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CHARACTERIZATION OF BRANCH COMPLEXITY BY FRACTAL ANALYSES
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The comparison between complexity in the sense of space occupancy (box-counting fractal dimension Dc

and information dimension DI) and heterogeneity in the sense of space distribution (average evenness index
and evenness variation coefficient JCV) were investigated in mathematical fractal objects and natural branchJ̄

structures. In general, increased fractal dimension was paired with low heterogeneity. Comparisons between
branch architecture in Anthyllis cytisoides under different slope exposure and grazing impact revealed that
branches were more complex and more homogeneously distributed for plants on northern exposures than
southern, while grazing had no impact during a wet year. Developmental instability was also investigated by
the statistical noise of the allometric relation between internode length and node order. In conclusion, our
study demonstrated that fractal dimension of branch structure can be used to analyze the structural organization
of plants, especially if we consider not only fractal dimension but also shoot distribution within the canopy
(lacunarity). These indexes together with developmental instability analyses are good indicators of growth
responses to the environment.
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Introduction

The symmetry of plant structures is generally associated with
translations, rotations, and reflections. Another form of sym-
metry is that of scale invariance. Scale invariance, i.e., invariant
form at different spatial scales (Schroeder 1991), is known as
“self-similarity” and can be characterized (in part) by fractal
dimension, i.e., the embedding dimension of the object with
nonuniform density. Fractal dimension can be considered an
extension of the conventional Euclidean dimension, where the
exponent is the integer dimension, i.e., or2surface = length

. Fractal objects change in a noninteger way3volume = length
when the unit of measurement changes: thus, a nonuniform
object in a two-dimensional space, as, for example, a branch
with a fractal dimension between 1 and 2. Self-similar struc-
tures abound in nature. A tree composed of branches of pro-
portional diameter and similar angles appears to remain con-
stant regardless of the scale of observation. Natural objects
are traditionally measured in terms of Euclidean units, length,
area, or volume. However, most natural objects consist of ir-
regular lines, surfaces, or volumes full of gaps and cavities.
Fractal geometry is a mathematical tool that can be used to
describe such complex systems and can be applied usefully in
situations where Euclidean descriptors are inappropriate. For
example, the length of any structure depends on the length of
the ruler with which it is measured, a fact with important
implications in ecology. The distance between two points on
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a shrub, for instance, is not the same for a crawling insect as
it is for a browsing goat; the insect must move up and down
each branch while the goat can move directly from one branch
to another. The volume of the tree’s crown is not equivalent
to the three-dimensional space in which it resides. If we want
to know that volume, we must consider the complex spacing
between leaves and branches. Fractal dimension is a measure
of the degree to which space is filled. Thus, a tree with a
dimension of, say, 2.8 fills the three-dimensional space in which
it resides more fully than one with a dimension of 2.6. The
significance in this case is that higher dimension means a
greater capacity for interchange of matter and energy between
tree and environment. To visualize this, picture two root sys-
tems: in one of them, each branch splits into two branches of
somewhat shorter lengths; in the other, each branch splits three
ways. The latter, which has higher fractal dimension, clearly
fills up the space more completely and so has greater access
to nooks and crannies where nutrients may lie.

Fractal dimension analysis is highly worthy of investigation
by the morphometrist, especially when fine textural features
such as roughness are concerned. The application of fractal
dimension, as a quantitative measure of complexity and scaling
properties and as a classification criterion for plant types, ap-
pears to be useful. It may have wide applicability to plant
ecology, given that the increase in surface area in the fractal
shape of branch structure results in optimal nutritional support
of the involved tissue or surface area for absorption (Sugihara
and May 1990; Eghball et al. 1993; Chen et al. 1994; Shi-
busawa 1994).

Because fractals have seen increased applications in biology
over the past 10 yr, it is important to point out, before pro-
ceeding, that biologists use the term somewhat loosely. True
fractals, from the mathematician’s perspective, describe exact
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geometrical structure over an infinite number of scales; biol-
ogists are concerned with fractal-like objects that are statis-
tically self-similar over a limited range of scales (Morse et al.
1985; Tatsumi et al. 1989; Fitter and Stickland 1992; Eghball
et al. 1993; Alados et al. 1994; Berntson 1994; Corbit and
Garbary 1995; Escós et al. 1995, 1997). Shibusawa (1994)
developed a growth model of the maize root system using an
L-system technique, which describes the recursive nature of
branch formation using a set of iterative recursive rules (Lin-
denmayer 1968; Lindenmayer and Rozenberg 1976).

