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Román González-Prieto, Ana M
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Homologous recombination (HR) is essential for genome

integrity. Recombination proteins participate in tolerating

DNA lesions that interfere with DNA replication, but

can also generate toxic recombination intermediates and

genetic instability when they are not properly regulated.

Here, we have studied the role of the recombination

proteins Rad51 and Rad52 at replication forks and repli-

cative DNA lesions. We show that Rad52 loads Rad51 onto

unperturbed replication forks, where they facilitate

replication of alkylated DNA by non-repair functions.

The recruitment of Rad52 and Rad51 to chromatin during

DNA replication is a prerequisite for the repair of the

non-DSB DNA lesions, presumably single-stranded DNA

gaps, which are generated during the replication of alkylated

DNA. We also show that the repair of these lesions

requires CDK1 and is not coupled to the fork but rather

restricted to G2/M by the replicative checkpoint. We propose

a new scenario for HR where Rad52 and Rad51 are recruited

to the fork to promote DNA damage tolerance by distinct and

cell cycle-regulated replicative and repair functions.
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Introduction

In every cell cycle, DNA accumulates lesions that impair the

advance of the replication forks. Eventually, this leads to an

accumulation of single-stranded DNA (ssDNA), which acti-

vates a number of mechanisms aimed at ensuring that DNA

replication passes through DNA lesions and repairing the

gaps. Defects in this response cause replication fork stalling

and genetic instability in yeast (Vázquez et al, 2008; Putnam

et al, 2010) and are associated with cancer in humans

(Moynahan and Jasin, 2010). This DNA damage tolerance

(DDT) response relies in error-prone translesion synthesis

(TLS) and error-free template switch (TS) mechanisms. TLS

fills the gap by extending the 30-end past the damaged

template, using specialized DNA polymerases that are able

to incorporate a nucleotide opposite the lesion, while TS uses

the information of the sister chromatid to bypass damage

(Friedberg, 2005). A crucial protein in this decision is the

DNA polymerase processivity factor PCNA, which functions

as a platform for factors involved in replication, repair, and

chromatin assembly (Moldovan et al, 2007). In response to

DNA damage, PCNA is ubiquitinated at lysine 164 by the

Rad6/Rad18 ubiquitin ligase complex (Hoege et al, 2002),

and this modification serves as a target for recruiting

TLS polymerases (Lehmann et al, 2007). Alternatively,

the ubiquitin residue at lysine 164 can be extended with a

K63-linked polyubiquitin chain by the Ubc13/Mms2/

Rad5 ubiquitin ligase complex to promote TS (Hoege et al,

2002). Thus, the choice between TLS and TS mechanisms

determines whether the repair is mutagenic or not.

Consequently, DDT is an essential process for cell-cycle

progression, genome integrity, and cancer avoidance.

Homologous recombination (HR) is also necessary for gap

filling during DDT (Prakash, 1981; Friedberg, 2005; Heyer

et al, 2010). The recombination proteins Rad52 and Rad51 are

required for replication fork progression through alkylated

DNA (Vázquez et al, 2008; Alabert et al, 2009), and in their

absence cells accumulate ssDNA gaps (Lopes et al, 2006;

Hashimoto et al, 2010). Since HR uses the genetic information

of an intact molecule to repair a DNA break, it might provide

the enzymatic activities required for TS. Accordingly, the

RAD6 and RAD52 epistasis group of proteins cooperate

through a mechanism that forms a sister-chromatid

junction (SCJ), which is then further resolved by the

helicase/topoisomerase Sgs1/Top3 complex (Liberi et al,

2005; Branzei et al, 2008; Minca and Kowalski, 2010).

The requirement for recombination proteins during DDT is

in apparent contradiction with the existence of anti-recombi-

nogenic activities during DNA replication (Fabre et al, 2002).

For instance, lysine K164 can also be SUMOylated, even in

the absence of DNA damage. This modification is carried out

by the Ubc9/Siz1 SUMO ligase complex and recruits the

helicase Srs2 to prevent HR (Hoege et al, 2002; Papouli

et al, 2005; Pfander et al, 2005). In fact, the activation of

the replicative checkpoint by accumulation of ssDNA inhibits

HR (Lisby et al, 2004; Meister et al, 2005; Alabert et al, 2009;

Barlow and Rothstein, 2009). Thus, HR is often referred to as

a double-edged sword; it is necessary for DNA damage repair

and tolerance but can also generate genomic rearrangements

when it is not properly regulated. However, the molecular

scenarios that require or preclude recombination functions

are still unknown.

The HR mechanism has been extensively studied in

response to DNA double-strand breaks (DSBs) (San Filippo

et al, 2008). In contrast, much less is known about how HR is

regulated during DDT, despite the fact that ssDNA gaps, and

not DSBs, are the major lesions initiating spontaneous

recombination (Fabre et al, 2002; Lettier et al, 2006).

Indeed, its mode of action is still unclear. An important
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mechanistic question is whether gap repair by HR is coupled

to the replication bypass across the lesion or whether it

occurs post-replicatively. The efficiency of the response to

replicative DNA damage is not affected when the expression

of the group of RAD6 epistasis proteins is restricted to G2/M,

suggesting that these mechanisms can operate uncoupled

from the replication fork (Daigaku et al, 2010; Karras and

Jentsch, 2010). The fact that not only rad18D, but also rad52D
cells, accumulates ssDNA gaps behind the fork under

replicative stress (Lopes et al, 2006; Hashimoto et al, 2010)

supports the idea that HR can also work uncoupled from the

fork. However, the recombination proteins Rad52 and Rad51

are required for replication fork progression through

alkylated DNA (Vázquez et al, 2008; Alabert et al, 2009),

suggesting that HR has additional, S phase-specific functions

that remain to be determined.

A major handicap for studying the role of HR during DDT is

the difficulty of discriminating whether a recombinogenic

lesion is associated with a ssDNA gap generated by replica-

tion fork impairment or with a DSB generated by processing a

non-DSB DNA lesion. Furthermore, the few assays able to

detect ssDNA gaps infer the role of HR from recombination

mutants (Lopes et al, 2006; Gangavarapu et al, 2007),

which can sometimes be misleading since the accuracy of

HR relies on metastable and reversible intermediates (Heyer

et al, 2010). To overcome these problems, we have used the

Chromatin Endogenous Cleavage (ChEC) method (Schmid

et al, 2004) to follow the binding of recombination proteins to

replication forks and to DNA lesions other than DSBs during

the cell cycle. We show that Rad52 and Rad51 are recruited to

replication forks, where they facilitate DNA synthesis through

alkylated DNA by a repair-independent process. Strikingly,

the recruitment of Rad52 and Rad51 to chromatin during

DNA replication is a prerequisite for the further repair of

the lesion by HR, a process that is not coupled to the fork but

rather restricted to G2/M by the replicative checkpoint.

Results

Physical evidence for the recruitment of Rad52 and

Rad51 to replicative DNA damage other than DSBs

To directly address whether recombination proteins are

targeted to DNA lesions other than DSBs, we took advantage

of the ChEC method developed by Laemmli and colleagues to

map genomic interaction sites of chromatin proteins (Schmid

et al, 2004). This method relies on the expression of proteins

fused to the micrococcal nuclease (MN); the nuclease domain

of these chimeras can be activated with Ca2þ ions and

introduce a DNA DSB if they are bound to chromatin.

