
A Fingerprint Biometric Cryptosystem in FPGA

Rosario Arjona and Iluminada Baturone
Instituto de Microelectrónica de Sevilla (IMSE-CNM)

Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)
Seville, Spain

{arjona, lumi}@imse-cnm.csic.es

Abstract—This paper presents the implementation of a
complete fingerprint biometric cryptosystem in a Field
Programmable Gate Array (FPGA). This is possible thanks to the
use of a novel fingerprint feature, named QFingerMap, which is
binary, length-fixed, and ordered. Security of Authentication on
FPGA is further improved because information stored is
protected due to the design of a cryptosystem based on Fuzzy
Commitment. Several samples of fingers as well as passwords can
be fused at feature level with codewords of an error correcting
code to generate non-sensitive data. System performance is
illustrated with experimental results corresponding to 560
fingerprints acquired in live by an optical sensor and processed
by the system in a Xilinx Virtex 6 FPGA. Depending on the
realization, more or less accuracy is obtained, being possible a
perfect authentication (zero Equal Error Rate), with the
advantages of real-time operation, low power consumption, and a
very small device.

Keywords—Fingerprint recognition, biometric cryptosystems,
FPGA hardware design, CAD tools

I. INTRODUCTION

In the next years, the widespread use of biometric systems
will lead to the massive storage of biometric data. If an
individual is registered in different biometric systems, the same
biometric data will be stored in several places. Let us consider
a situation where a person is registered by means of his/her
fingerprint and an impostor steals the fingerprint representation
associated to the template. The fingerprint image can be
reconstructed from the template and then used to attack
successfully the fingerprint recognition system [1]-[2]. In this
situation, the user has to cancel that fingerprint and uses
another one. The problem is that a maximum of ten fingers are
available for each individual.

From a security point of view, it is justified that biometric
templates should be protected. Protection is required not only
for template storage but also for operational and
communication procedures of biometric data [3]. The
realization of the complete biometric recognition system in the
same hardware device (Authentication on Card) increases the
security because the access to communication channels is more
difficult. A further step to increase security is to employ
biometric template protection schemes [4]. They provide
interesting advantages such as non-reversibility, which means
that it is computationally infeasible to recover the unprotected

template from the protected template. At the same time, it can
be possible to create different protected templates from the
same template to be used in different applications. This
property is known as diversity and leads to revocability, which
means that as many protected templates as necessary can be
generated when security is compromised. As drawback, the
computational complexity of template protection schemes
increases considerably and, in many cases, recognition
accuracy decreases.

Template protection schemes are categorized commonly
into feature transformation systems and biometric
cryptosystems. An example of the first case is salting
techniques, also known as Biohashing, which combine a
password introduced by the user (named as salt) with biometric
data [5]-[6]. In this way, different passwords generate different
protected templates. However, both protected template and
password have to be private because if one of them is known,
all the information is public. In the other side, biometric
cryptosystems are based on fusing the unprotected template
with additional information to generate data, named as helper
data. An advantage of biometric cryptosystems is that helper
data do not have to be private because the additional
information employed obfuscates the template information and
the helper data does not give biometric information.

This paper focuses on implementing a complete fingerprint
biometric cryptosystem in the same hardware device, in
particular a FPGA (Authentication on FPGA). To the best of
our knowledge, no protected biometric system has been
implemented with dedicated hardware. The paper is structured
as follows. Firstly, Section II reviews the main template
protection approaches reported in literature. Section III
presents a novel fingerprint feature named QFingerMap, which
can be implemented in dedicated hardware with very few
memory and computing resources. A cryptosystem that can
fuse QFingerMaps from different samples of the same finger as
well as passwords provided by the user is presented in Section
IV. Section V summarizes the hardware implementation of the
cryptosystem proposed and reports hardware implementation
results in terms of timing and resource occupation. Finally,
conclusions are given in Section VI.