Before conventional fractal analysis can be used as a tool
in the ecological sciences, many of the technical problems as-
sociated with the methodology must be addressed. In this
study, we compared fractal dimension obtained using two dif-
ferent methods (box counting and information dimension) ap-
plied to a two-dimensional projection of branch architecture.
To gain insight into the underlying determinants of branch
fractal architecture, we investigated the effects of two envi-
ronmental factors on the fractal dimension of a Mediterranean
shrub, Anthyllis cytisoides L.

Methods

Characterization of Fractal Architecture

There is no single method for determining the fractal di-
mension of structures (see Mandelbrot 1982; Schroeder 1991;
Bassingthaighte et al. 1994). But among the many ways to
calculate it, there are two relevant approaches, one that de-
pends on metric properties and one that depends on proba-
bilistic properties (Farmer et al. 1983).

The Capacity Dimension. The capacity dimension, Dc,
may be viewed as a simplified version of the Hausdorff di-
mension (Hausdorff 1919) and consists of calculating the min-
imum number of n-dimensional cubes of side « needed to cover
the object. It is given by

( )D = lim[ln N /ln 1/« ],c («)
«r0

where N(«) is the number of occupied cubes of side «.
The box-counting method is the standard method for de-

termining capacity fractal dimension and can be used to detect
changes in the complexity of plant architecture. Box counting
consists of superimposing a grid on the structure to be de-
scribed and determining the number of squares that are needed
to cover it (Sugihara and May 1990). The process is repeated
several times with finer and finer grid sizes until the grid scale
approaches pixel size (Bunde and Havlin 1994). This method
has some problems. Thus, real objects are only self-similar over
a limited range of scales. To avoid consequent biases, Berntson
and Stoll (1997) developed the “finite-scale-corrected-dimen-
sion” (FSCD) technique, which consists of estimating Dc only
over the statistically identified region of self-similarity. Testing
the curvilinearity of residuals, they identify the region of self-
similarity. In our case we plotted the log of occupied pixels
versus the log of box size and observed the linearity of the
relation. The best fit with the maximum number of points was

obtained just by removing the extremely small boxes of one
and two pixels per side.

The Information Dimension. The information dimension,
DI, is, according to Farmer et al. (1983), the superior measure
to the usual box-counting dimension, Dc, so long as it is not
sensitive to miscounting extremely low probability boxes and
does not consider all boxes as representing the same amount
of occupancy. The information dimension is a generalization
of the capacity dimension that takes into account the relative
probability of the cubes used to cover the set (Farmer et al.
1983). Mathematically it is defined as

( )D = lim[I /ln 1/« ],I («)
«r0

where and is the number ofN(«)I = 2O p lnp p = x /Sx : x(«) i=1 i i i i i i

occupied pixels for each box of size i. When all the cubes have
equal probability, , , and , but inp = 1/N I = lnN D = Di («) («) («) c I

general , is the amount of information necessary toD ! D Ic I («)

characterize the state of the system within an accuracy of «.
It is also called the Shannon index (H) and is a general ex-
pression for statistical entropy, a measure of the complexity
of a system (Shannon 1948). Here we use the same grid as for
box counting, but instead of determining the number of oc-
cupied squares, we count the number of occupied pixels in
each box and calculate for each box size. The process isI(«)

repeated several times with finer and finer grid size. Then I(«)

is plotted against the log of the box size. The slope of this line
gives DI.

The difference between the entropy maximum and(lnN )(«)

the observed entropy is a measure both of theN(«)(O p lnp )i=1 i i

organization of a system and its constraints. The entropy is a
measure of realized diversity or complexity. The evenness index
(J«) measures the heterogeneity of the structure, and it is the
ratio of the observed entropy to the entropy maximum:

N«O p lnpi i
i=1J = .« lnN«

In order to discriminate among objects that have the same
fractal dimension but appear different, we can measure the
heterogeneity of a fractal structure and calculate its lacunarity,
i.e., the degree of structural variation within the object. A
procedure of calculating the lacunarity has been advanced by
Bassingthwaighte et al. (1994). It consists of calculating the
average variation coefficient of some measure, e.g, number of
pixels in a box of given size over all scales (box sizes).

