Pérez et al., 2008a;

Pey et al., 2010). The record of a relatively long series of

PM10 and PM1 concentrations and complete chemical com-

position at two different WMB environments has allowed for

the investigation of temporal and spatial aerosol variations

in the WMB with a focus on regional and long-range trans-

port processes. Daily and seasonal patterns of PM10 and PM1

concentrations, as well as their major components and trace

elements at MSC and MSY, were investigated. Greater em-

phasis was placed on the evaluation of the influence of differ-

ent meteorological scenarios, with a focus on the partitioning

of the chemical components into different size fractions in
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order to discriminate natural and anthropogenic impacts af-

fecting PM10 and PM1. To the authors’ knowledge, no simi-

lar studies exist in the literature that compare continental and

regional background environments and their seasonal varia-

tion.

2 Methodology

2.1 Monitoring sites and sampling schedule

The continental background site was set up in the Montsec

(MSC) mountain range, located in the NE of the Iberian

Peninsula (42◦3′ N, 0◦44′ E, 1570 m a.s.l.). This station is sit-

uated 50 km to the S of the Axial Pyrenees and 140 km to the

NW of Barcelona (Fig. S1). A detailed description of this site

can be found in Ripoll et al. (2014).

Results from MSC were jointly studied with those simul-

taneously obtained at the Montseny (MSY) station, a re-

gional background observatory located in the Montseny Nat-

ural Park (41◦19′ N, 2◦21′ E, 720 m a.s.l.), 40 km to the N-NE

of the Barcelona urban area, and 25 km from the Mediter-

ranean coast (Fig. S1) (Pérez et al., 2008a).

At the MSC site, 24 h samples of PM10 and PM1 were

collected every 4 days on 150 mm quartz micro-fiber fil-

ters (Pallflex QAT) using high-volume samplers (30 m3 h−1,

MCV CAV-A/MSb) equipped with MCV PM10 and PM1

cut-off inlets. PM10 and PM1 sampling began in Novem-

ber 2009 and in March 2011, respectively. In this work we

study the results from January 2010 (March 2011 for PM1)

to March 2013. In addition to the routine measurements, five

intensive campaigns (daily sampling) were performed during

March–April 2011, July–August 2011, January–February

2012, June–July 2012, and January–February 2013. Overall,

391 and 235 samples of PM10 and PM1, respectively, were

collected throughout the study period, and PM1−10 concen-

trations were calculated by the difference of simultaneous

PM1 and PM10 daily samples (190 days).

At the MSY site, 24 h samples of PM10 and PM1 were

also collected from January 2010 to March 2013 using high-

volume samplers (30 m3 h−1, DIGITEL-DH80) equipped

with PM10 and PM1 cut-off inlet (also DIGITEL). A total of

351 and 335 samples of PM10 and PM1, respectively, were

collected during the study period, and PM1−10 samples were

calculated for 147 days. In most cases, sampling days were

coincident at MSC and at MSY.

2.2 Chemical characterization

PM mass concentrations were determined by standard gravi-

metric procedures, and complete chemical analysis for all

filters was performed following the procedures proposed by

Querol et al. (2001).

Acid digestion (HF:HNO3:HClO4) of one-fourth of each

filter was carried out to determine and quantify major and

trace elements by inductively coupled plasma mass spec-

trometry (ICP-MS, X Series II, THERMO) and atomic emis-

sion spectroscopy (ICP-AES, IRIS Advantage TJA Solu-

tions, THERMO). A few milligrams of the reference material

NIST 1633b were added to one-fourth of laboratory blank fil-

ters to check the accuracy of the analysis of the acidic diges-

tions. One 1/4 of each filter was leached with ultrapure water

(miliQ) to determine the content of Cl−, SO2−
4 , and NO−3 by

ion high-performance liquid chromatography (HPLC) using

a WATERS ICpakTM anion column with a WATERS 432

conductivity detector, and NH+4 concentrations with a selec-

tive electrode (MODEL 710 A+, THERMO Orion). A rect-

angular portion (1.5 cm−2) of the remaining filter was used

for the analysis of organic carbon (OC) and elemental car-

bon (EC) by a Sunset OCEC analyzer using the EUSAAR 2

protocol (European Supersites for Atmospheric Aerosol Re-

search; Cavalli et al., 2010). Moreover, one blank filter was

kept for each set of 10 filters. Blank concentrations were

subtracted from the total concentration measured for each

sample, thus giving ambient concentrations. To complete

mass balances, the following indirect determinations were

obtained: (a) CO2−
3 , calculated from Ca as CO2−

3 = 1.5×Ca;

(b) Al2O3, calculated from Al as Al2O3 = 1.889×Al; (c)

SiO2, calculated as SiO2 = 2.5×Al2O3; and (d) organic mat-

ter (OM) obtained by applying a factor of 2.2 to the OC

concentrations for MSC samples and a factor of 2.1 for

MSY samples, following the suggestion from Takahama et

al. (2011). By following these procedures we were able to

determine and quantify the concentrations of major compo-

nents (OC, EC, SiO2, CO2−
3 , Al2O3, Ca, Al, Na, Mg, Fe, K,

NO−3 , SO2−
4 , NH+4 , and Cl−) and trace elements (Li, P, Ti, V,

Cr, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Ba, La,

Pb, among others). Overall, the aforementioned components

accounted for 60–90 % of the total PM mass. Most of the un-

determined mass was attributed to water not eliminated dur-

ing filter conditioning in the presence of hygroscopic species,

but a contribution from sampling artifacts and from the use

of factors to determine CO2−
3 , SiO2, and OM cannot be dis-

carded.