II. BIOMETRIC CRYPTOSYSTEMS

The biometric cryptosystems based on Fuzzy Commitment
[7] combine error correction and cryptographic techniques.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC

https://core.ac.uk/display/36211398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

During the enrollment phase, helper data H is computed from
the biometric template B and a codeword C generated by an
Error Correction Code (ECC). Then, H and hash(C) are stored.
At matching, the error correction scheme decodes the
information from the input biometric data B’ and the helper
data stored H. Since the input biometric data B’ is similar to the
biometric template B, the word C’ resulting from combining B’
and H is similar to C, so that the error correction code applied
to C’ obtains C, ECC(C’) = C. The authentication is successful
when hash(C) and hash[ECC(C’)] coincide. Any input
biometric data B’ similar to the biometric template B should be
able to reconstruct C. The Fuzzy Commitment scheme is
illustrated in Figure 1. This scheme requires that biometric
representations are binary, length-fixed, sorted and aligned and
that was the reason why the first practical approaches of
fingerprint cryptosystems were applied to features such as
FingerCodes. Feature vectors extracted from minutiae are not
ordered or aligned features. Hence, they should be converted to
suitable representations. If extraction of minutiae is already
complex for dedicated hardware, its protection further
complicates its implementation [8].

Error correction techniques can be categorized into two
groups, depending on how errors are processed: bit-by-bit
(which corrects random bit errors) or block-by-block (which
corrects burst errors). Although errors are normally distributed
as bursts, both types have been applied in biometric
cryptosystems, particularly BCH and Reed-Solomon [8], [9].
Despite applying error correction codes, most existing
biometric template protection methods cause degradation in
biometric performance, in comparison to an unprotected
system [10]-[11]. Most of biometric features are real-valued
but template protection schemes require binary features so that
discretization methods influence the performance of the
biometric cryptosystem because there is loss of information.
This can be seen in Table I, which shows results from feature
transformation systems and biometric cryptosystems. FMR
(False Match Rate) is the number of false matches for the
impostor distribution and FNMR (False Non-Match Rate) is
the number of false non-matches for the genuine distribution.

III. THE FEATURE QFINGERMAP

A novel fingerprint feature based on textures is considered
in this work [14]. The feature, named QFingerMap, is
extracted from a window centered at the convex core point of
the fingerprint, once the orientation or directional image (which
contains the local ridge orientations of the pixels in the
fingerprint image) has been segmented into homogeneous
regions [15]. The complete extraction process is shown in
Figure 2.

Let us consider a coarse directional image that assigns to
each pixel 1 out of 8 possible direction intervals in the range
from 0º to 180º: g0=[0º, 22.5º), g1=[22.5º, 45º), g2=[45º,67.5º),
g3=[67.5º, 90º), g4=[90º, 112.5º), g5=[112.5º, 135º), g6=[135º,
157.5º), and g7=[157.5º, 180º). These intervals are represented
by the following symbols (coded with 3 bits): 000, 001, 010,
011, 100, 101, 110, and 111. Each symbol is represented by a
color in Figure 2. The selection of the interval (and symbol) for
each pixel is determined by simple comparisons between
horizontal and vertical gradient values calculated at each pixel.

As in any technique that calculates orientation images, the next
step after symbol assignation is a smoothing process because
the objective is to obtain homogeneous regions with the same
symbols. A nonlinear filter based on maximum operator has
been employed. It considers the neighboring pixels inside an S
x S window centered at the analyzed pixel and assigns it the
symbol with the highest number of occurrences inside the
window. This operation is in charge of removing isolated and
noisy symbols. The window size depends on the sensor
employed (its size, resolution, and technology) because the
features of the fingerprint images acquired are different. If the
window size is small, isolated and noisy symbols cannot be
removed. In contrast, if the window size is too large, relevant
information can be lost. A 27 x 27 window has been proven to
provide good performance for different types of sensors [15].