For this, cells are permeabilized with digitonin, which does

not affect protein–DNA interactions, and treated with Ca2þ

for different times (Schmid et al, 2004). The rationale behind

this approach is that a repair protein fused to MN will only

generate a detectable cut in the DNA if it is targeted to a lesion

that is not a DSB; by contrast, if the lesion is a DSB, the cleavage

by the chimera will not enhance the appearance of DSBs

(Figure 1A). Therefore, we can infer that recombination proteins

bind to DNA if DNA is digested upon exposure to Ca2þ .

We fused MN to the C-terminal ends of Rad52 and Rad51

(Rad52-MN and Rad51-MN), and confirmed that these con-

structs were as proficient as the wild type in DNA damage

repair and tolerance (Figures 1B and C; Supplementary

Figure 1A). Rad52, which is essential for most HR events in

yeast, binds to the 30-ended ssDNA molecules generated by

resection of a DSB and facilitates the formation of an ssDNA/

Rad51 filament that mediates the search and exchange of

homologous DNA sequences (San Filippo et al, 2008). To

study the role of HR in repairing DNA lesions other than

DSBs, cells were treated with methyl-methane sulfonate

(MMS), a genotoxic agent that impairs replication fork

progression by DNA alkylation (Tercero and Diffley, 2001)

and that is highly toxic for cells defective in HR (Prakash and

Prakash, 1977). After 2 h either with or without 0.05% MMS,

cells were collected, permeabilized, and treated with Ca2þ

for different times, and then total DNA was extracted and

resolved in agarose gels. In the absence of Ca2þ , a single,

high molecular DNA band is detected on top of the gel

(Figure 1D, time 0). In the absence of MMS, Rad52-MN

digested DNA over a time course with Ca2þ (Figure 1D;

note the gradual appearance of a smear below the top band

in �MMS). Notably, the presence of MMS increased both the

kinetics and extent (down to 1 kb) of DNA digestion by

Rad52-MN (Figure 1D; compareþ relative to �MMS at 30

and 45min). The top band disappeared leading to a distribu-

tion of DNA fragments that peaked at B10 kb. This effect

was not observed when we expressed only the MN

(Supplementary Figure 1B). We also ruled out the possibility

that the digestion was due to the fact that most MMS-treated

cells remained at S phase (Figure 1D) by showing that DNA

digestion by Rad52-MN in cells synchronized in G1, S, or G2/

M and released in the absence of DNA damage did not change

during the cell cycle (Supplementary Figure 1C). Importantly,

and according to our hypothesis, introducing DNA DSBs with

zeocin did not affect the kinetics of DNA cleavage by Rad52-

MN (Supplementary Figure 1D).

The expression of Rad51-MN also led to a Ca2þ -dependent

DNA digestion in the presence of MMS, even though less

pronounced than that displayed by Rad52-MN. Importantly,

this digestion was abolished in rad52D (Figure 1E), indicating

that Rad52 mediates the binding of Rad51 to chromatin. Taken

together, these results provide physical evidence for the recruit-

ment of recombination proteins to non-DSBs DNA lesions.

Next, we investigated whether Rad52 binding to MMS-

induced DNA damage is dependent on replication. For this,

we used cells expressing CDC6 under the control of the GAL1

promoter (Gp::CDC6). Expression of Cdc6 is essential for

replication initiation but not for later cell-cycle events that

depend on high levels of CDK activity (Piatti et al, 1995).

Wild-type and Gp::CDC6 cells were maintained in glucose for

2h during the synchronization steps to deplete Cdc6, after

which G1 cells were released using medium with or without

0.05% MMS (Figure 1F). As reported, the absence of Cdc6

prevented DNA replication initiation and led to a ‘reductional’

cell division (Piatti et al, 1995). The absence of DNA replication

also prevented Rad52-MN from binding to DNA in response to

MMS, suggesting that Rad52 is recruited to non-DSBs

replicative DNA lesions, presumably ssDNA gaps as

suggested from Electron Microscopy studies with recombi-

nation mutants (Lopes et al, 2006; Hashimoto et al, 2010).

Recruitment of recombination proteins to MMS-

induced DNA damage is coupled to DNA replication

In principle, Rad51 and Rad52 could be targeted to ssDNA

gaps at or behind the fork, which are generated either by
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uncoupling the leading and lagging strands, or by repriming

DNA synthesis downstream of damage, respectively. To de-

termine this, cells were synchronized in G1 and released in

the presence of 0.033% MMS for different times, and samples

were analysed for Rad52-MN DNA cleavage (Figure 2A).

Rad52-MN was bound to damaged DNA 1h upon G1 release,

when most cells were at S phase, as inferred from the DNA

content profile. However, even at longer time points (3 and

4 h) at which bulk DNA was largely replicated, Rad52-MN

was still bound to damaged DNA. This suggests that Rad52

can operate uncoupled from the replication fork at ssDNA

gaps left behind the fork.

If Rad52 can operate uncoupled from the fork, then one

prediction is that HR should be able to repair DNA damage

even if HR is restricted to G2/M. To address this point, we

limited Rad52 expression to G2/M by inserting the promoter

and degron sequences of CLB2 in front of the coding se-

quence of RAD52 (G2::cRAD52) (Figure 2B). The cRad52

chimera was functional, as determined by analysing the

viability of cells arrested in mitosis and then treated for

30min with zeocin (Figure 2C). As expected for cells lacking

Rad52 during S phase, G2::cRAD52 cells were defective in

completing DNA replication in the presence of 0.033% MMS

as determined by DNA content (Figure 2D) and PFGE

Figure 1 Physical evidence for Rad52 and Rad51 binding to non-DSB DNA lesions generated by replication through alkylated DNA. (A)
Rationale of the approach. A DNA repair protein fused to MN will induce a detectable cut only if it is bound to a DNA lesion other than a DSB.
(B, C) Rad51-MN and Rad52-MN are functional in MMS-induced DDT. (B) Response to chronic MMS treatment; cell growth analysis by 10-fold
serial dilutions of the same number of mid-log phase cells. (C) Response to acute high-dose MMS treatment; wild-type, RAD52-MN, RAD51-MN,
rad52D and rad51D cells were grown to mid-log phase, treated or not with 0.05% MMS for 2 h and plated onto YPD medium to determine their
viability. The average and s.e.m. of three independent experiments are shown. (D) Rad52 binds to DNA in response to MMS. ChEC analysis of
exponentially growing RAD52-MN cells incubated with 0.05% MMS for 2 h. The left and right panels show profiles for DNA content and DNA
digestion. (E) Rad51 binds to DNA in response to MMS in a Rad52-dependent manner. ChEC analysis of RAD51-MN and RAD51-MN rad52D
cells incubated with 0.05% MMS for 2 h. (F) DNA replication is required for Rad52 binding to MMS-induced DNA damage. RAD52-MN and
Gp::CDC6 RAD52-MN cells were synchronized in G2/M in YP galactose with nocodazole, incubated for 1 h in YP glucose with nocodazole to
remove Cdc6 (Tercero et al, 2003), and released into G1 in YP glucose with a factor. Finally, cells were released for 2 h in YP glucose with or
without 0.05% MMS and analysed by ChEC.
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(Figure 2E), where only replicated chromosomes enter into

the gel. The absence of Rad52 during S phase had little effect

on the sensitivity to zeocin-induced DSBs (Figure 2F, top);

however, in contrast to our prediction, G2::cRAD52 cells were

highly sensitive to MMS (Figure 2F, bottom). This indicates

that cells cannot tolerate replicative DNA damage if HR is

restricted to G2/M.