At MSC the mineral matter (MM) determination was cal-

culated as

MM= CO2−
3 +SiO2+Al2O3+Ca+Fe+K (1)

+ nss-Na+Mg+Mn+Ti+P,

where nss-Na is the non-sea-salt sodium; it was calculated

as nss-Na= Al2O3× 0.067 according to the composition of

the mineral particles from the Sahara given by Moreno et

al. (2006), and hence the remaining sodium was sea-salt

sodium (ss-Na= Na− nss-Na).
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Figure 1. Average frequency of air mass origin at Montsec and

Montseny for the different months based on daily calculations be-

tween January 2010 and March 2013.

Consequently, the sea salt (SS) determination at MSC was

given by

SS= Cl−+ ss-Na. (2)

At MSY, Na concentrations were entirely attributed to SS,

given that it is located closer to the sea and in agreement with

Pey et al. (2009).

2.3 Principal component analysis

Principal component analysis (PCA) was performed using

the software STATISTICA v10.0. The orthogonal transfor-

mation method with varimax rotation (Thurston and Spen-

gler, 1985) was employed, retaining principal components

with eigenvalues greater than 1. The data set used for PCA

was comprised of the following PM10 constituents: Cl−,

NO−3 , NH+4 , SO2−
4 , Al2O3, Ca, K, Na, Mg, Fe, Li, Ti, V, Cr,

Mn, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Pb, OC, and EC. All days

with measurements of PM10 chemical analysis were included

for PCA analysis, which totalled 390 cases from MSC and

351 cases from MSY. A typical robust PCA analysis requires

at least a data set with 100 cases. This technique allowed for

the identification of main common groups of trace elements

in PM10 at the continental and regional background sites.

2.4 Classification of atmospheric episodes

The classification of the atmospheric episodes affecting the

MSC and MSY sites on each day of the sampling period

was performed following the procedure described by Ripoll

et al. (2014), and the different air mass transport pathways

determined were (1) Atlantic north (AN), (2) Atlantic north-

west (ANW), (3) Atlantic southwest (ASW), (4) north Africa

(NAF), (5) Mediterranean (MED), (6) Europe (EU), (7) win-

ter regional (WREG, from November to April), and (8) sum-

mer regional (SREG, from May to October) (Fig. 1).

Additionally, the boundary layer height was calculated at

the MSC and MSY sites using the READY (Real-time Envi-

ronmental Applications and Display sYstem) model from the

NOAA Air Resources Laboratory (http://www.ready.noaa.

gov/READYamet.php), which is based in meteorological

conditions defining Pasquill stability classes, and uses a res-

olution grid of 50 km. This was calculated every 3 hours dur-

ing the whole period (Fig. S2). Despite the limited suitability

of this type of model for mountainous terrains, the differ-

ences found throughout the year and among different atmo-

spheric scenarios can be considered as a good approximation

of the actual PBL variations.

3 Results and discussion

3.1 Continental vs. regional background PM

concentrations in the western Mediterranean

PM10 and PM1 average concentrations (±SD) measured at

MSC continental background site reached 11.5± 9.3 µg m−3

and 7.1± 3.9 µg m−3, respectively, whereas at MSY regional

background site these concentrations were 15.5± 7.9 µg m−3

and 8.2± 4.1 µg m−3 (Table S1). Thus, the continental-to-

regional background increase is estimated to be 4.0 µg m−3

for PM10 and 1.1 µg m−3 for PM1 in the WMB. This increase

is caused by differences of (a) altitude, (b) distance to anthro-

pogenic sources, and (c) impact of atmospheric episodes. The

contribution of different aerosol chemical components to this

increment will be discussed in Sect. 3.2.

A significant seasonal variation of PM10 and PM1 mass

concentrations was observed at both sites, with maximum

values in summer and minimum values in winter (Fig. 2).

Comparable seasonal patterns for PMX concentrations were

described for MSC (Ripoll et al., 2014) and for other regional

and continental background sites in southern Europe (e.g.

Cozic et al., 2008; Querol et al., 1998; Rodríguez et al., 2003;

Tositti et al., 2013). In those studies the seasonal pattern was

attributed to changes in the air mass origin from summer

to winter, and to the different PBL height between seasons.

Moreover, at both MSC and MSY a secondary maximum of

PM10 and PM1 concentrations was observed in early spring

(Fig. 2).
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Figure 2. Monthly median (black line within the boxes) and percentiles (5–25–75–95, boxes and whiskers) of daily PM10 and PM1 mass

concentrations at Montsec (MSC) and Montseny (MSY) based on daily measurements between January 2010 and March 2013.

PM10 concentrations showed a stronger seasonal pattern

than PM1 concentrations at both sites (Fig. 2). This is at-

tributed to the higher impact of resuspended and long-range-

transported dust on the PM10 fraction, both enhanced in

summer (see Sect. 3.3), and to the prevalence of the an-

thropogenic constituents in PM1, whose emissions occur

throughout the year.

Comparison of these results with those from other conti-

nental background sites in central Europe, such as Puy de

Dôme at 1465 m a.s.l. in France (Bourcier et al., 2012) and

Jungfraujoch at 3454 m a.s.l. in Switzerland (Cozic et al.,

2008), shows that PM10 and PM1 concentrations were higher

at the continental background site in the WMB (Fig. S3 and

Table S1). Such higher PM10 and PM1 concentrations at

MSC are related to the increasing role of Saharan dust parti-

cles over this area, as discussed in Sect. 3.3 and in agreement

with Ripoll et al. (2014), and to the more polluted atmosphere

in summer as a result of the air mass recirculation over the

WMB (Millan et al., 1997). By contrast, PM10 concentra-

tions at the regional background site in the WMB were lower

than those at the rural sites in Switzerland (Gianini et al.,

2012) (Fig. S3 and Table S1), probably because of the spe-

cific Alpine location of these sites which hinders pollution

dispersion.