The feature vector is generated from an N x N window
within the smoothed segmented orientation image centered at
the convex core point, being formed by N x N symbols in an
ordered way. Each element of the feature vector is one symbol
out of the 8 possible symbols. The selection of the window size
N x N is also relevant for the recognition process. An adequate
size depends in turn on the fingerprint image size acquired by
the sensor. For most fingerprint sensors, which capture a
fingerprint size of, approximately, 300 x 300, the several
studies carried out have revealed that the most suitable option
is a window size in the range of 129 x 129 because it gives the
best tradeoff between distinctive capability and the fingerprint
image size captured by the sensors.

The feature vector length is reduced by applying down-
sampling to remove redundant information. The target is to
generate a compact and distinctive representation of the
fingerprint by selecting the most representative symbols. A
simple way is to take 1 between d consecutive pixels
(downsampling by a factor of d). A suitable performance is
given by a factor of 8, which results a feature vector of 17 x 17
symbols. If symbols are coded by 3 bits, the 17 x 17 symbol
vector requires 867 bits (17 x 17 x 3 bits), which is a
considerable reduction with respect to the initial 129 x 129
symbol vector. Therefore, the feature vector QFingerMap is
defined by a fixed-length vector composed of symbols
distributed in a sorted way.

The matching operation between two QFingerMaps is done
by computing the number of different symbols. From its
conception, a QFingerMap has been thought for hardware
implementations, so that the feature extraction and matching
operations require a low computational cost. In addition, its
translation to a binary representation is direct and does not
need a quantization process (thus reducing the possible
variations caused by the translation of continuous to discrete
values). Hence, QFingerMaps are very suitable fingerprint
features for the application of a Fuzzy Commitment scheme for
the purpose of biometric template protection.

IV. A BIOMETRIC CRYPTOSYSTEM BASED ON QFINGERMAPS

The helper data generation in a Fuzzy Commitment scheme
is in charge of fusing the codeword and the biometric data (the
QFingerMap) in a obfuscated way to create public information.
In general, the fusion of the codeword and the biometric data is
done by a XOR operator and so it has been employed in this

work. A one-way transformation function (a cryptographic
hash function) protects the codeword information. The hash(C)
value can be public because the hash function ensures that the
codeword C is computationally infeasible to recover from the
hash(C) value. Keccak has been selected as hash function [16].

The codeword length n is determined by the QFingerMap
length L (which is associated to symbols or bits, depending on
the representation) and has to satisfy n≥L to fuse the codeword
with biometric information. For BCH and Reed-Solomon error
correction codes, n=2m-1 (n expressed as base 2 depending on
m value). If L<n, a padding of n-L is applied to QFingerMap to
complete the n values. The creation of the codeword is
performed from a random value with length k. Values of n and
k establish the number of errors t, which the error correction
code can correct as a maximum.

Since a QFingerMap is composed of 289 symbols or 867
bits (in total, 17 x 17 symbols coded with 3 bits), the selection
of a BCH code, which corrects random bit errors, requires a
minimum length for the codeword of 1023 bits (n=1023). In
the case of Reed-Solomon codes, which correct symbol errors,
the 289 symbols of a QFingerMap determine the parameter for
the codeword length (n), whose value should be greater or
equal than 511 (for m≥9 and, thus, n≥29-1). For Reed-Solomon
codes, the maximum number of errors t that can be corrected is
defined as t=(n-k)/2.

An unprotected biometric system based on QFingerMaps
applies a matching operation which calculates the number of
different symbols (codified by 3 bits) between two
QFingerMaps. Hence, the number of different symbols (bits)
used as threshold value to distinguish between genuine
individuals and impostors is correlated to the number of
symbols (bits) than the ECC can correct. The correction code
capability also determines the values of FMR (False Match
Rate) and FNMR (False Non-Match Rate) because as more
errors are corrected, the FMR increases and the FNMR
decreases, and vice versa.