The fact that recombination proteins were bound to

damaged sites after replication was largely completed but

could not tolerate the damage when they were expressed only

in G2/M suggests that their recruitment to chromatin is

coupled to DNA replication. To assess this possibility, we

followed Rad51-MN binding to chromatin in G2::cRAD52 cells

by ChEC analysis. We first demonstrated that both cRad52

Figure 2 The recruitment of Rad52 and Rad51 to MMS-induced DNA damage is coupled to DNA replication. (A) Rad52 can operate uncoupled
from the replication fork in response to MMS. ChEC analysis of RAD52-MN cells synchronized in G1 and released in the presence of 0.033%
MMS. (B) cRad52 is expressed specifically during G2/M. Western blot analysis of cRad52 in G2::cRAD52 cells synchronized in G1 and released
into fresh medium. - indicates an asynchronous culture of a wild-type strain. Ponceau S staining and histone H3 levels were used as loading
controls. (C) cRad52 is functional. G2::cRAD52, rad52D, and wild-type cells were synchronized in G2/M, incubated with or without 100mg/ml
zeocin for 30min, and plated onto YPD medium to determine their viability. The average and s.e.m. of four independent experiments are
shown. (D, E) Rad52 is required for S-phase progression in the presence of MMS, as determined by Flow cytometry analysis of cells
synchronized in G1 and released in the presence of 0.033% MMS (D), and PFGE analysis of cells synchronized in G1, released in the presence
of 0.033% MMS for 1 h (M), and then release into fresh media for the indicated times (min) (E). The quantification of lineal chromosomes is
shown on the right. (F) Cells cannot tolerate MMS-induced DNA damage when HR is restricted to G2/M. Zeocin and MMS sensitivity of
G2::cRAD52, rad52D, and wild-type cells. (G) Rad52 and Rad51 recruitment to MMS-induced DNA damage is coupled to DNA replication. ChEC
analysis of RAD51-MN, G2::cRAD52 RAD51-MN, and rad52D RAD51-MN cells synchronized in G1 and released in the presence of 0.033% MMS
for 270min. The amount of cRad52 during the kinetics and of Rad51-MN 270min after G1 release on MMS was determined by western blot. An
asynchronous culture of rad51D was used as a negative control. Histone H3 and Pgk1 were used as loading controls. cRad52 was detected with
an antibody against Clb2.
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and Rad51-MN are functional when expressed together

(Supplementary Figure 2). Cells were then synchronized in

G1, released in the presence of MMS, and analysed after

270min, at which point most G2::cRAD52 cells remained

arrested in mitosis and expressed cRad52 (Figure 2G). As

previously shown, Rad52 was required for Rad51-MN binding

to chromatin in response to MMS. Importantly, Rad51-MN

binding was also prevented when Rad52 expression was

restricted to G2/M (Figure 2G). This result, which cannot

be explained by reduced levels of Rad51-MN in the mutant

relative to the wild type (Figure 2G), demonstrates that the

binding of Rad52 and Rad51 to damaged chromatin has to

occur during S phase. It is worth noting that this result

discards the possibility that the ChEC signal measured the

binding of HR factors to ssDNA during the Caþþ treatment,

since G2::cRAD52 cells in G2/M have Rad52, Rad51-MN, and

ssDNA. In conclusion, our results indicate that the recruit-

ment of recombination proteins is coupled to DNA replication

and this step is essential for DDT.

The recruitment of Rad51 to replicating chromatin is

required for MMS-induced HR repair

According to our previous results, the recruitment of Rad51 to

chromatin during DNA replication should be a prerequisite

for the recombinational repair of replicative DNA lesions.

DNA damage repair by HR is associated with repair centres

that can be detected with the recombination proteins Rad52

and Rad51 fused to the green fluorescence protein (Lisby

et al, 2001, 2004). While Rad52-YFP is biologically functional

(Lisby et al, 2001), tagging of Rad51 with the fluorescence

protein reduces its repair activity (Lisby et al, 2004).

We thereby worked with yeast strains expressing both the

chimera and the wild-type protein, which are fully functional

in the repair of MMS and zeocine-induced DNA damage

(Supplementary Figure 3A). Following the aforementioned

strategy with Gp::CDC6 cells, we first confirmed that, as

expected for replicative DNA damage, replication inhibition

in the absence of Cdc6 prevented the assembly of MMS-

induced HR foci (Figure 3A).

Since a single DSB is able to generate a Rad52 focus (Lisby

et al, 2003), the foci induced by MMS might reflect the repair

of residual DSBs caused by replication through alkylated

DNA. To address this point, we analysed the role of Exo1

and Sgs1, required for DNA resection during DSB repair by

HR (Gravel et al, 2008; Zhu et al, 2008; Mimitou and

Symington, 2008), on MMS-induced HR foci. The double

mutant exo1D sgs1D, and partially the single mutants sgs1D
and exo1D, suppressed zeocin but not MMS-induced

recombination foci (Figure 3B), suggesting that MMS-induced

foci are indeed associated with non-DSBs DNA lesions.

Consistently, exo1D sgs1D did not prevent the binding of

Rad52 to MMS-induced DNA damage as inferred from ChEC

analysis (Supplementary Figure 3B). Nevertheless, we do not

rule out the possibility that ssDNA gaps may need to be

enlarged for efficient DNA repair (e.g., for ssDNA/Rad51

filament formation). According with this idea, exo1D sgs1D
accumulated MMS-induced recombination foci (Figure 3B)

and were defective in SCJs formation (Vanoli et al, 2010) as

compared to the wild type. In this frame, it is worth noting

that this double mutant accumulated high levels of foci in

the absence of DNA damage, supporting the idea that

spontaneous recombinogenic damage is associated with

replicative non-DSB DNA lesions (Fabre et al, 2002; Lettier

et al, 2006).

Once established that the repair by HR of MMS-induced

non-DSBs replicative lesions is associated with foci, we

examined the effect of restricting Rad52 expression to G2/M

on MMS-induced YFP-Rad51 foci. G2::cRAD52 and wild-type

cells expressing YFP-Rad51 were synchronized in G1 and

released in the presence of 0.01% MMS. The lack of Rad52

during S phase in G2::cRAD52 suppressed the formation of

Rad51 foci in response to MMS (Figure 3C, left panel). This

effect was not due to reduced levels of YFP-Rad51 in the

mutant relative to the wild type (Supplementary Figure 3C).

Therefore, the recruitment of recombination proteins to chro-

matin during DNA replication is a prerequisite for the further

repair of the lesion. This is an important difference to DSB

repair by HR, which is independent of DNA replication

(Alabert et al, 2009; Barlow and Rothstein, 2009) and can

occur efficiently in G2 (Ira et al, 2004) even if Rad52 is not

expressed during S phase (Figures 2C and F). Accordingly,

G2::cRAD52 cells synchronized in G1 and released in the

presence of zeocin formed YFP-Rad51 foci in G2/M

(Figure 3C, right panel; Supplementary Figure 3D).