3.2 Continental vs. regional background aerosol

chemical composition in the western

Mediterranean

3.2.1 Average aerosol chemical composition

PM1 was mainly composed of OM at both sites (39 % at

MSC and 34 % at MSY), followed by sulfate (17 and 21 %),

ammonium (7 and 6 %), MM (5 and 4 %), nitrate (3 %), SS

(1 and 2 %), and EC (1 and 2 %) (Fig. 3 and Table S1). The

undetermined mass accounted for 27 and 28 %. The PM1−−0

fraction mainly differed in the contribution of MM (55 % at

MSC and 39 % at MSY), whereas the other components con-

tributed similarly: OM (14 and 15 %), nitrate (9 and 11 %),

sulfate (5 and 7 %), SS (3 and 5 %), ammonium (1 and 2 %),

and EC (0.4 and 1 %). The undetermined mass was 20 % at

MSY and 13 % at MSC. The closer compositional similar-

ities for PM1 fraction point to the suitability of using PM1

Figure 3. Average concentrations of aerosol major components in

PM1 and PM1−10 fractions at Montsec and Montseny for the whole

period (AVE) and for different seasons based on daily measure-

ments between January 2010 and March 2013. Pie charts represent

the average relative contribution of aerosol major components to

total mass for each fraction.

as an indicator of regional anthropogenic pollution in Eu-

rope, and reflect the wider spatial representativeness of the

fine PM.

Overall, average absolute concentrations of chemical com-

ponents were more similar between MSC and MSY for

PM1 than for the PM10 (Fig. 3 and Table S1). The PM1

continental-to-regional background increase of 1.1 µg m−3 is

attributed to the higher concentrations of PM1 sulfate, EC,

OM, and some anthropogenic trace elements (V, Ni, Cu,

Zn, and Pb) at the regional background site. The increase

of 4.0 µg m−3 of PM10 at MSY with respect to MSC is at-

tributed to higher concentrations of OM, sulfate, nitrate, and

SS. These differences confirm that MSC is located at a suf-

ficient altitude and distance from large urban/industrial ag-

glomerations to avoid direct anthropogenic influence and to

be considered a continental background site of the WMB.

This also confirms that MSY is more affected by the marine

aerosols as it is located closer to the coast. Nevertheless, MM

and MM-related elements’ (Ti, Mn, Li, and Sr) PM10 concen-

www.atmos-chem-phys.net/15/1129/2015/ Atmos. Chem. Phys., 15, 1129–1145, 2015
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trations were higher at the continental background site than at

the regional background site, probably due to the prevalence

of long-range dust transport at higher altitude layers (Sicard

et al., 2011), and to the higher dust resuspension at MSC.

In order to provide a global picture of the origin and vari-

ability of trace elements in the study region, a principal com-

ponent analysis (PCA) was performed. This exploration per-

mitted the identification of three main common groups of

trace elements in PM10 at the continental and regional back-

ground sites. Ordered by their contribution to the total mass

of trace elements in PM10, these groups were mineral, in-

dustrial and road traffic, and fuel-oil-combustion-related ele-

ments (Tables S2 and S3).

In the mineral group typical crustal elements (Ti, Mn, Li,

and Sr) were included; furthermore, V, Cr, Co, Ni, and As

were also partially associated with this factor since these el-

ements, usually attributed to anthropogenic sources, are also

found in clay mineral assemblages. The group for which

high loading factors were obtained for Cu, Zn, As, Cd, Pb,

Sb, and Sn was associated with industrial and road traffic

sources, based on previous studies which identified (a) Pb,

Zn, Mn, and Cd as tracers of the influence of industrial ac-

tivities located in the surroundings of Barcelona, such as

smelters and cement kilns, and (b) Cu, Sn, and Sb as trac-

ers of non-exhaust vehicle emissions (Amato et al., 2009).

These sources could not be split by the PCA probably be-

cause these emissions are mixed during their transportation

from industrial and urban areas to MSY and MSC. The fuel

oil combustion group was better identified at MSY than at

MSC, and it was traced by V and Ni. These elements are

typical markers of fuel oil combustion, strongly influenced

by shipping emissions in the study region (Minguillón et al.,

2014; Pey et al., 2013a).

Figures S3 and S4 and Table S1 show average concen-

trations of chemical components in PM10 at the continen-

tal background site of Puy de Dôme (Bourcier et al., 2012)

and at the rural stations of Payerne and Magadino (Gianini

et al., 2012). Nitrate and ammonium PM10 concentrations

at MSC were slightly higher than those observed at Puy de

Dôme, whereas the concentrations registered at MSY were

lower than those measured at Payerne and Magadino. The

similar sulfate concentrations across Europe in both conti-

nental and regional background areas corroborate that this

component can remain in the atmosphere for a long time, ho-

mogenizing sulfate concentrations in Europe. Average PM10

concentrations of EC and OM in the WMB were lower than

those measured at Payerne and Magadino, probably due to

the higher influence of biomass burning in central Europe.

This is confirmed by the higher concentrations of the well-

known biomass burning tracer potassium (Pio et al., 2008)

registered at the Swiss stations, most of it water soluble (Gi-

anini et al., 2012). Mineral major (Al+Ca+Mg) and trace

(Ti, Sr, La or Ce) elements at MSC and MSY were recorded

in concentrations twice as high as those at Payerne and Mag-

adino, indicating the higher influence of Saharan dust trans-

port and regional dust resuspension in the Mediterranean

area. As expected, a higher influence of SS particles was ob-

served at MSC and MSY than at Payerne and Magadino ow-

ing to their closer location to the Mediterranean Sea. Con-

versely, the highest concentrations of typical anthropogenic

trace elements – such as Ni, Cu, Zn, As, Cd, Sb, and Pb –

were recorded at the Swiss stations, with the exception of V,

which was higher at the Spanish sites. This can be partially

attributed to a greater influence of emissions from fuel oil

combustion, mostly from shipping emissions in the Mediter-

ranean region (Pey et al., 2009).