The unprotected biometric system has been applied to 560
fingerprints captured in live by an optical sensor (the FS90
sensor from Futronic) and enhanced by applying the filtering
proposed in [17]. In the genuine distribution, each sample is
matched against the remaining samples of the same finger, and
for the impostor distribution, the first sample of each finger is
matched against the first sample of the remaining fingers.
These distributions remove symmetric comparisons to avoid
correlation according to the recommendations of Fingerprint
Verification Competition (FVC). Table II shows a comparison
of the EER (Equal Error Rate, that is, the rate where FMR and
FNMR are equal) for the unprotected biometric system and the
protected biometric system, considering BCH and Reed-
Solomon codes. In general, there is not a clear relation between
the unprotected biometric system and the cryptosystem in
terms of FMR, FNMR, and EER. The cryptosystem usually
performs worse but it cannot be estimated quantitatively by a
simple analysis how much worse it is going to perform. In
contrast, for QFingerMaps, there is a clear relation between the
performance of the unprotected system and the performance of
the cryptosystem. This is an advantage that eases the design of
the cryptosystem because the threshold values of the

unprotected biometric system indicate the number of errors to
be corrected by the error correction code. Thus, the selection of
the error correction code parameters depends on the FMR and
FNMR values required by the application. This is illustrated in
Figure 3, which shows how the results of the protected and the
unprotected systems are quite similar. However, the minimum
length for the BCH codewords is 1023 bits, and BCH codes are
more suitable (offer more efficient implementations) for
lengths of a hundred of bits [11]. Hence, a Reed-Solomon code
has been chosen for the proposed cryptosystem.

A fingerprint recognition system usually employs several
samples of a finger at enrollment and even at matching to
increase recognition performance. Therefore, let us consider
the acquisition of St samples at enrollment, so that St helper
data values are computed as follows: = (⨁ ,… , ⨁) = (,… ,) (1)

where (C1, …, Ct) are codewords of an ECC.

At matching, S’q samples are captured as inputs and St x S’q
values are calculated from the helper data values stored as
follows: , … , × =(⨁ ,… , ⨁ ,… , ⨁ ,… , ⨁) (2)

The St x S’q hash values, hash[ECC(C’i)], are compared to
the corresponding hash values stored, hash(Cj). The number of
comparisons is St x S’q and each comparison gives ’1’ if the
compared values are equal, and ’0’ if they are different. The
OR operator is applied to these values, and the result is ’1’ if an
individual has been recognized, and ’0’ otherwise. = ,…,,…, [ℎ ℎ (⨁] = ℎ ℎ() (3)

Considering the fingerprint database commented above, the
following realizations have been analyzed among others:

- Case 1: Multi-sample system composed of three samples at
enrollment, and one sample at matching.

- Case 2: Multi-sample system composed of three samples at
enrollment, and two samples at matching.

A two factor identification/authentication, which combines
passwords and biometric information, increases the security
because both information (‘what you know’ and ‘who you are’)
are required to recognize an individual. Also, the fusion of
biometric data and passwords is a simple way to obtain more
accuracy in recognition by using a dual factor [18]. Hence, a bit
operator (XOR) has been employed to fuse bits from
passwords and bits from biometric data. Padding has been
applied to the hash of the password to achieve the same
QFingerMap length. The password obfuscates the biometric
information and vice versa, so that both data are protected by
the Fuzzy Commitment scheme. As a matter of fact, this case
can be seen as a kind of salting transforms. The result of the
fusion has the length of a QFingerMap. Hence, protection is
applied similarly to equation (3), as follows: = ,…,,…, [ℎ ℎ (⊕ ′⨁] = ℎ ℎ() (4)

where the helper data Hi are associated to a sample i of the
fingerprint, Si, the hash of the password conveniently padded,
P, and a codeword, Ci.

Table III shows the selection of ECC parameters for the
cases 1 and 2 considered above, with and without passwords,
using Reed-Solomon codes. Individual discrimination is
improved. Figure 4 illustrates graphically the recognition
performance (FMR and FNMR) for the multi-biometric case 2
when adding the passwords. Since the genuine and impostor
distributions are separated, several Reed-Solomon codes are
suitable for a perfect authentication.