In cells lacking Sgs1, the repair of MMS-induced DNA

lesions leads to an accumulation of SCJs (X-shaped mole-

cules), a process that requires Rad51 and Rad52 (Liberi et al,

2005). Thus, we followed the kinetics of X-shaped molecules

in sgs1D and sgs1D G2::cRAD52 cells synchronized in G1 and

released in the presence of 0.033% MMS. As shown in

Figure 3D, the absence of Rad52 during S phase led to a

dramatic drop in the amount of SCJs, suggesting that Rad52

cannot promote sister-chromatid recombination in response

to non-DSB replicative lesions if it is not timely loaded during

replication.

An expectation of these results is that G2::cRAD52 cells

accumulated unrepaired ssDNA gaps. ssDNA molecules are

coated with replication protein A (RPA; formed by Rfa1-3

subunits), and can be detected by using the biologically

functional chimera Rfa1-YFP (Lisby et al, 2004). Most wild-

type cells released from G1 into medium containing 0.01%

MMS for 1 h accumulated Rfa1-YFP foci (B75%), and this

value was even higher in G2::cRAD52 and rad52D cells

(B90%) (Figure 3E, top). Inactivation of the MMS and

further incubation in fresh medium led to a gradual disap-

pearance of the RPA foci and normal cell-cycle progression in

the wild type, whereas both G2::cRAD52 and rad52D main-

tained the initial fraction of cells with foci 4 h after release

from MMS and remained arrested in G2/M. Of note, the

pattern of RPA foci during the kinetics was independent of

Rad52; multiple faint foci after 1 h in the presence of MMS

that gradually ended up into 1–2 bright foci after release in

fresh medium (Figure 3E, bottom). Faint speckled foci and

1–2 bright foci have been associated with replication and HR,

respectively (Lisby et al, 2004; Burgess et al, 2009). These

results suggest that the presence of Rad52 during S phase is

required for the repair of the replicative ssDNA gaps but not

for the recruitment of the DNA lesions to the repair centres.

Rad52 and Rad51 bind to replication forks regardless

of the presence of DNA damage

The fact that Rad52 and Rad51 have to be recruited onto

chromatin during DNA replication in order to promote DDT

suggests that their loading is coupled to the replication fork.

Rad51 fork recruitment is required for DDT
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Figure 3 Rad51 fork recruitment is a prerequisite for MMS-induced HR repair. (A) DNA replication is required for MMS-induced Rad52-YFP
foci. Rad52 foci accumulation in wild-type and Gp::CDC6 cells transformed with pWJ1344 (RAD52-YFP), synchronized in G1 as shown in
Figure 1F, and released in YP glucose with 0.01% MMS. (B) Sgs1 and Exo1 are required for zeocin-induced, but not for MMS-induced HR foci.
Rad52 foci accumulation in wild-type, sgs1D, exo1D, and sgs1D exo1D cells transformed with pWJ1344 (RAD52-YFP), synchronized in G1, and
released in the presence of 0.01% MMS (M) or 100mg/ml zeocin (Z) for 90 and 120min, respectively. (C) Rad52 expression during S phase is
required for MMS-induced, but not for zeocin-induced HR foci. Rad51 foci accumulation in YFP-RAD51 and G2::cRAD52 YFP-RAD51
cells transformed with pWJ1278 (RAD51), synchronized in G1, and released in the presence of 0.01% MMS (left panel) or 100mg/ml zeocin
(right panel). The average and s.e.m. are shown. (D) Rad52 expression during S phase is required for MMS-induced SCJs. 2D gel analysis of
X-shaped molecules in sgs1D and sgs1D G2::cRAD52 cells synchronized in G1 and released in the presence of 0.033% MMS. The amount of
X-shaped molecules relative to the total amount of molecules, taken the highest value as 100, is shown. The experiment was repeated with
similar results. (E) Rad52 expression during S phase is required for ssDNA gap repair. RPA foci accumulation and FACS analysis in RFA1-YFP1,
RFA1-YFP1 G2::cRAD52 and RFA1-YFP1 rad52D cells synchronized in G1, released in 0.01% MMS for 1 h, treated with 2.5% sodium
thiosulphate to inactivate the MMS, washed and incubated in fresh medium for different times. Bright field, DAPI fluorescence, and Rfa1-YFP
foci of selected cells are shown.
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To demonstrate at the molecular level that these proteins bind

to forks, replication intermediates (RIs) from ChEC-treated

cells were analysed by 2D-gel electrophoresis. Here, fork

binding of a protein fused to MN and subsequent cleavage

would generate a new population of RIs. To validate the

assay, and once established that Caþþ treatment did not

affect the pattern of RIs (Supplementary Figure 4A), we first

analysed Rad27, a nuclease involved in the processing of

Okazaki fragments (Zheng and Shen, 2011). We analysed

RIs at a fragment that contains the early origin ARS305; RIs

initiated from this origin formed a bubble arc that converted

to a single-Y arc of large Y-shaped molecules when forks

crossed the nearest restriction site (Figures 4A, left and

B, �Ca2þ ). Activation of the nuclease activity of Rad27-

MN with Ca2þ led to a huge accumulation (up to 40% of total

RIs) of small Y-shaped molecules (Figure 4B, þCa2þ , open

arrow). This arc is expected if the bubble is cut at one of the

forks (Figure 4A, right) (Martı́n-Parras et al, 1992).

Consistently, a drop in the total amount of bubbles

(from 30 to 5%) accompanied the accumulation of small Y

molecules (Figure 4B).

Importantly, activation of the nuclease activity of Rad52-

MN with Ca2þ led to a substantial accumulation of small

Y-shaped molecules (up to 20% of RIs at 45min in Ca2þ ) and

Figure 4 Rad52 and Rad51 bind to replication forks regardless of the presence of MMS. (A) Schematic representation of the migration pattern
of RIs by 2D gel electrophoresis (left). The expected molecule resulting from cleavage of a bubble at one of the forks is also shown (right).
(B) Rad27 binds to replication forks as determined by ChEC/2D. G1-synchronized RAD27-MN cells were released into S phase for 30min,
permeabilized, and split into two samples that were treated or not with Ca2þ ; DNA was then extracted, digested with specific restriction
enzymes, and analysed by 2D gel electrophoresis. The percentage of RIs at each time point is shown on the right. The experiment was repeated
twice with similar results. (C, D) Rad52 binds to replication forks both in the absence and in the presence of MMS. G1-synchronized RAD52-MN
cells were released into S phase for 30min without (C) or with (D) 0.05% MMS, and analysed by ChEC/2D for different times as indicated in
(B). The experiments were repeated with similar results (Supplementary Figure 4B). (E–G) Rad51 binds to replication forks in a Rad52-
dependent manner. ChEC/2D analysis of RAD51-MN (E) and rad52D RAD51-MN (F) cells following the conditions indicated in (C, D). The
quantification (G) shows the increase in RIs upon Ca2þ treatment relative to paralleled untreated cultures. The average and s.e.m. from five
(wt-MMS), four (rad52D-MMS), and three (wt þMMS) independent experiments are shown. (B–F) The arrows show the accumulation of
small, Y-shaped molecules upon Ca2þ activation.
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a concomitant drop in the total amount of bubbles (from

40 to 20%) (Figure 4C; Supplementary Figure 4B, þCa2þ ,

open arrow). This indicates that Rad52-MN binds to, at least,

B20% of the forks, a value that might be underestimated if

the efficiency of the Rad52-MN nuclease activity at the fork is

not maximal.