3.2.2 Partitioning of major and trace components in

PM1 and PM1−10

In the WMB region nitrate showed a prevalent coarse-grain

size distribution (Figs. 3 and S5). PM1−10 nitrate compounds

were partially associated with mineral dust and sea salt parti-

cles, since nitric acid and/or some other nitrogen compounds

can react with these particles (Wall et al., 1988; Zhuang et al.,

1999a). The resulting coarse sodium or calcium nitrate par-

ticles are much more stable than ammonium nitrate at high

temperature and low humidity (Zhuang et al., 1999b).

As expected, sulfate was mainly fine at both sites (Figs. 3

and S5) and hence attributed to the presence of ammonium

sulfate as deduced by the good ionic balance fitting between

sulfate and ammonium (R2
= 0.899). Nevertheless, PM1−10

sulfate was also detected at MSC and MSY, and it was par-

tially attributed to mineral dust and sea salt particles, and par-

tially attributed to the reaction product between sulfuric acid

and/or sulfur dioxide (SO2) and these natural particles (Wall

et al., 1988; Zhuang et al., 1999a).

Ammonium showed a prevalent fine-grain size distribution

at the continental and regional background sites (Figs. 3 and

S5). Fine ammonium was attributed to the presence of both

ammonium nitrate and ammonium sulfate. PM1−10 ammo-

nium is most likely in PM1−2.5 fraction, according to Querol

et al. (2009).

OM was mainly fine at both sites (Figs. 3 and S5). A

high number of studies have demonstrated the dominant sec-

ondary origin of the fine OM (Jimenez et al., 2009). In the

study area, previous works found that secondary organic

aerosol (SOA) accounted for 91 and 55 % of the OM at MSY

and at the city of Barcelona, respectively (Minguillón et al.,

2011; Mohr et al., 2012). Therefore, fine OM at MSC is ex-

pected to be dominated by SOA, even more than at MSY

given its remote settlement. Furthermore, the presence of

OM in PM1−10, especially in spring and summer, suggests

the impact of primary bioaerosols (Pöschl et al., 2010).

Although EC was mainly fine at both sites (Figs. 3 and

S5), PM1−10 EC was also detected, suggesting a partial as-

sociation between EC and MM by means of adsorption of

anthropogenic pollutants onto dust.

As expected, most of the MM species and the mineral trace

elements were encountered in the PM1−10 fraction, while
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the concentrations in PM1 were clearly lower at both sites

(Figs. 3 and S6 and Table S1). Contrary to the rest of MM

species, K was also abundant in PM1 fraction and its con-

centrations were slightly higher at MSY than those at MSC

(Figs. S6 and S7c). This indicates an additional source ori-

gin other than mineral (generally as K-feldspar and illite, a

K-bearing clay mineral), such as biomass burning, especially

over the regional background. The winter DAURE campaign

(Determination of the sources of atmospheric Aerosols in Ur-

ban and Rural Environments in the western Mediterranean)

performed in March 2009 revealed that biomass burning

emissions accounted for 33 % of EC and 22 % of OM at MSY

(Minguillón et al., 2011). Nevertheless, these contributions

are much lower than those obtained at other European re-

gions (Pio et al., 2011).

SS components were found mainly in the PM1−10 fraction

at both sites (Figs. 3 and S5) as we expected. In the continen-

tal background, the lower variation of SS concentrations as

a function of atmospheric episodes reflects the minor impact

of marine aerosols in this continental background area.

Most of the trace elements showed a prevalent fine-grain

size distribution at MSC and MSY (Fig. S8), especially the

ones included in the industrial and road traffic group and in

the fuel oil combustion group. V, Cr, Co, Ni, and As were

also found in the PM1−10 fraction because these elements

are also present in clay mineral assemblages.

3.3 Atmospheric episodes affecting continental and

regional background aerosol chemical composition

in the western Mediterranean

The WMB is affected by peculiar atmospheric episodes

which influence aerosol chemical composition. At the MSC

site, a higher frequency of Atlantic advections was detected,

whereas the MSY site was more influenced by regional

episodes (Fig. 1). However, the seasonal distribution of the

main atmospheric episodes throughout the year is very simi-

lar at both sites. The NAF episodes were more frequent from

March to October (17 and 18 % of the days, at MSC and

MSY, respectively), and very often they alternated with the

SREG scenarios (12 and 27 % of the days) or both episodes

occurred simultaneously, when the NAF air masses travel at

high altitudes and the stagnation of air masses prevails at

surface levels (Escudero et al., 2005). The WREG scenar-

ios were detected from October to March (11 and 27 % of the

days), as were the EU episodes (11 and 13 % of the days). Air

masses from the Atlantic (AN, ANW, and ASW) affected the

WMB throughout the year (62 and 41 % of the days). Con-

versely, the MED episodes were detected sporadically (4 %

of the days at both sites), and therefore conclusions on their

characteristics will not be drawn in the present study. More-

over, the WMB is affected by sporadic large wildfire events,

especially during summer (Cristofanelli et al., 2009).