V. DESIGN OF THE FPGA SYSTEM

The main blocks for the hardware implementation of the
presented cryptosystem implement the QFingerMap extraction,
the encoder to generate the codeword from a random value, the
decoder to correct errors due to the variability in the biometric
data acquisition, and the hash function to protect the codeword
generated and to process the possible password introduced by
the user. The enhancement filtering employed for the
fingerprint database considered is not included in the system
because the enhancement techniques depend on the type of the
sensor and the captures. These blocks are shown in Figure 5.

The whole system has been designed with Matlab-
Simulink. The tool HDL Coder from Simulink has been
employed to generate synthesizable VHDL code. The tools
from Xilinx ISE environment have been used to implement the
design in the FPGA, verify the code at hardware level (with
ISIM simulator), and verify the system at its context of
operation (with FPGA-in-the-Loop functionality) [19].

The implementation has been performed in a Xilinx Virtex-
6 (XC6VLX240T-1FFG1156) FPGA for 440 x 300 fingerprint
images. The FPGA considered contains 37680 slices and 416
36-Kbit Block RAMs. More details about the architecture and
data processing of the blocks that obtain the partitioned
directional image, the smoothed partitioned directional image,
and the singular points as well as the block that estimates the
quality of the acquired fingerprint image can be seen in [15].
The realization also includes a 512-bit hash function based on
the SHA-3 Keccak [20].

As discussed, Reed-Solomon is selected as the most
suitable error correction technique for a cryptosystem based on
QFingerMaps. Following the hardware design flow based on
CAD tools, the Reed-Solomon encoder and decoder
implemented have been obtained from the Matlab-Simulink
library blockset for HDL Coder ([21] and [22], respectively).
The selection of different parameters leads to different
implementations and, thus, different occupation and resources
needed. The results for a Reed-Solomon code with n=511,
k=383 and t=64 are 505 slices (1.34%) for the encoder, and
25181 slices (66.83%) for the decoder. This code can correct
22.15 % of errors, which allows perfect authentication in the
multi-biometric system of case 2 shown in Figure 4.

All blocks required for a fingerprint-based cryptosystem
can be implemented in the same device, in this case a Xilinx
Virtex-6 FPGA. It is a dual security level because recognition
stages (feature extraction and matching) are performed in the
same device and template protection lets store and match

biometric data and passwords in a transformed domain, which
reduces considerably the number of possible attacks. The
occupation of all blocks is 29895 slices (79.34%). The Reed-
Solomon Decoder occupies most of slices (66.83%) and limits
the global maximum frequency to 58 MHz. Hence, the system
generates the feature vector in 2.28 ms after processing serially,
pixel by pixel, a 440 x 300 fingerprint image (440 x 300 / (58
MHz)). Once the hash of the query codeword is obtained from
the query fingerprint (and possible password), the time to
compute the comparison with the stored hash is negligible (it is
a comparison of hash values).

The template memory is composed of 1023 bits from the
helper data (511 bits) and the hash of the codeword used at
enrollment (512 bits). Since 18.5 out of the 416 36-Kbit Block
RAMs are used in a Xilinx Virtex-6 FPGA to extract a query
codeword, the other 36-Kbit Block RAMs of the FPGA can
store more than 14,323 helper data associated to samples and
passwords.

VI. CONCLUSIONS

This work has presented an FPGA realization that protects
a fingerprint template based on the feature QFingerMap. The
proposal is a cryptosystem that applies a Fuzzy Commitment
scheme because the feature QFingerMap is an ordered, binary
and fixed-length vector. The main operations of the Fuzzy
Commitment scheme are the error correction technique and the
hash function. The error correction codes selected have been
Reed-Solomon codes since they are more suitable for
QFingerMaps, which are based on symbols instead of bits.
Recognition performance results show that there are not
significant differences between the performance of unprotected
and protected systems, which is an interesting result that
facilitates the design of the cryptosystems. Moreover,
experimental results confirm that accuracy can be complete
(both False Match Rate and False Non-Match Rate can be zero)
and operation is performed in real time.