The average of the evenness index for box size ranging be-
tween eight pixels per side (16,384-box grid) and 256 pixels
per side (16-box grid) is a measure of the heterogeneity of the
structure similar to the lacunarity measured by Smith et al.
(1996). In addition, the coefficient of variation of the evenness
index (JCV) is also a measure of heterogeneity.

In order to check the accuracy of the fractal dimension,
we calculated those values for two deterministic images gen-
erated according to mathematical algorithms: the Sierpinski
carpet, which has a Dc equal to generated from thelog3/log2
mathematical algorithm (Bunde and Havlin 1994), and the
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Fig. 1 Sierpinski carpet and fern leaf images and log-log plots used to calculate box-counting fractal dimension (upper) and information
fractal dimension (lower). Averaged evenness index and its corresponding variation coefficient are indicated in the figure.

fern leaf. These images were developed by Alain Schauber
from the College of Sciences and Engineering, University of
Texas, San Antonio, and were obtained from http://
www.math.utsa.edu/mirrors/maple.

Fractal Analysis of Anthyllis cytisoides
Branching Structure

Anthyllis cytisoides is a western Mediterranean, endemic,
leguminous shrub that lives in nearly monospecific patches in
Rambla Honda valley, located in Los Filabres range (Almerı́a,
Spain), lat. 377089N, long. 27229W and 600–900 m altitude.

Previous studies of this species have revealed that moderate
natural grazing by livestock (sheep and goats), while promot-
ing growth, also enhances homeostasis of vegetative structures
and increased branch complexity, i.e., fractal dimension (Escós
et al. 1997). In this study, we sought to determine whether
measures of fractal complexity could detect differences asso-
ciated with grazing. We compared branching fractal complex-
ity of north- and south-exposed plants under two grazing treat-
ments. We selected two similar plots with two consecutive
alluvial fans each, which only differ in grazing treatment. One
of these plots, of ca. 14 ha, had been excluded from grazing
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Fig. 2 Scatter plots of the relation between fractal dimension (Dc,
DI), averaged evenness index, and evenness coefficient of variation for
the branches of the sampled Anthyllis cytisoides population.

since September 1, 1991, while the other was grazed exten-
sively with approximately one individual per hectare. Plants
were collected from north- and south-facing slopes on the same
alluvial fan in 1997. A total of 148 plants, 68 north exposed
and 80 south exposed, similar in size, were sampled during
March–April 1997. We chose adult plants of similar size in
order to reduce variability in the analysis. Given that each plant
is affected by the immediate surrounding area, each individual
plant is considered to be one replicate. In order that a ran-
domized branch sampling could be performed, the crown was
divided into strata of similar size based on relative height and
orientation, and one well-developed lateral branch was ran-
domly selected from one specific stratum. From each individual
plant, we cut one 3-yr-old branch. In addition, we selected a
developed annual shoot from each branch located in the second
or third position from the previous year’s stem (numbered from
the branch apex). In order to avoid grazing interference, only
undamaged stems were selected. A total of 65 branches were
oven dried at 707C for 48 h and weighed with a precision
balance. To obtain the fractal dimension of the branch, we
made photographic slides of each 3-yr-old branch. Slides were
taken from the same distance, focusing on the center of the
branch. Later, slides were digitized with Kodachrome. Images
were captured with Photoshop 4.0 with a resolution of

pixels. Because the thickness of the lines within3072 # 2048
digitized images can have a large impact on fractal dimension
(Berntson 1994), images were preprocessed similarly, selecting
a window size of pixels, then filtering, converting1024 # 1024
to gray scale, and adjusting to the same intensity.