3.3.1 North African episodes (NAF)

The non-NAF-to-NAF increase in PM1 concentrations is es-

timated to be 2.9 µg m−3 and 4.6 µg m−3 at MSC and MSY,

respectively, whereas this increase in PM1−10 concentrations

is estimated to be 14.3 µg m−3 and 7 µg m−3 (Figs. 4 and 5).

The PM1 non-NAF-to-NAF increase was attributed to the in-

crement of PM1 MM, sulfate, nitrate, ammonium, OM, and

EC (Figs. S5 and S6). In relative contribution the highest dif-

ference in PM1 concentrations was recorded for MM at MSC

(Fig. 4), thus evidencing that NAF episodes also affect the

fine fraction.

On the other hand, the higher concentrations of PM1−10

MM under NAF episodes accounted for the non-NAF-to-

NAF increase of PM1−10 concentrations. Additionally, aver-

age concentrations of trace elements from the mineral group

were higher at the continental background site than at the re-

gional background site under NAF episodes (Fig. S6). Con-

centrations of nitrate and sulfate were high during NAF

episodes at both sites when compared with the average

(Figs. S5 and S7b). At MSY concentrations of coarse am-

monium and EC also increased.

The higher impact of NAF scenarios on the continental

than on the regional background aerosols in the WMB con-

firms that African dust travels preferentially at high altitudes.

The concurrent increase of secondary pollutants (nitrate and

sulfate) at MSC demonstrates that dust arrives together with

industrial pollutants, as shown at the Canary Islands by Ro-

dríguez et al. (2011). The relatively high concentrations of

secondary pollutants and EC during NAF at MSY in PM1

and PM1−10 can be related to the interaction of dust with

anthropogenic pollutants. During NAF episodes a compres-

sion of the PBL is observed at regional scale (Alastuey et al.,

2005; Pandolfi et al., 2013) (Fig. S9), and a dominance of

southern winds during the whole day breaks the regular sea

breeze circulation (Jorba et al., 2013). These processes en-

hance the concentration of regional pollutants in the lowest

part of the troposphere and inhibit the sea breeze “clean-up”

effect.

The net contribution of African dust to the PM10 con-

centrations was estimated to be 16 % at MSC and 11 % at

MSY. This is in agreement with results presented by Pey et

al. (2013b).

An example of the impact of NAF episodes on the con-

tinental and regional background aerosols was recorded on

26 March 2011 (Fig. 5b). Backward trajectory for this day

clearly showed a North African air mass origin (Fig. S10),

and the Navy Aerosol Analysis and Prediction System

(NAAPS) indicated high dust surface concentrations over the

Iberian Peninsula (Fig. S11). During this episode, dust trans-

port more strongly affected MSC than MSY, with PM10 MM

concentration reaching 16 µg m−3 at MSC (more than 5 times

higher than the annual average) and 9 µg m−3 at MSY (about

3 times higher than the annual average). At MSC, concentra-

tions of MM increased simultaneously with those of sulfate
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Figure 4. Average concentrations of PM1 and PM1−10 mass and relative contribution of aerosol major components in PM1 and PM1−10

fractions for different meteorological episodes at Montsec and Montseny based on daily measurements between January 2010 and March

2013.

(2 times higher than the annual average), nitrate (3 times),

and other anthropogenic elements, such as Sb and EC, re-

flecting that dust is transported together with these pollutants.

The increments of absolute concentrations of nitrate, sulfate,

Sb, and EC were higher at MSY than MSC, probably due to

the aforementioned effect of both the PBL compression and

the breeze.

3.3.2 Summer regional episodes (SREG)

The importance of the SREG scenarios in the WMB has been

studied in a number of works (e.g. Escudero et al., 2005;

Gangoiti et al., 2001; Millan et al., 1997; Rodríguez et al.,

2002). These episodes take place under a weak barometric

gradient and a lack of advections in summer, which causes

the recirculation of air masses over the WMB. Generally,

these situations last for several days, favoring the accumula-

tion of pollutants at regional scale, increasing the magnitude

of convection and aging processes, and enhancing the dust

resuspension and the formation of secondary organic and in-

organic aerosols. For these reasons, under SREG episodes

high concentrations of PM1 and PM1−10 were measured at

the regional background site (Fig. 4). The PM1 increase was

attributed to higher concentrations of PM1 sulfate, OM, EC,

and trace elements of industrial and road traffic group, and

the PM1−10 increase was attributed to higher concentrations

of PM1−10 MM, OM, and EC (Figs. S5, S6 and S8).

In spite of the high altitude of MSC, the continental back-

ground site was also affected by this type of episodes due to

a higher development of the PBL over the continental areas

(Fig. S9), which favors the transport of anthropogenic pollu-

tants towards high-altitude sites such as MSC and enhances

the dust resuspension (Figs. 4, S5, S6 and S8).

High concentrations of elements such as Ca, Mg, Sr,

and Mn during SREG scenarios (Fig. S6) confirm the lo-

cal/regional origin of these dust particles at both sites. How-

ever, the ratio of concentrations of these specific elements

with respect to Al during SREG scenarios was higher at

MSC compared to MSY, probably because of the calcareous

(richer in Ca, Mg, Sr, and Mn) nature of the Montsec Range

as opposed to the slate and granitic composition (richer in

Al) of the Montseny Range.
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Figure 5. (a) Time series of daily PM10 mass and major PM10 chemical components concentrations at Montsec (MSC) and Montseny

(MSY) between January 2010 and March 2013. Green bands indicate four examples of different episodes affecting the study area. Zoom of

the four selected meteorological episodes – (b) African dust outbreak, (c) European episode, (d) winter regional episode, and (e) wildfire

event – with daily PM10 mass and PM10 chemical components concentrations.
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3.3.3 Winter regional episodes (WREG)

The WREG episodes affecting the WMB have been de-

scribed by Pey et al. (2010) as winter anticyclonic episodes

(WAEs), based on a comparison between urban and regional

background sites. In the present study the WREG episodes

showed low concentrations of PM1 and PM1−10 on average

(Fig. 4), but the chemical composition revealed the higher

relative contribution of anthropogenic sources and the lower

relative proportion of natural emissions, with high concentra-

tions of PM1 nitrate, ammonium, OM, and EC and the lowest

concentrations of PM1−10 OM and MM, especially at MSY

(Figs. S5, S6 and S7a).