The cleavage of the fork by Rad52-MN could reflect the

recruitment of recombination proteins to forks stalled by

spontaneous DNA lesions. Strikingly, however, the presence

of 0.05% MMS did not increase the amount of molecules

cleaved by Rad52-MN (Figure 4D; Supplementary Figure 4B),

despite the fact that this level of alkylation strongly affects

replication fork advance at the analysed DNA fragment

(compare the arc of large Y-shaped molecules in –MMS

versus þMMS in the absence of Ca2þ in Figures 4C–E;

DNA alkylation makes the right and left forks advance less

symmetrically, resulting in Y-shaped molecules that extend

the signal until the inflexion point of the Y-arc). This result

suggests that Rad52 is recruited to the fork independently of

the presence of DNA lesions.

The activation of the nuclease activity of Rad51-MN also

led to an accumulation of small Y-shaped molecules both

with and without MMS (3–4% of RIs) (Figures 4E and G).

This value was lower than that obtained with Rad52-MN,

what is consistent with the bulk DNA digestion analyses

(Figure 1), and likely reflects a low Rad51-MN nuclease

activity at the fork. Importantly, this accumulation of

Y-shaped molecules was prevented in rad52D (Figures 4F

and G), indicating that it was not the result of an unspecific

cleavage by the MN domain, and that, as shown by previous

results, Rad52 is required for Rad51 recruitment.

Finally, the fact that MMS increased bulk DNA digestion

(Figure 1) but not fork cleavage (Figure 4) by Rad52-MN and

Rad51-MN further supports the finding that recombination

proteins remain bound to MMS-induced ssDNA gaps left

behind the forks (Figure 2A). Thus, our results are consistent

with Rad52 and Rad51 interacting both with the fork, likely

through transient and DNA damage-independent interac-

tions, and with ssDNA gaps generated by replicative DNA

damage and left behind as the fork moves forward.

MMS-induced HR repair occurs after DNA replication

Our analysis of Rad52-YFP foci in response to 0.01% MMS

contrasted with a previous study showing that G1 cells

released in the presence of 0.033% MMS did not accumulate

Rad52 foci (Alabert et al, 2009). However, asynchronous

cultures accumulated budded cells with Rad52-YFP foci

both at 0.01 and 0.05% MMS (Figure 5A). Given that DNA

alkylation slows down replication (Tercero and Diffley, 2001),

we hypothesized that HR foci assembly might require

completion of DNA replication and therefore be delayed at

high MMS concentration. To evaluate this, we analysed the

frequency of cells with Rad52-YFP foci in cultures

synchronized in G1 and then released in the presence of

0.05% MMS (Figure 5B). These cultures displayed a time-

course accumulation of Rad52-YFP foci with a peak at

120min after G1 release. Notably, the increase in Rad52-

YFP foci was small at 60–90min, at which time most cells

were in S phase (Figure 5B), while at those times asynchro-

nous cultures displayed a 4- to 6-fold increase (Figure 5A). In

contrast, the same cultures released in the presence of 0.01%

MMS progressed faster through S phase and accumulated

Rad52-YFP foci earlier (Figure 5B).

To better determine the timing of Rad52-YFP foci accumu-

lation during the cell cycle, the same experiment was con-

ducted at 161C to prolong the S phase (Figure 5C). At this

temperature, the presence of 0.01% MMS led to an accumu-

lation of cells with Rad52-YFP foci over the time course, with

a peak at 180min after G1 release, compared to the peak in

asynchronous cultures at 90min (Figure 5C, inset). This

increase over the time course in cells with Rad52-YFP foci

occurred concomitantly with an accumulation of cells with a

2C DNA content, suggesting that the assembly of MMS-

induced HR repair centres requires completion of DNA re-

plication. Accordingly, most cells synchronized in G1 and

released in the presence of 0.05%MMS for 4 h at 161C neither

completed DNA replication nor accumulated Rad52-YFP foci

(Figure 5C).

Finally, the timing of the appearance of Rad52-YFP foci in

response to 0.01% MMS was followed in individual cells by

time-lapse microscopy, using the bud-to-mother size ratio as

indicator for cell-cycle progression. For this, we determined

the relationship between this ratio and the DNA content, and

established a ratio of 0.3 for the completion of DNA replica-

tion (Figure 5D), consistent with previous results (Lisby et al,

2004). Rad52-YFP foci appeared in cells with a bud-to-mother

size ratio above 0.3 in 95% of cells (Figure 5E), further

supporting the notion that HR foci assembly in response to

MMS only occurs once DNA replication has concluded.

We also analysed the timing of YFP-Rad51 foci formation in

response to MMS. Two types of cells with Rad51 foci were

observed: (1) Cells with 1–2 bright foci that accumulated in

G2/M and thereby earlier at low than at high MMS concen-

tration (Figure 5F, bottom); these foci are similar to those

observed with Rad52-YFP and are also induced by zeocin

(Figure 3C). Therefore, they likely represent HR repair

centres. (2) Cells with small, faintly speckled foci that accu-

mulated during S phase in a dose-dependent manner

(Figure 5F, top), and importantly, did not appear in response

to zeocin (Figure 3C). The accumulation of these faint foci

correlated with the ChEC signal by HR proteins that occurred

in S phase in response to MMS (Figure 1). Therefore, they

likely reflect the binding of HR proteins to ssDNA left behind

the fork. Both types of MMS-induced YFP-Rad51 foci were

suppressed when Rad52 expression was restricted to G2/M

(Figure 3C, left panel). The lack of HR foci in unperturbed

cells suggests that the amount of Rad52/Rad51 at forks

might be insufficient and/or too diffuse to generate a

detectable signal.

The replicative checkpoint prevents the assembly of

MMS-induced HR repair centres during DNA replication

We have shown that cells prevent the assembly of HR repair

centres in response to replicative DNA damage until replica-

tion is completed, despite having recombination proteins

bound to the lesion. Impairment of DNA replication by

MMS activates S-phase checkpoints that maintain the integ-

rity and functionality of the advancing forks and inhibit the

firing of new origins (Branzei and Foiani, 2010; Berens and

Toczyski, 2012). Mrc1 is a specific component of these

checkpoints that transduces signals of defective replication

to downstream effectors (Alcasabas et al, 2001). We tested

whether Mrc1 prevented Rad52 foci formation during S phase

Rad51 fork recruitment is required for DDT
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in response to MMS. The specific checkpoint defective

mutant mrc1AQ (Osborn, 2003) did not release the

inhibition on Rad52 foci formation (Figure 6A; compare

with the wild type in Figure 5C); however, the DNA damage

signalling is partially active in mrc1AQ cells due to the activity

of Rad9, the Mrc1 counterpart in the DNA damage checkpoint

pathway (Alcasabas et al, 2001). While rad9D displayed a

similar kinetics as the wild type (Figure 6B), mrc1AQ rad9D
cells treated with 0.05% MMS accumulated high levels of

Rad52-YFP foci at 60–90min after G1 release, at which point

most cells were still in S phase (Figure 6C). Besides, Rad52

foci appeared earlier at 0.05% than at 0.01% MMS. Thus, the

cell-cycle regulation of HR foci in response to MMS is lost in

mrc1AQ rad9D cells. Of note, mrc1AQ rad9D cells accumulated

more foci at 0.01% than at 0.05% MMS at later times

(150–180min), what might reflect the collapse of the repair

centres in the absence of checkpoint activity under conditions

of high replicative stress.