Plant Allometry

The relation between internode length and node order fol-
lows a self-similar sequence, where internode length declines
distally. From a randomly selected shoot per branch, we mea-
sured internode length (distance between point of leaf inser-
tions) from bottom to top with an electronic caliper, recording
to the nearest 0.01 mm. Then we examined the allometric
relationship between the internode length (L) and the node
order (N) (Alados et al. 1994, 1998a,1998b; Escós et al. 1995,
1997). The relation, starting from the shoot base, fits the gen-
eral equation

b 2aNL = kN e ,

where e is the natural base, and k, a, and b are fitted constants.
The constants of the equation were obtained using a regression
analysis. The parameter b represents the scaling in internode
length with order. The accuracy of the curve fitting was eval-
uated also using the coefficient of determination, R2, the stan-
dard error of the regression Syx, and the standard error of the
parameter b (Sb), all of which are good estimators of home-
ostasis disruption. Larger values of , Syx, and Sb are21 2 R
indicators of less stability. They also can be used to detect
random intraindividual variability during development (Free-
man et al. 1993; Graham et al. 1993; Alados et al. 1994,
1998a, 1998b; Escós et al. 1995, 1997; Sherry and Lord 1996;
Anne et al. 1998). Because the number of internodes varies
among shoots, we used R2 adjusted to the degrees of freedom.
The standard error of the parameter b, Sb, is positively cor-

related with b (Pearson correlation coefficient ,r = 0.43 P !

); consequently, we used to avoid bias as a result of0.001 S /bb

the relation between treatment effects and size. Finally, because
Syx is related to the average internode length, Syx, following
Zar’s (1984) recommendations, was divided by mean,ȳ

. The curve-fitting accuracy measures the extent to which¯S /yyx

the actual phenotype departs from the hypothetical, undis-
turbed one, during the development.
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Table 1

Two-Way ANOVA with Grazing and Exposure as Fixed Effect
Factors for Dc, DI, , and JCVJ̄

Source df

F

Dc DI J̄ JCV

Grazing . . . . . . . . . (1, 61) 0.48 0.46 0.04 0.02
Exposure . . . . . . . . (1, 61) 9.70∗∗ 4.96∗ 12.18∗∗ 9.14∗∗

Interaction .. . . . . (1, 61) 0.31 1.36 0.24 0.11

Note. Dependent variables are box-counting fractal dimension Dc,
information dimension DI, average evenness index , and evennessJ̄
index variation coefficient JCV for Anthyllis cytisoides population. Cells
with no asterisks, P 1 0.05.

∗ P ! 0.05.
∗∗ P ! 0.01.

Table 2

Means 5 SE Values of Dependent Variables (Dc, DI, , and JCV) for Each Treatment EffectJ̄

Ungrazed Grazed

North
(n = 11)

South
(n = 18)

North
(n = 18)

South
(n = 18)

Dc . . . . . . 1.531 5 0.02 1.456 5 0.02 1.534 5 0.02 1.482 5 0.02
DI . . . . . . 1.595 5 0.02 1.533 5 0.02 1.586 5 0.02 1.567 5 0.02

.. . . . . . .J̄ 0.662 5 0.02 0.584 5 0.01 0.656 5 0.02 0.598 5 0.02
JCV . . . . . . 0.109 5 0.02 0.161 5 0.01 0.116 5 0.01 0.157 5 0.01

Note. Dependent variables are allometric parameter box-counting fractal dimension Dc, information
dimension DI, average evenness index , and evenness index variation coefficient JCV for Anthyllis cytisoidesJ̄
population.

Results

Fractal Analysis of Deterministic Images

Figure 1 presents the capacity fractal dimension (Dc) and
the information dimension DI for two deterministic images
generated according to mathematical algorithms. Note that the
Sierpinski carpet has a Dc similar to the log3/log2 generated
from the mathematical algorithm (Bunde and Havlin 1994),
while DI is greater because, in dealing with digitized images,
one deals not only the mathematical algorithm but also the
line thickness and the digitizing processes. The same trend is
observed in the second example, the fern leaf.