The impact of these episodes on the continental and re-

gional background aerosols can be explained by the persis-

tence of anticyclonic conditions in the WMB. During these

situations the stagnation of air masses occurs, which in-

creases the pollution around the emission sources (mainly

urban and industrial areas); therefore regional and continen-

tal background areas are presumably free of this anthro-

pogenic pollution. However, the meteorological conditions

(sunny days and thermal inversion) together with the topog-

raphy of the WMB (very mountainous) may develop moun-

tain breezes. In this case, the anthropogenic pollution ac-

cumulated over the adjacent valleys reaches regional back-

ground sites and rarely continental background areas as in-

tense pollution episodes.

Figure 5d shows an example of a WREG episode af-

fecting the WMB during the period 14–19 January 2012.

Backward trajectory of air masses for these days corrob-

orates a WREG situation (Fig. S10). During this episode

PM10 nitrate, ammonium, EC, and OM concentrations at

the regional background site increased from 0.2 µg m−3,

0.2 µg m−3, 0.2 µg m−3, and 3.4 µg m−3 on 13 January to

1.3–5.0 µg m−3, 0.6–1.9 µg m−3, 0.2–0.5 µg m−3, and 3.7–

8.4 µg m−3 between 14 and19 January 2012, respectively. Si-

multaneously, the continental background site was almost

unaffected by such polluted air masses since nitrate, am-

monium, EC, and OM concentrations in PM10 remained

0.1–0.6 µg m−3, 0.1–0.5 µg m−3, 0.05–0.13 µg m−3, and 2.3–

4.2 µg m−3, respectively.

3.3.4 European episodes (EU)

During EU episodes air masses from central and eastern Eu-

rope are transported towards the WMB, crossing the whole

continent. This type of episode is associated with cold me-

teorological conditions and polluted air masses (Pey et al.,

2010). For this reason, under EU episodes high concen-

trations of PM1 and PM1−10 were measured at both sites

(Fig. 4). This increase was attributed to higher concentra-

tions of nitrate, ammonium, OM, EC, and trace elements of

industrial and road traffic group at both fractions PM1 and

PM1−10, especially at MSC (Figs. S5 and S8).

The higher impact of EU scenarios on the continen-

tal background aerosols than on the regional background

aerosols confirms that the transport of pollutants occurs pref-

erentially at high altitude layers (915–1930 m), as observed

by Sicard et al. (2011).

An example of the impact of EU episodes on the conti-

nental and regional background aerosols was recorded on

15 October 2011 (Fig. 5c). During this episode the air

mass remained 3 days over central Europe before reaching

the WMB, as shown by the backward trajectory (Fig. S4).

Under these meteorological conditions PM10 nitrate, sul-

fate, ammonium, EC, and OM daily concentration at MSC

reached 5 µg m−3 (6 times higher than the annual average),

4 µg m−3 (about 3 times higher than the annual average),

2 µg m−3 (more than 4 times higher than the annual aver-

age), 0.3 µg m−3 (almost 3 times higher than the annual aver-

age), and 6.4 µg m−3 (about 2 times higher than the annual

average), respectively. Simultaneously, the regional back-

ground site was less affected by this episode as PM10 nitrate,

sulfate, ammonium, EC, and OM concentrations at MSY

were 2.3 µg m−3 (1 µg m−3 higher than the annual average),

2.0 µg m−3, 0.2 µg m−3, 0.2 µg m−3, and 3.2 µg m−3, respec-

tively.

3.3.5 Atlantic advections (AN, ANW, ASW)

The WMB is strongly affected by oceanic air masses ow-

ing to the large influence of Atlantic winds over this region,

which is favored by the displacement of the Azores High

westwards or southwards, allowing the movement of depres-

sion systems towards the Mediterranean (Lopez-Bustins et

al., 2008). This type of episodes is associated with increased

precipitation and intense winds, which favor the atmospheric

wet-scavenging processes, leading to the renovation of the

regional aged air masses.

These meteorological conditions explain why low PM1

and PM1−10 concentrations were measured under Atlantic

advections at both sites (Fig. 4) and for most of the aerosol

chemical components (Figs. S5, S6, and S8).

3.3.6 Wildfire events

Although biomass burning is not a major source in the

WMB, some contribution of biomass burning is observed and

partially attributed to wildfires. Therefore, high concentra-

tions of PM1 OM and EC during NAF and SREG episodes

(Fig. S5) were partially attributed to a higher frequency of

wildfires, since these episodes very often occur simultane-

ously.

Figure 5e illustrates the impact of a wildfire on conti-

nental and regional background aerosols in the WMB. This

event took place in eastern Europe on 27–28 March 2012,

as shown by the NAAPS model with high smoke surface

concentrations over SE Europe (Fig. S11). Backward trajec-

tory for these days clearly showed a transport of air masses
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from SE Europe towards the WMB (Fig. S10). During this

episode, daily PM10 OM and EC concentration at MSY

reached 7.9 µg m−3 (almost 2 times higher than the annual

average) and 0.3 µg m−3 (1.5 times higher than the annual

average), respectively, and at MSC it was 9.1 µg m−3 (almost

3 times higher than the annual average) and 0.3 µg m−3 (3

times higher than the annual average). Moreover, K concen-

trations in PM10 at MSY reached 0.27 µg m−3 (2 times higher

than the annual average), with a prevalent fine partitioning

(PM1/PM10 = 0.55), instead of its main coarse occurrence

(PM1/PM10 = 0.28) during NAF episodes, which confirms

the biomass burning origin.