ACKNOWLEDGEMENTS

This work has been partially supported by TEC2011-24319
and IPT-2012-0695-390000 projects from Ministerio de
Economía y Competitividad of the Spanish Government (with
support from the PO FEDER-FSE).

REFERENCES
[1] R. Cappelli, A. Lumini, D. Maio and D. Maltoni, ”Fingerprint Image

Reconstruction from Standard Templates”. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 29(9), pp. 1489-1503. 2007.

[2] J. Feng and A. K. Jain, ”Fingerprint Reconstruction: From Minutiae to
Phase”. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 33(2), pp. 209-223. 2011.

[3] N. K. Ratha, J. H. Connell and R. M. Bolle, ”Enhancing Security and
Privacy in Biometrics-based Authentication Systems”. IBM Systems
Journal - End-to-End Security. 40(3), pp. 614-634. 2001.

[4] D. Maltoni, D. Maio, A. K. Jain and S. Prabhakar, ”Handbook of
Fingerprint Recognition”. 2nd ed. Springer. 2009.

[5] A. T. B. Jin, D. N. C. Ling and A. Goh, ”Biohashing: Two Factor
Authentication Featuring Fingerprint Data and Tokenised Random
Number”. Pattern Recognition. 37(11), pp. 2245-2255, Elsevier. 2004.

TABLE II. COMPARISON OF RECOGNITION RESULTS OBTAINED

ECC
Unprotected

(threshold value)
Protected
(n, k, t)

BCH code
FMR=5.63, FNMR=5.63

(146 different bits)
FMR=5.84, FNMR=5.44

(2047, 815, 146)
Reed-Solomon
code

FMR=5.40, FNMR=5.40
(94 different symbols)

FMR=5.52, FNMR=5.35
(511, 323, 94)

[6] A. B. J. Teoh, A. Goh and D. C. L. Ngo, ”Random Multispace
Quantization as an Analytic Mechanism for BioHashing of Biometric
and Random Identity Inputs,” in IEEE Transactions on Pattern Analysis
and Machine Intelligence. 28(12), pp. 1892-1901. 2006.

[7] A. Juels and M. Wattenberg, ”A Fuzzy Commitment Scheme,” in
Proceedings of the 6th ACM Conference on Computer and
Communications Security. pp. 28-36. 1999.

[8] P. Li, X. Yang, H. Qiao, K. Cao, E. Liu and J. Tian, ”An Effective
Biometric Cryptosystem Combining Fingerprints with Error Correction
Codes”. Expert Systems with Applications. (39), pp. 6562-6574.
Springer. 2012.

[9] Y. Imamverdiyev, A. B. J. Teoh and J. Kim, ”Biometric Cryptosystem
based on Discretized Fingerprint Texture Descriptors”. Expert Systems
with Applications. 40(5), pp. 1888-1901. Elsevier. 2013.

[10] K. Nandakumar, ”A Fingerprint Cryptosystem based on Minutiae Phase
Spectrum,” in Proceedings of the 2010 IEEE International Workshop on
Information Forensics and Security (WIFS). pp. 1-6. 2010.

[11] P. Tuyls, A. H. M. Akkermans, T. A. M. Kevenaar, G. Schrijen, A. M.
Bazen and N. J. Veldhuis, ”Practical Biometric Authentication with
Template Protection,” in Proceedings of the 5th Int. Conf. on Audio- and
Video-based Biometric Person Authentication (AVBPA). 3546, pp. 436-
446. 2005.

[12] A. Nagar, K. Nandakumar, and A. K. Jain, “Biometric Template
Transformation: A Security Analysis,” in Proceedings of the 2010 SPIE
Media Forensics and Security. 7541, pp. 75410O-75410O-15. 2010.

[13] S. Tulyakov, F. Farooq, P. Mansukhani, and V. Govindaraju,
“Symmetric Hash Functions for Secure Fingerprint Biometric Systems”.
Pattern Recognition Letters. 28(16), pp. 2427-2436. Elsevier. 2007.