Two objects may have similar fractal dimension but have
different structure. In order to discriminate between objects
with similar fractal dimension but different space distribution,
we calculated the heterogeneity of the structure. Here, the two
objects look quite different. Thus, the average evenness index
( ) is larger for the more uniform Sierpinski carpet (0.800),J̄
which also presents a lower coefficient of variation JCV (0.024),
than the more heterogeneous fern leaf ( , ).J̄ = 0.69 J = 0.094CV

Fractal Analysis of Anthyllis cytisoides Branches

When fractal dimension (Dc) was plotted against DI over
the entire A. cytisoides sampling population, we found a high
positive Pearson correlation coefficient of 0.824 (fig. 2). This
relation is more pronounced for large fractal dimensions and
declines when fractal complexity is low. In addition, the high

correlation observed between Dc and (0.862) and betweenJ̄
DI and (0.731), suggests that, when branch structure is moreJ̄
complex in the sense of space occupancy, shoots are distributed
more homogeneously throughout the plant’s crown. At the
same time, when Dc declines, the evenness index variation co-
efficient increases (Pearson correlation coefficient ).r = 20.643
All the Pearson correlation coefficients were statistically sig-
nificant at the 0.001 level for the 65 cases analyzed.

In order to characterize the fractal patterns of A. cytisoides
architecture under different environmental conditions, we used
different fractal analytical methods (tables 1 and 2). The results
show a significant effect of slope exposure on Dc and DI.
Branch occupancy was greater for plants on northern expo-
sures. These plants had greater dry weight ( g,6.66 5 0.56

) than plants from southern exposures ( g,n = 29 4.68 5 049
, , ). However this measure says noth-n = 36 F = 7.05 P = 0.011, 61

ing about the distribution of shoots within the branch. In order
to know whether shoots are homogeneously distributed, we
analyzed the average evenness index ( ). It was greater forJ̄
plants from northern exposures, meaning that south-exposed
plants have more pronounced gaps in the crowns and branches
are heterogeneously distributed. The coefficient of variation of
J« may also be considered a measurement of lacunarity. This
coefficient was significantly greater in the south-exposed
plants, also indicating their more heterogeneous structure (ta-
bles 1 and 2; fig. 3). Conversely, no effect of grazing was
observed on Dc, DI, , and JCV.J̄

Finally, the allometric parameter b differs significantly with
exposure and with grazing pressure (tables 3 and 4). This pa-
rameter increased significantly with grazing ( ,2.38 5 0.06

, for grazed; , , for ungrazed plants).n = 80 2.12 5 0.06 n = 68
We also observed a significant difference in parameter b be-
tween north- and south-exposed plants ( are

—
X 5 SE 2.47 5

, for south-exposed plants; , , for0.06 n = 80 2.03 5 0.06 n = 68
north-exposed plants). Specifically, the increase in internode
length with order was larger in south-exposed plants. How-
ever, the total number of internodes produced declined in
south-exposed plants ( , for south-exposed17.08 5 0.57 n = 80
plants; , for north-exposed plants;21.50 5 0.62 n = 68

, ). Thus, shoot length was significantlyF = 27.59 P ! 0.0011, 144

larger ( , ) in north-exposed plantsF = 16.90 P ! 0.0011, 144

( cm, ), than in south-exposed plants26.06 5 0.9 n = 68
( cm, ).21.11 5 0.8 n = 80

Curve-fitting accuracy of the relation between internode
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Fig. 3 Two morphologically distinct branch images coming from one grazed north-exposed plant and one ungrazed south-exposed plant.
Log-log plots used to calculate box-counting fractal dimension (upper) and information fractal dimension (lower). Averaged evenness index and
its corresponding variation coefficient are indicated in the figure.

length and node order for each treatment effect is presented
in tables 3 and 4. The adjusted coefficient of determination,
R2, standard error of the regression, , and the standard¯S /yyx

error of the slope, , were significantly affected by grazing,S /bb

indicating that A. cytisoides was developmentally more stable
when grazed (tables 3 and 4). Grazed plants are developmen-
tally more stable both on north and south slopes as indicated
by the larger R2 ( for 80 grazed and0.79 5 0.02 0.69 5

for 68 ungrazed plants) and lower ( vs.¯0.02 S /y 0.17 5 0.01yx

) and ( vs. ). Con-0.20 5 0.01 S /b 0.13 5 0.01 0.17 5 0.01b

versely, exposure did not affect the developmental instability
of A. cytisoides in 1997.