3.4 Seasonal variation of continental and regional

background aerosol chemical composition in the

western Mediterranean

In addition to the atmospheric episodes discussed above, the

aerosols in the WMB are also affected by the different evo-

lution of the PBL height and differences in the meteorolog-

ical parameters throughout the year. In the warmer months

(April–September) the development of the PBL at MSC is

much more relevant than that at MSY (Figs. S2 and S9), ow-

ing to the higher convection at the continental background

sites (Rodríguez et al., 2002) and to the greater cooling ef-

fect from the sea breeze at the regional background sites.

On the other hand, in the colder months (October–March)

the lower vertical development of the PBL at the inland sites

leaves MSC in the FT on most days, whereas the regional

background site is located most of the day within the PBL

(Fig. S2).

Nitrate concentrations decreased in summer at both sites,

especially in PM1 (Fig. 6) (2 and 3 times lower than the win-

ter concentrations at MSC and MSY, respectively). This de-

crease was attributed to the high volatility of ammonium ni-

trate (Pey et al., 2009) at low humidity and high tempera-

ture (Zhuang et al., 1999b). During the colder months higher

nitrate concentrations are associated with WREG episodes

at MSY and with EU episodes at MSC, with the exception

of the November-to-January period, when MSC is mostly

within the FT and therefore low nitrate concentrations were

registered.

Sulfate showed similar seasonal variations at both sites

and relatively similar absolute concentrations, with the high-

est values during the warmer months (3 and 2 times higher

than the winter concentrations at MSC and MSY, respec-

tively) (Fig. 6). The squared Pearson correlation coefficient

between the daily sulfate concentrations at MSC and MSY

was 0.71. This similarity reflects the high stability of sulfate

and its longer residence time in the atmosphere, resulting in

a homogeneous sulfate concentration in the WMB. The sum-

mer maximum was likely due to the higher photochemistry

in the atmosphere that enhances the SO2 oxidation (6 % h−1

in summer vs. < 1 % h−1 in winter; Querol et al., 1999) and

to the accumulation of pollutants over the WMB as a result

of the SREG and NAF episodes. Additionally, regional back-

ground sulfate aerosols in summer could be affected by the

transport of shipping emissions from the Mediterranean to

the continental areas, due to the more intense sea breeze cir-

culation at MSY. The lower concentrations during the colder

months were attributed to the lower rate of SO2 oxidation

(Querol et al., 1999), and at MSC to the FT conditions.

Ammonium concentration did not follow a clear seasonal

pattern (Fig. 6) due to its association with both sulfate and

nitrate.

Organic matter concentrations followed a similar seasonal

variation at both sites, with the highest values during the

warmer months (1.8 and 1.5 times higher than the winter

concentrations at MSC and MSY, respectively) (Fig. 6). The

summer maximum was due to (1) the higher temperature

and photochemistry in the atmosphere that enhances the for-

mation of SOA; (2) the accumulation of pollutants over the

WMB owing to the occurrence of SREG and NAF episodes;

(3) the greater biogenic emissions from vegetation (Seco et

al., 2011); and (4) the higher frequency of wildfires. Fur-

thermore, at MSY a secondary maximum of OM concentra-

tions occurred in October–March, linked to the occurrence

of WREG episodes. The continental background site was less

affected by this type of episodes, since MSC is mostly within

the FT in winter.

Elemental carbon showed high concentrations in the

warmer months at MSC and a less marked seasonal vari-

ation at MSY (Fig. 6). The smoother seasonal variation at

MSY reflects the regional anthropogenic influence on the

levels of this component, since anthropogenic emissions oc-

cur throughout the year. The higher summer EC concentra-

tions at both sites (more elevated at MSY) were attributed to

the impact of the SREG and NAF episodes, and to the higher

occurrence of wildfires. Additionally, at MSY high concen-

trations of EC in summer may be caused by the greater trans-

port of shipping emissions. The increase of EC during the

colder months was not registered simultaneously at both en-

vironments (Fig. 6) because at the regional background site

it was attributed to the impact of WREG episodes, whereas

at the continental background site it was associated with EU

episodes.

Mineral matter concentrations and mineral trace elements

in the WMB are driven by the local and regional dust resus-

pension and by the contribution of African dust outbreaks,

both enhanced in the warmer months. Consequently, the

highest values were measured in summer and the lowest in

winter, with sporadic high concentrations in March–April

(Figs. 6 and 7).

Trace elements concentrations of the industrial and road

traffic group showed low variations, especially at MSY

(Fig. 7), since anthropogenic emissions occur throughout the

year. Fuel oil combustion elements showed a marked sea-

sonal pattern at both sites, with the highest values in summer

(Fig. 7) due to the higher shipping emissions and the more
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Figure 6. Monthly median (black line within the boxes) and percentiles (5–25–75–95, boxes and whiskers) of major PM10 and PM1 chemical

components concentrations at Montsec (MSC) and Montseny (MSY) based on daily measurements between January 2010 and March 2013.

frequent and intense sea breeze circulation, which enhances

the transport of air masses from the Mediterranean Sea.

4 Conclusions

Aerosol chemical characterization (PM1, PM1−10, and

PM10) and its time variation were studied during January

2010–March 2013 simultaneously at a continental (Montsec,

MSC) and a regional (Montseny, MSY) background site in

the western Mediterranean Basin.

