

Infiltrated cathode materials for microtubular solid oxide fuel cells

M.A. Laguna-Bercero, H. Monzón, V.M. Orera* Instituto de Ciencia de Materiales de Aragón (ICMA), Zaragoza, Spain

A.R. Hanifi, J. Cunningham, T. H. Etsell Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada

Alberta Innovates Technology Futures Environment & Carbon Management, Alberta Innovates - Technology Futures, Edmonton, Alberta, T6N 1E4, Canada orera@unizar.es

P. Sarkar

/ icma / Instituto de Ciencia de Materiales de Aragón /

Why SOFC?

ADVANTAGES:

icma

Siemens-Westinghouse Hybrid Generator

Power: 220kW SOFC: 200kW, 55%electrical efficiency Tubular cells 950°C operation temperature Stationary applications

- **Cheap catalysers*** Ni: 0.008 \$/g Pt: 42.8 \$/g
- Remarkable energetic efficiency:
- > 60% electrical efficiency. Heat can be used, SOFC+Gas turbine cogeneration system
- > 80% energy efficiency

Fuel flexibility: internal reforming allows the direct use of hydrocarbons: methane or syngas
 Low pollutant emissions: High T operation

means low NO_x

DISADVANTAGES:

-High volume and weight

-High thermal inertia: long start-up times
-High temperature operation means ceramics and high temperature metals
-Aging problems and high cost

* Market price: July 2013

Why microtubular?

Microtubular (< 5 mm diameter) Portable applications

Low T Seals: possibility of using HT silicon
 High volumetric Power Density 2.5W/cm³
 Excellent thermal shock resistance
 Fast start-up: less than 1 minute
 Light weight and small volume
 Life: at least 2000 hours

AIST (Japan)

mT state-of-the-art

Portable applications: UAVs, batteries

Ultra Electronics AMI (USA)

Small devices: Power range 25 W-2 kW

eZelleron (Germany)

Adelan (UK)

Field test and demonstration

Precursor CIP (cold isostatic pressing) fabrication

R. Campana et al., J. Power Sources 2009

Thermal stability of the components not only under operation conditions BUT at sintering temperatures

LSM cathode infiltration

Interface k

$LSM (LaSr_{0.2}Mn_{0.8}O_3)$

- 2.949g lanthanum nitrate
- 0.359 strontium nitrate
- 2.230g manganese nitrate
- 0.3g Triton X-45
- 1.0g deionized water

5.0kV

X2,500

SEI

U of A

10μm WD 13.0mm

1. A. R. Hanifi, A. Torabi, M. Zazulak, T. H. Etsell, L. Yamarte, P. Sarkar, M. C. Tucker, "Improved Thermal and Redox Cycling Resistant Ceramic Fuel Cells", ECS Transaction, 35 [1], 409-418, 2011.

Standard cells fabricated at ICMA (LSM/YSZ by dip coating)

Geometry	l (mA/cm² at 0.7V)	Labs	
m-tube	800	ours	
m-tube	150	Sammes	
m-tube	900	Ding & Liu	
m-tube	800	Kim et al.	
Planar	1160	Basu et al.	
Planar	1000	Souza	

Competitive power output

T = 850 °C

850-900 mA/cm² at 0.7 V 600-700 mW/cm² at 0.7V

LSM infiltration

TPL: Thin porous layer of YSZ coated on electrolyte for cathode infiltration

	Infiltration of LSM × 2 into a thin porous layer		
Cell details		Before infiltration	After infiltration
TPL weight gain upon infiltration w	vith LSM (%)	-	23.66
Vol.% YSZ		100	78.05
Vol.% LSM		0	21.95
Open porosity of the TPL		50	39.3

Sample code LSM2

Infiltration of LSM	
× 4 into a thin	
porous layer	

Cell details	Before infiltration	After infiltration
TPL weight gain upon infiltration with LSM (%)	-	37.5
Vol.% YSZ	100	64.74
Vol.% LSM	0	35.26
Open porosity of the TPL	50	33

Note that standard LSM/YSZ cathodes are 50/50 (in vol.%)

Novel cells fabricated at ICMA & U. Alberta (LSM infiltration x2 onto porous YSZ)

LSM1 (infiltrated x2)

LSM2 (infiltrated x4)

Novel cells fabricated at ICMA & U. Alberta ($Nd_2NiO_{4+\delta}$ onto porous YSZ)

Interface between the YSZ electrolyte and porous YSZ infiltrated with the Nd-nickelate

Nd₂NiO_{4+δ} reacts with YSZ at typical sintering temperatures (above 1000 °C)

This reactivity is avoided by infiltration (calcination temperatures of 850 °C)

20

Time (hours)

25

500

400

300

200

Current density

Laguna-Bercero et al. submitted to J. Mater Chem A

Microstructure

No microstructural evolution after the electrochemical experiments

Conclusions

-Anode supported mT-SOFC using LSM/YSZ and Nd₂NiO_{4+ δ}/YSZ cathodes prepared by infiltration were fabricated and characterized.

-Cells with infiltrated cathodes present better performance than analogue cells fabricated by dip-coating, using less amount of the electronic phase.

-At 850 °C and 0.7V:Standard cells (LSM/YSZ/pore 30/30/40): 0.6-0.7 Wcm⁻² LSM infiltrated (LSM/YSZ/pore 13.32/52.6/39,3): 0.75 Wcm⁻² LSM infiltrated (LSM/YSZ/pore 23.6/43.4/33): 0.85 Wcm⁻² (composition in vol%) $Nd_2NiO_{4+\delta}$ infiltrated: ~ 1 Wcm⁻²

-Infiltrated LSM and $Nd_2NiO_{4+\delta}$ electrodes seem to be stable after short-term operation conditions