It is possible that the high levels of Rad52 foci during S

phase in mrc1AQ rad9D were a consequence of defective

replication dynamics by loss of checkpoint functions. Mrc1

and Rad9 are required for the activation of the downstream

Figure 5 MMS-induced HR foci form after DNA replication. (A) Rad52 foci accumulation in response to different doses of MMS. Asynchronous
cultures of wild-type cells transformed with pWJ1344 (RAD52-YFP) were grown in the presence of 0.05 or 0.01% MMS, and the percentage of
budded cells with foci was determined by fluorescence microscopy. (B, C) Rad52 foci formation requires completion of DNA replication. Rad52
foci accumulation in wild-type cells transformed with pWJ1344 (RAD52-YFP), synchronized in G1 and released at either 301C (B) or 161C
(C) into medium with 0.05 or 0.01%MMS. The inset shows the kinetics of Rad52-YFP foci of an asynchronous culture grown in the presence of
0.01% MMS at 161C. (D) Correlation between DNA content and bud-to-mother size ratio. (E) Rad52 foci form at replication completion. Time
lapse of Rad52 foci formation in wild-type cells transformed with pWJ1344 (RAD52-YFP), synchronized in G1 and released in the presence of
0.01% MMS. (F) MMS induces faint (top) and bright (bottom) Rad51 foci during S phase and G2/M, respectively. Rad51 foci accumulation in
YFP-RAD51 cells transformed with pWJ1278 (RAD51), synchronized in G1, and released at 301C into fresh medium with 0.05 or 0.01% MMS.
The average and s.e.m. are shown.
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effectors Rad53 and Chk1 by the checkpoint sensors Mec1

and Tel1 (Alcasabas et al, 2001). While the lack of Tel1 or

Chk1 did not affect the kinetics of Rad52 foci, the lack of

Mec1 or Rad53 increased the frequency of cells with Rad52

foci (Supplementary Figure 5, note the difference in the scale

with the sml1D control). However, Rad52 foci appeared

earlier at 0.01% than at 0.05% MMS and once cells reached

G2/M, despite replication fork stability and dynamic are

strongly affected in mec1D and rad53D (Branzei and Foiani,

2010; Berens and Toczyski, 2012). Therefore, our results

suggest a role for the replicative checkpoint in preventing

the formation of MMS-induced HR centres during S phase.

We analysed the kinetics of Rad52 foci in sml1D mec1D tel1D
and sml1D rad53D chk1D to determine whether the sensors

Mec1 and Tel1 and the effectors Rad53 and Chk1 have

redundant functions in the inhibition of MMS-induced HR

foci during S phase. Unfortunately, the high levels of

spontaneous Rad52 foci in these mutants did not allow

interpreting the results (Supplementary Figure 5).

The cycle-dependent kinase activity of Cdc28 is required

for MMS-induced HR repair

The kinase activity of Cdc28 restricts DSB repair by HR to

S/G2 (Aylon et al, 2004; Ira et al, 2004; Barlow and Rothstein,

2009). To examine whether Cdc28 is also required for MMS-

induced HR repair, we used cells expressing an allele of

CDC28 (cdc28-as1) sensitive to the ATP analogue inhibitor

1NMPP1. G1-synchronized cdc28-as1 cells were released in

the presence of 0.01% MMS, and then treated or not with

1NMPP1 after 30min. Inhibition of the CDK activity of

Cdc28 suppressed Rad52-YFP foci formation in response to

MMS (Figure 7A).

Next, we followed the kinetics of recombination foci and

X-shaped molecules in sgs1D cdc28-as1 cells treated as

indicated in Figure 7A but at 0.033% MMS. Inhibition of

Cdc28 caused a two-fold reduction in Xs and foci (Figure 7B;

Supplementary Figure 6A), but did not affect DNA replication

(Supplementary Figure 6B), suggesting that Cdc28 is required

for the repair of the ssDNA gaps but not for the replication

through alkylated DNA. Of note, the role of Cdc28 may be

subsequent to Rad52 loading, because inhibition of the CDK

activity of Cdc28 did not suppress Rad52-MN binding to

damaged DNA as inferred by ChEC (Figure 7C).

Discussion

The alkylating agent MMS generates replicative,

non-DSB recombinogenic DNA lesions

Using chimeras of recombination proteins fused to MN

allowed us to show that Rad51 and Rad52 bind to non-

DSBs DNA lesions, presumably ssDNA gaps, generated by

replication through alkylated DNA (Figure 1). This is further

supported at the cytological level by the appearance of small,

faintly speckled YFP-Rad51 foci during the S phase of cells

treated with MMS but not with zeocin (Figure 5F). These

results support conclusions previously inferred from genetic

studies with mutants defective in HR (Prakash, 1981; Lopes

et al, 2006; Gangavarapu et al, 2007; Hashimoto et al, 2010).

We also have shown that recombination foci induced by MMS

are not associated with DSBs (Figures 3B and C). Since a

single DSB is enough to generate a recombination focus

(Lisby et al, 2003), our results strongly suggest that a dose

Figure 6 The replicative checkpoint prevents MMS-induced HR foci
during S phase. (A–C) Rad52 foci accumulation in mrc1AQ (A),
rad9D (B), and mrc1AQ rad9D (C) cells transformed with pWJ1344
(RAD52-YFP), synchronized in G1, and released at 161C into fresh
mediumwith 0.05 or 0.01%MMS. The average and s.e.m. are shown.
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of 0.05% MMS does not lead to DSBs in yeast. These results

are consistent with physical analyses of DNA fragmentation

showing that very high doses of MMS (0.4%) are required to

induce DSBs in yeast (Jachymczyk et al, 1977; Lundin et al,

2005).

Rad52 and Rad51 bind to unperturbed forks and

promote replication through alkylated DNA by repair-

independent mechanisms

Rad52 and Rad51 are required for replication fork progression

through alkylated DNA (Figures 2D and E) (Vázquez et al,

2008; Alabert et al, 2009), a function that is usually attributed

to their DNA repair activities. In contrast to this view, we

show that Rad52 is bound to MMS-induced non-DSB DNA

lesions when replication is largely completed (Figure 2A) and

that HR foci do not form until G2 (Figure 5). These results

suggest that Rad52 and Rad51 help replication forks bypass

DNA lesions by repair-independent mechanisms thus leaving

ssDNA gaps behind the fork that are not repaired until S

phase is completed. Along this line, Cdc28 lacking CDK

activity prevented the repair but not the binding of Rad52

to replicative DNA damage, and accordingly, did not affect

replication fork progression (Figures 7A and B;

Supplementary Figure 6B).