In this particular region of the WMB, the continental-to-

regional background increase was estimated to be 4.0 µg m−3

for PM10 and 1.1 µg m−3 for PM1. Relative chemical compo-

sition and absolute concentrations of PMX showed very simi-

lar values at both environments, especially in PM1, in spite of

their altitudinal and longitudinal differences. The similarities

are more pronounced in the warmer months, when recircula-

tion processes at a regional scale are recurrent in the WMB,
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Figure 7. Monthly average concentrations of trace element groups at Montsec and Montseny based on daily measurements of PM10 between

January 2010 and March 2013.

and a strong development of the PBL occurs over conti-

nental areas, favoring the transport of anthropogenic pollu-

tants towards remote sites such as MSC. These processes

cause a homogenization of PM1 concentration and compo-

sition throughout the region, allowing us to consider PM1

as a more suitable indicator of anthropogenic impact than

PM10. Moreover, the higher temperature and solar radiation

in the warmer months augment atmospheric photochemistry,

promoting the formation of secondary inorganic and organic

aerosols, and thus incrementing markedly the concentration

of certain components such as sulfate and OM. Additionally,

sea breeze circulation is enhanced, favoring the transport of

shipping emissions from the Mediterranean to the continen-

tal areas and thereby increasing the concentrations of sul-

fate, EC, and fuel-oil-combustion-related trace elements, es-

pecially at the regional background since it is located closer

to the coast. Furthermore, the occurrence of wildfires across

the WMB increases in summer, which contributes to an ex-

tra increment of the OM and EC concentrations. Conversely,

nitrate is not abundant in summer due to the high volatility

of ammonium nitrate at high temperatures and low humidity.

In the colder months the lower vertical development of the

PBL leaves MSC in the FT on most days, whereas MSY is

frequently located within the PBL due to its lower elevation.

As a result, very low concentrations of all chemical compo-

nents are recorded at MSC in winter, while MSY is regularly

affected by nearby polluted air masses, which enhanced the

concentrations of PMX components.

The seasonal variation of major and trace PMX compo-

nents was also governed by changes in the air mass origin

from summer to winter. Whereas southern flows and regional

recirculation episodes are more frequent in summer, Atlantic

advections and northeastern winds from mainland Europe are

more common in winter. As a result, African dust outbreaks

and regional dust resuspension increase MM concentrations

over the WMB in the warmer months. This MM increase af-

fects both PM1 and PM1−10, and it is frequently more pro-

nounced at MSC, since long-range transport of dust occurs

preferentially at high altitude layers and dust resuspension is

enhanced by the drier surface and higher convection at this

site. During NAF episodes concentrations of nitrate and sul-

fate also increase, demonstrating that dust arrives together

with industrial pollutants. Moreover, a compression of the

PBL and a change in the wind regime towards a permanent

southern flow increase the concentrations of regional pollu-

tants (sulfate, EC, and industrial and traffic tracers) in the

lowest part of the troposphere. Regional recirculation of air

masses (SREG episodes) also accounts for the accumula-

tion of airborne particulates, increasing the concentrations of

sulfate, OM, EC, industrial, traffic, and fuel oil combustion

tracers at both continental and regional background environ-

ments.

In the colder months, the predominance of clean Atlantic

advections prevents the accumulation of regional pollution

and consequently reduces the concentration of all chemical

components at both sites. However, the sporadic transport of

polluted air masses from central and eastern Europe towards
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the WMB increases the concentrations of nitrate, OM, EC,

and industrial and traffic-related trace elements. The impact

of these polluted air masses on the concentrations of PMX

components is usually higher in the continental background,

since this transport from Europe occurs preferentially at high

altitude layers. Occasionally, intense peaks of nitrate, OM,

and EC are measured at the regional background site during

the winter anticyclonic episodes (WREG). These stagnant

situations cause the accumulation of pollutants around the

emission sources (such as the Barcelona metropolitan area),

and pollutants can be transported towards relatively nearby

areas under favorable conditions. The distance from MSC

to large anthropogenic sources and its altitude are restricting

factors for the occurrence of this process.

Finally, the comparison of these results with those from

other continental and regional background sites in central Eu-

rope shows that African dust transport and regional dust re-

suspension are much more important in the western Mediter-

ranean area. The net contribution of African dust to the PM10

concentrations was estimated to be 16 % at MSC and 11 %

at MSY. This is reflected in more elevated concentrations of

mineral elements across the Mediterranean, with the only ex-

ception being potassium, higher in central Europe due to the

contribution of biomass burning emissions. The surprising

similar sulfate concentrations across Europe in both conti-

nental and regional background environments are probably

linked to the long residence time of sulfate aerosols in the

atmosphere. However, nitrate and ammonium showed differ-

ent concentrations as a function of site, and nitrate maximum

concentration was observed in winter in the WMB, whereas

in the central Europe continental environments it was mea-

sured in summer. Moreover, the highest concentrations of

typical anthropogenic trace elements were recorded at some

European rural environments, with the exception of V, which

was higher in the Mediterranean area due to the greater influ-

ence of shipping emissions.

The concurrent monitoring of aerosol properties in conti-

nental and regional background sites in the WMB provides

a complete picture of the aerosol phenomenology of this re-

gion. In view of the relatively high concentrations of atmo-

spheric aerosols from a variety of natural and anthropogenic

sources, and taking into account the importance of atmo-

spheric processes, the simultaneous characterization of at-

mospheric aerosols at continental and regional background

sites provides valuable information to policy makers and air

quality and climate models.

The Supplement related to this article is available online

at doi:10.5194/acp-15-1129-2015-supplement.
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