Discussion

In this study, we compared fractal dimension obtained us-
ing two different methods (box counting and information
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Table 3

Two-Way ANOVA with Grazing and Exposure as Fixed Effect
Factors for b, R2, , and¯S /y S /byx b

Source df

F

b R2 ¯S /yyx S /bb

Grazing . . . . . . . . . (1, 144) 9.14∗ 18.20∗ 12.93∗ 9.34∗

Exposure . . . . . . . . (1, 144) 26.46∗ 1.00 3.30 0.42
Interaction .. . . . . (1, 144) 0.09 0.83 1.49 1.22

Note. Dependent variables are allometric parameter b and curve
fitting estimators (adjusted coefficient of determination, R2, standard
error of the regression, , and the standard error of the slope¯S /yyx

) for Anthyllis cytisoides population. Cells with no asterisks, P 1S /bb

0.05.
∗ P ! 0.01.

Table 4

Means 5 SE Values of Dependent Variables and Parameter Equation (b, R2, , and )¯S /y S /byx b

for Each Treatment Effect

Ungrazed Grazed

North
(n = 28)

South
(n = 40)

North
(n = 40)

South
(n = 40)

b . . . . . . . . . 1.91 5 0.10 2.32 5 0.08 2.14 5 0.08 2.61 5 0.08
R2 . . . . . . . . 0.66 5 0.03 0.71 5 0.02 0.78 5 0.02 0.79 5 0.02

.. . . . .¯S /yyx 0.20 5 0.01 0.20 5 0.01 0.15 5 0.01 0.18 5 0.01

.. . . . .S /bb 0.18 5 0.02 0.16 5 0.01 0.13 5 0.01 0.13 5 0.01

Note. Dependent variables are allometric parameter b and curve fitting estimators (adjusted coefficient
of determination, R2, standard error of the regression, , and the standard error of the slope ) for¯S /y S /byx b

Anthyllis cytisoides population.

dimension) applied to two deterministic images generated
from mathematical algorithms and two-dimensional projec-
tion of branch architecture in Anthyllis cytisoides. The use
of two-dimensional projections to study the fractal structure
of three-dimensional objects is based on the projection the-
orem (Marstrand 1954), which states that the fractal dimen-
sion of a projection in an dimensional space is equaln 2 1
to , n being the Euclidean dimension and D the fractalD 2 1
dimension. However, because natural objects are not truly
fractal, planar or linear projections may provide only ap-
proximations of the whole structure’s real fractal dimension.
An experimental estimation of three-dimensional fractal root
systems revealed that, although the planar projection dimen-
sion differed from the dimension in three-dimensional

, a linear relationship existed between them (Niel-space 2 1.0
sen et al. 1997).

The capacity fractal dimension obtained by the box-count-
ing method (Dc) is closer to the fractal dimension used to
generate the deterministic image than the information dimen-
sion (DI). In addition we observed a highly significant positive
correlation between the information fractal dimension (DI) and
the box-counting fractal dimension (Dc) for A. cytisoides, es-
pecially when fractal dimensions were large. Box counting is
used to detect changes in fractal architecture of plants because
it is a fast measure of complexity (it can be automated using
image analysis systems). For example, capacity dimension has
been used to quantify root complexity in two-dimensional

space (Tatsumi et al. 1989; Fitter and Stickland 1992; Eghball
et al. 1993, Berntson 1994) and plant shoot systems (Morse
et al. 1985; Alados et al. 1994; Corbit and Garbary 1995;
Escós et al. 1995, 1997). It is currently being used as a di-
agnostic tool in medicine to detect histopathological lesions
(Cross and Cotton 1992; Losa 1995).

The fact that it is obtained from the box-counting algorithm
linear relationship, however, does not prove that the structure
is fractal; a log-log linear relationship is a necessary but not
a sufficient requirement for a structure to be characterized as
fractal (Smith et al. 1996). Nevertheless, box counting provides
an estimate of Dc that can be used to characterize the irreg-
ularities of spatial correlations of a structure. Note that two
objects may have the same fractal dimension but appear very
different from one another. That is, Dc provides no unique
morphological specification (Smith et al. 1996). Thus, in ap-
plication to plant architecture, the fractal capacity dimension
measures the complexity without implying any underlying
growing mechanisms.