According to a role assisting stressed replication forks, it

was proposed from ChIP assays that Rad51 binds HU-arrested

forks (Papouli et al, 2005). By the analysis of RIs from

ChEC-treated cells, we present physical evidence that Rad52

and Rad51 bind to unperturbed replication forks and that this

binding is not increased in the presence of MMS (Figure 4).

Rad51 has been recently shown to be associated with

replicating chromatin in human cell lines and X. laevis egg

extracts, and in both cases, the presence of genotoxic agents

hardly increased the recruitment of Rad51 (Petermann et al,

2010; Hashimoto et al, 2010, 2011). Indeed, the absence of

Rad51 in Xenopus extracts and yeast led to an accumulation

of ssDNA gaps at the forks that was independent

of exogenous DNA damage, which was interpreted to show

a replicative role of Rad51 in facilitating fork progression

through natural endogenous obstacles, presumably upon

recruitment to transiently uncoupled forks (Hashimoto

et al, 2010). However, natural impediments are unlikely as

frequent and hard to overcome as those generated by 0.05%

MMS, as suggested by the impairment of fork progression at

that dose (Figure 4; Tercero and Diffley, 2001). Importantly,

Rad51 is not required for completion of DNA replication in

the absence of genotoxic agents in yeast and Xenopus extracts

(Vázquez et al, 2008; Hashimoto et al, 2010). Therefore, we

propose that Rad51 is recruited to the fork independently

of DNA damage, presumably through transient and highly

regulated interactions. In this regard, it is worth noting that

the discontinuous synthesis of the lagging strand gives rise to

ssDNA/RPA nucleofilaments at the fork, which are the

natural substrate for Rad52 to load Rad51 (Sung, 1997).

Our results in yeast demonstrate that Rad52 and Rad51 are

required to promote DNA replication through alkylated DNA

by a replicative, non-repair function. Recent works in human

cell lines have shown that BRCA2 and Rad51 participate in

Figure 7 The kinase activity of Cdc28 is required for MMS-induced HR repair. (A) The kinase activity of Cdc28 is required for MMS-induced
Rad52-YFP foci. Rad52 foci accumulation in cdc28-as1 cells transformed with pWJ1344 (RAD52-YFP), synchronized in G1, and released in the
presence of 0.01% MMS. Cells were split into two cultures 30min after G1 release that were incubated with 1NMPP1 (5mM) or its vehicle
DMSO. The average and s.e.m. are shown. (B) Cdc28 is required for MMS-induced SCJs. 2D gel analysis of X-shaped molecules in sgs1D cdc28-
as1 cells treated as in (A) but released in the presence of 0.033% MMS. The amount of X-shaped molecules relative to the total amount of
molecules, taken the highest value as 100, is shown. The average and s.e.m. of three independent kinetics are shown. (C) Rad52 binding to
MMS-induced DNA damage is independent of the Cdc28 kinase activity. cdc28-as1 RAD52-MN cells were synchronized in G1 and released into
S phase in the presence of 0.033% MMS for 2 h. Thirty minutes upon G1 release, cells were split into two cultures that were or not incubated
with 5 mM 1NMPP1, and the binding of Rad52-MN to DNA followed by ChEC analysis.
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the restart of HU-stalled replication forks by blocking DNA

degradation by the nuclease Mre11 (Petermann et al, 2010;

Schlacher et al, 2011). Notably, this function does not

require their repair activities but rather the formation of

stable Rad51/ssDNA filaments (Schlacher et al, 2011). It is

therefore possible that a replicative function has been

evolutionarily conserved for Rad51 and their mediators

Rad52 and BRCA2, aimed at protecting transiently stalled

forks. In this regard, the DDT response in bacteria relies on

the formation of a RecA/ssDNA nucleofilament by RecFOR,

the counterpart of Rad52 (Bichara et al, 2011). Of note,

impairment of DNA replication by MMS in cells in which

Rad52 expression is restricted to G2/M did not lead to

recombination foci (Figure 3C, left), indicating that ‘unpro-

tected’ forks in the presence of MMS do not generate an

alternative substrate for HR. Actually, rad52D does not lead to

the breakage of the ssDNA gaps generated at forks uncoupled

by UV light (Lopes et al, 2006). Thus, an alternative but not

mutually exclusive possibility is that Rad52 and Rad51

might facilitate the repriming of DNA synthesis downstream

of the lesion.

Repair by HR of the DNA lesions generated during

DDT is not coupled to the replication fork

An important mechanistic question for elucidating the mode

of action of processes that tolerate replicative DNA damage is

whether or not they are coupled to the fork. We detected

Rad52 binding to MMS-induced replicative non-DSBs lesions

not only during S phase but also when the bulk DNA was

largely replicated (Figure 2A). In fact, MMS-induced repair

foci did not appear until replication was completed

(Figure 5). These results are consistent with an accumulation

of ssDNA gaps behind the forks of rad52D and rad51D cells

treated either with MMS or with UV light (Lopes et al, 2006;

Hashimoto et al, 2010), and support a post-replicative model

of DNA repair by HR during DDT. Likewise, the RAD6 DDT

pathway can operate behind the fork (Daigaku et al, 2010;

Karras and Jentsch, 2010); thus, our results provide a

temporal framework for models that propose that the

RAD6 and RAD52 pathways cooperate in the repair of

replicative DNA damage (Branzei et al, 2008; Minca and

Kowalski, 2010).

Rad52 and Rad51 binding to replicating chromatin

is a prerequisite for HR repair during DDT

Despite the fact that ssDNA gaps are repaired post-replica-

tively, cells that express Rad52 only in G2/M were defective

in DDT (Figures 2D–F and 3C–E). We show that this defect

was due to the fact that Rad51 cannot be loaded into the

lesion (Figure 2G). Therefore, Rad52 and Rad51 binding to

chromatin during DNA replication is a prerequisite for further

repair of the ssDNA gaps. This remarkable finding marks

an important mechanistic distinction to DSB-induced HR,

during which recombination proteins are recruited to

the lesion in a replication-independent manner (Alabert

et al, 2009; Barlow and Rothstein, 2009), and establishes a

new scenario for studying HR and genome integrity. Though

we cannot formally exclude the possibility that the loading of

Rad52 and Rad51 onto ssDNA lesions is not coupled to the

fork but occurs at a time window and/or cell-cycle stage, the

fact that Rad52 loads Rad51 onto the fork regardless of the

presence of DNA damage and that these proteins are required

for replication fork progression through alkylated DNA led us

to propose that the recruitment of Rad52 and Rad51 for DDT

is coupled to the fork. We propose a model where the loading

of Rad52 and Rad51 onto ssDNA gaps may be a direct

consequence of repriming DNA synthesis downstream

of the blocking lesion (Figure 8). If the recombination

proteins are not loaded in a timely manner, then the gaps

left behind the fork cannot act as a substrate for HR and

remain unrepaired, although our analysis of RPA1 foci sug-

gests that the lesions are recruited to the repair centres

(Figure 3E). An important consequence of the coupling of

recombination proteins to the fork is that ensures an error-

free repair of the replicative DNA lesions. Furthermore, the

fact that Rad52 and Rad51 cannot be directly targeted to

ssDNA gaps may preclude recombination proteins from

ssDNA intermediates generated during alternative repair

processes, such as nucleotide excision repair, base excision

repair, or mismatch repair.