[14] R. Arjona and I. Baturone, ”Método de Identificación de Huellas
Dactilares y Dispositivo que Hace Uso del Mismo”. Patent Filing
Number P201300721. Spain. August 2013.

[15] R. Arjona and I. Baturone, ”A Hardware Solution for Real-Time
Intelligent Fingerprint Acquisition”. Journal of Real-Time Image
Processing. 9(1), pp. 95-109, Springer. 2014.

[16] NIST selects the Winner of Secure Hash Algorithm (SHA-3)
Competition (2012): http://www.nist.gov/itl/csd/sha-100212.cfm

[17] Fingerprint Recognition Software based on FingerCodes (2006):
http://www.advancedsourcecode.com/fingerprint.asp

[18] A. A. Ross, K. Nandakumar, and A. K. Jain. Handbook of
Multibiometrics. Springer. London, United Kingdom, 2006.

[19] R. Arjona and I. Baturone, ”Model-based Design for Selecting
Fingerprint Recognition Algorithms for Embedded Systems,” in
Proceedings of the 19th IEEE International Conference on Electronics,
Circuits and Systems (ICECS). pp. 579-582. 2012.

[20] Implementation for the Hash Function Keccak (2013):
http://keccak.noekeon.org/files.html

[21] Integer-Input RS Encoder HDL Optimized Matlab Simulink Block
(2013): http://www.mathworks.es/es/help/comm/ref/
integerinputrsencoderhdloptimized.html

[22] Integer-Output RS Decoder HDL Optimized Matlab Simulink Block
(2013): http://www.mathworks.es/es/help/comm/ref/
integeroutputrsdecoderhdloptimized.htm

Fig. 1 Fuzzy Commitment scheme. (1) refers to the enrollment phase,

and (2) refers to the matching phase.

Helper Data
Generation

Template
storage

Error
correctioncodeword C

Helper Data
H

Helper Data
H

Biometric
data B

Hash

Biometric
data B’

Hash(C)

Hash(C)

Comparison

(Un) Successful
matching

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(2)
ECC(C’)

(2)

Hash[ECC(C’)]

TABLE I. RESULTS FOR UNPROTECTED AND PROTECTED SYSTEMS

Proposal
Protection
Scheme

Unprotected Protected
FMR
(%)

FNMR
(%)

FMR
(%)

FNMR
(%)

Directional
Image/Finger-
Codes [11]

Fuzzy
Commitment

1.4 1.4 4.5 4.5

Minutiae [12]
Cancelable
Transformation

3.2 3.2 12.5 12.5

Minutiae [10]
Fuzzy
Commitment

1.7 1.7 0.0 12.6

Minutiae [13]
Symmetric
Hash Functions

1.7 1.7 3.0 3.0

Minutiae [12]
Biohashing
Transformation

6.6 6.6 1.8 1.8

TABLE III. EQUAL ERROR RATES AND PARAMETERS FOR REED-
SOLOMON CODES DEPENDING ON THE REALIZATION

Realization EER ECC (n, k, t)

Case 1 2.52 (511, 363, 74)

Case 2 1.03 (511, 391, 60)

Case 1 with passwords 0.05 (511, 345, 83)

Case 2 with passwords 0.00 (511, 381, 65)

Fig. 2. Extraction process of the feature QFingerMap.

 (a) (b)

Fig. 3. FNMR and FMR for QFingerMap-based unprotected and protected systems (a) using BCH and (b) Reed-Solomon codes.

Fig. 4. FNMR and FMR for the case 2 with passwords depending on the number of errors corrected by a Reed-Solomon code.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Errors corrected by BCH (%)

%

FNMR and FMR

FNMR FMR

Unprotected template
Protected template

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Errors Corrected by Reed-Solomon (%)

%

FNMR and FMR

FNMR FMR

Unprotected template
Protected template

Fig. 5. Block diagram for the crypto-biometric identification/authentication process: (1) enrollment phase, and (2) matching phase. Paths without names are
employed in both phases (enrollment and matching). Paths depicted with shaded lines are employed depending on the application.