More complete information about the structure is obtained
when we calculate not only the complexity (Dc or DI) but also
the heterogeneity of the structure ( and JCV). Our study of A.J̄
cytisoides showed that capacity fractal dimension (Dc) was
inversely correlated with the evenness index coefficient of var-
iation (JCV). Thus, when branch fractal dimension increases,
shoots are evenly distributed within the crown. Moreover, low
complexity of branch structure is paired with increased gap
formation. By analyzing information dimension, DI, and its
related index JCV, one may discover not only whether there is
an increase in surface area of a branch system but also whether
there is even distribution within the crown. Provided the ex-
tended general use of the box-counting method, we suggest
the use of both Dc and DI to characterize branch complexity
and JCV to measure the heterogeneity of the structure.

Branching structures favor rapid and efficient transport of
substances over a complex spatially distributed system (Sugi-
hara and May 1990; Eghball et al. 1993; Chen et al. 1994;
Shibusawa 1994; Goldberger 1997). Loss of fractal complexity
in morphological and physiological systems parallels a reduc-
tion in efficient transport of substances and information (Bas-
singthwaighte et al. 1994; Goldberger 1997). This suggests
that larger fractal dimension and lower heterogeneity of
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branching structures in plants must be related to the efficient
plant interchange of gas and substances with the atmosphere.

Developmental stability is the result of a suite of processes
that buffer the disruptive effect of environmental variation dur-
ing development and require energy consumption (Palmer
1996). Developmental instabilities have usually been measured
in the form of fluctuating asymmetry, estimated as random
deviations from bilateral symmetry (Ludwig 1932; Van Valen
1962; Palmer and Strobeck 1986). However, statistical noise
in allometric relations is another, and generally more reliable,
stress indicator (Freeman et al. 1993; Graham et al. 1993a;
Alados et al. 1994, 1998a, 1998b; Escos et al. 1995, 1997;
Sherry and Lord 1996; Anne et al. 1998).

In this study, we observed that grazing affects the devel-
opmental stability of A. cytisoides. Grazed plants are devel-
opmentaly more stable than ungrazed plants. In dry-land
plants, water stress is the most important limit to survival and
reproduction. Under most circumstances, the evolutionary re-
sponse to water deficit has been low relative growth rate and,
in consequence, low nutrient requirements at the expense of
reduced overall productivity (Chapin 1991). We observed that
A. cytisoides plants were in better condition when they were
grazed. Grazed plants had a lower water deficit and greater
survival and were developmentally more stable than ungrazed
plants (J. Escos, C. L. Alados, F. Pugnaire, J. Puigdefabregas,
and J. Emlen, unpublished manuscript). Our results are sup-
ported by the Herbivory Optimization Hypothesis (McNaugh-
ton 1979a, 1979b; Dyer et al. 1982; Crawley 1983; William-
son et al. 1989; Alward and Joern 1993), which predicts
increased plant fitness at low to moderate levels of herbivory.

On the other hand, exposure affects fractal dimension but
not the developmental instability of A. cytisoides during the
wet year 1997 (104.7 mm of rainfall during the spring). North-
exposed plants present larger growth and higher branch com-
plexity with even branch distribution, increasing the efficiency
of gas interchange at the whole plant level. However, this re-

sponse is not paired with larger developmental stability of
those structures.

Previous studies in A. cytisoides found that, under moderate
grazing, plants increased branch complexity, also enhancing
developmental stability. However, under high grazing pressure
not enough energy was available, and a reduction in devel-
opmental homeostasis and fractal complexity occurred (Escós
et al. 1997). Thus, when available energy is low, growth and
homeostasis may become antagonistic. By reducing growth,
plants can ameliorate stress through a reduction of nutrient
demands (Chapin and Kedrowski 1983; Chapin et al. 1986;
Jones et al. 1991; Chapin et al. 1993), allowing the mainte-
nance of a steady supply of nutrients for developmental sta-
bility. Unless nutrient demands can be so reduced, however,
energy required to maintain homeostasis is lost, and disrupted
or inconsistent development may result. This impact can be
seen in the form of developmental instability. Nevertheless, the
response of the plant to the environment could result in a time-
scaled response where impaired growth and complexity may
not be a simultaneous process. The fractal dimension of branch
structure can be used to analyze the structural organization of
plants, especially if we consider not only fractal dimension but
also shoot distribution within the canopy (lacunarity). These
indices, together with developmental instability analyses, are
good indicators of plant responses to the environment.
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