MMS-induced recombinational repair is cell-cycle

regulated by the replicative checkpoint and the

CDK activity of Cdc28

The checkpoint-specific functions of Mrc1 and Rad9 prevent

the assembly of MMS-induced HR repair centres during S

Figure 8 Model for the roles and cell-cycle regulation of Rad52 and Rad51 in DDT. Rad51 and Rad52 bind to ssDNA/RPA1 filaments at
advancing replication forks. When DNA adducts, such as alkylated bases, block the fork, Rad52 and Rad51 facilitate fork bypass by unknown
replicative functions. Repriming of DNA synthesis downstream of the DNA lesion leaves Rad52 and Rad51 loaded at the ssDNA left behind the
fork, which promote DNA repair in G2/M in a process that requires the CDK activity of Cdc28. In the meantime, the replicative checkpoint
prevents gap repair and the accumulation of HR-mediated GCRs. Importantly, Rad52 and Rad51 binding to the forks during DNA replication is a
prerequisite for the further repair of the ssDNA gaps.
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phase (Figure 6). This inhibition is not lost in mec1D and

rad53D (Supplementary Figure 6), which are strongly

affected in replication fork stability and dynamics

(Branzei and Foiani, 2010; Berens and Toczyski, 2012). This

observation, together with the fact that Mrc1 is not required

for the maintenance and restart of MMS-stressed forks

(Tourrière et al, 2005), makes unlikely that the

accumulation of MMS-induced HR foci during S phase was

due to defective replication dynamic in mrc1AQ rad9D.
Instead, we propose that the Mrc1 branch of the S-phase

checkpoint restricts HR repair during DDT to G2/M. Likewise,

activation of the replicative checkpoint inhibits the repair of

DSBs (Alabert et al, 2009; Barlow and Rothstein, 2009) and

HU-stalled forks (Lisby et al, 2004; Meister et al, 2005; Barlow

and Rothstein, 2009) by HR. We extend this inhibitory role to

replicative ssDNA gaps, an unexpected result if we keep in

mind that Rad52 and Rad51 are required for DNA replication

in the presence of MMS despite the fact that this drug

activates the checkpoint (Vázquez et al, 2008; Alabert et al,

2009). Our results provide an explanation to this apparent

contradiction by showing that Rad52 and Rad51 have two cell

cycle-regulated functions and only the repair one is

inhibited by the replicative checkpoints. We therefore

propose that a general function of the S-phase checkpoint is

to inhibit HR repair, likely because stressed forks are more

susceptible to unscheduled recombination and/or because

the repair at HR centres might interfere with replication.

Besides, restricting HR to G2/M ensures the presence

of an identical template to repair the damage. Consistently,

the Mrc1-mediated checkpoint prevents HR-dependent

gross chromosomal rearrangements (GCRs; Putnam

et al, 2009).

We show that Cdc28 regulates ssDNA gap repair (Figures

7A and B). Cdc28 is also required for DSB repair by HR

(Aylon et al, 2004; Ira et al, 2004; Barlow and Rothstein,

2009). Therefore, HR is cell-cycle regulated by the replicative

checkpoint and Cdc28. However, while Mrc1 and Cdc28 act

by preventing or promoting, respectively, Rad52 recruitment

at DSBs (Alabert et al, 2009; Barlow and Rothstein, 2009),

they may operate at a step subsequent to Rad52 binding to

ssDNA gaps (Figure 7C). In the case of DSBs, Mrc1 and Cdc28

act by regulating the resection of the 50-ended strands

(Aylon et al, 2004; Ira et al, 2004; Huertas et al, 2008;

Alabert et al, 2009; Chen et al, 2011). Likewise, Cdc28 and

Mrc1 might regulate ssDNA gap repair by controlling DNA

resection if Rad51-mediated strand invasion requires a

minimal amount of ssDNA. An alternative but not mutually

exclusive possibility is that the checkpoint promoted the

anti-recombinogenic activities of Srs2 and/or Sgs1, which

suppress HR at earlier steps and also prevent HR-mediated

GCRs (Putnam et al, 2009). Finally, the replicative checkpoint

might be required for targeting the lesions to the repair

centres. Further experiments will be necessary to elucidate

the mechanisms by which CDK and replicative checkpoints

coordinate DNA replication and HR.

In conclusion, the cell-cycle regulation of the replicative

and repair functions of Rad52 and Rad51 is essential

to prevent unscheduled recombination events and may

determine the timing and mode of action of other DDT

activities. Understanding of these mechanisms should help

to clarify the complex and yet unclear genetic interactions

between the RAD52 and RAD6 group of proteins.

Materials and methods
Yeast strains, growth conditions, plasmids, and standard methods
are included in Supplementary materials and methods and
Supplementary Figure 7.

In vivo ChEC analysis
ChEC of native cells was performed as reported (Schmid et al, 2004)
from 50ml cultures grown under different conditions and arrested
with sodium azide (0.1% final concentration). Similar results were
obtained by directly processing the cultures. For cleavage induction,
digitonin-permeabilized cells were incubated with 2mM CaCl2 at 301C
under gentle agitation. Total DNA was isolated (see Supplementary
data) and resolved into 0.8% TAE 1� agarose gels. Gels were
scanned in a Fuji FLA5100, and the signal profile quantified using
ImageGauge. The area of the DNA digestion profiles was equalized to
eliminate DNA loading differences. Each ChEC experiment was
repeated three times (except for Figure 7C, Supplementary Figures 1
and 3, which were repeated twice) with similar results.

Analysis of RIs
To analyse the RIs shown in Figures 3D and 7B, cells from a 100-ml
culture were arrested with sodium azide (0.1% final concentration)
and cooled down in ice, and total DNA was isolated with the G2/
CTAB protocol as previously described (Clemente-Ruiz and Prado,
2009). To analyse the RIs shown in Figure 4; Supplementary
Figure 4 (ChEC/2D analysis), total DNA was isolated as detailed
in Supplementary data. DNA samples were digested with EcoRVand
HindIII, resolved by neutral/neutral two-dimensional gel electro-
phoresis, blotted onto HybondTM-XL membranes, and analysed
by hybridization with the 32P-labelled probes Or (Figure 4;
Supplementary Figure 4) or A (Figures 3D and 7B; Clemente-Ruiz
and Prado, 2009). All signals were quantified in a Fuji FLA5100 with
the ImageGauge analysis program.

Analysis of Rad52-YFP foci
To detect HR foci cells were transformed with plasmids pWJ1344,
pWJ1213 (expressing RAD52-YFP), or pWJ1278 (expressing RAD51;
for YFP-Rad51 foci analysis), fixed with formaldehyde as described
(Monje-Casas et al, 2007) and visualized with a Leica CTR6000
fluorescence microscope. A total number of 300 cells were analysed
for each time point. The average and s.e.m. of three independent
experiments performed with three different transformants, using
two independent transformation of each strain, are shown. The
timing of Rad52-YFP foci appearance was followed in individual
cells by time-lapse microscopy, using the bud-to-mother size ratio
as an indicator of cell-cycle progression (see Supplementary data).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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