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An only transition structure but
sequential bond formation.
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Abstract 

The mechanism of the reaction between nitrones and lithium ynolates has been studied 

using DFT methods at M06-2X/cc-pVTZ/PCM=THF level. After the formation of a 

starting complex, without energy barrier, in which the lithium atom is coordinated to 

both nitrone and ynolate, the reaction takes place in one single kinetic step through a 

single transition structure. However, the formation of C-C- and C-O bonds takes place 

sequentially through a typical two-stage one-step process. A combined study of non-

covalent interactions (NCI) and electron localization function (ELF) of selected points 

along the intrinsic reaction coordinate (IRC) of the reaction confirmed that, in the 

transition structure, only the C-C bond is being formed in some extent whereas an 

electrostatic interaction is present between carbon and oxygen atoms previous to the 

formation of the C-O bond. Indeed, the formation of the second C-O bond only begins 

when the first C-C bond is completely formed without formation of any intermediate. 

Once the C-C bond is formed and before the C-O bond formation starts the RMS 

gradient norm dips, approaching but not reaching zero giving rises to a hidden 

intermediate.   
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Introduction 

Nitrones 1 have amply demonstrated their synthetic utility in [3+2] 

cycloadditions during the last 75 years.1 More recently, they have shown to be excellent 

electrophiles in nucleophilic additions of organometallic reagents.2 In this context, we 

have reported that chiral non-racemic α-alkoxy and α-amino nitrones react with a 

variety of organometallic reagents, including organolithium3 and Grignard4 derivatives, 

in a completely stereocontrolled way. The stereocontrol is exerted either by using 

different Lewis acids as precomplexing agents as in the case of α-alkoxy nitrones5 or by 

selecting the appropriate protecting groups in the case of α-amino nitrones.6 In all cases, 

the first step of the reaction is the formation of complex 2 between the nitrone and the 

organometallic reagent through coordination of the nitrone oxygen (Scheme 1).3a, 7 Such 

coordination increases the electrophilic character of the azomethine carbon of the 

nitrone and for certain cases the complex was proved unequivocally by NMR 

spectroscopy7b, 8 and X-ray crystallography.9 
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Scheme 1. Nucleophilic addition of organometallic reagents to nitrones 

 

Of particular interest are the reactions of nitrones with species bearing an 

electron-rich multiple bond such as lithium and silyl ketene acetals,10 and lithium 

ynolates11 leading in all cases to isoxazolidin-2-ones (Scheme 2). We have 

demonstrated that whereas the reaction with lithium ketene acetals (lithium α-

methoxyenolates) takes place through a stepwise mechanism,10 for the reaction with 

silyl ketene acetals both one-step and stepwise mechanisms are competitive, although in 

some cases the stepwise mechanism is prevalent. 12  
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Scheme 2. Addition of electron-rich double bonds to nitrones 

 

On the other hand, much less is known about the mechanism of the reaction 

between lithium ynolates 5 and nitrones, which has been described11 as a typical 

inverse-demand [3+2] cycloaddition (Scheme 3, route A) by analogy with other similar 

processes. However, a stepwise mechanism (Scheme 3, route B) involving the 

sequential formation of the two bonds and the existence of ketene intermediate IN  

could also be considered in a similar way to the reaction of lithium α-alkoxyenolates.  
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Scheme 3. One-step (A) and stepwise (B) mechanisms for the reaction between lithium 

ynolates and nitrones 

 

In this work, a density functional theory (DFT) study for the addition of ynolates 

to nitrones, which has been experimentally studied,11 is carried out in order to determine 

the concertedness of the process and to understand the bond formation. A complete 

characterization of the electronic reorganization along the reaction is fulfilled by 

applying topological ELF and NCI analyses of selected points of the IRC.  
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Computational Methods 

All of the calculations were performed using the Gaussian09 program.13 Molecular 

geometries were optimized with the M06-2X functional14 in conjunction with cc-pVTZ 

basis set.15 This method has been recently used in theoretical investigations with 

nitrones.16 Analytical second derivatives of the energy were calculated to classify the 

nature of every stationary point, to determine the harmonic vibrational frequencies, and 

to provide zero-point vibrational energy corrections. The thermal and entropic 

contributions to the free energies were also obtained from the vibrational frequency 

calculations, using the unscaled frequencies. All transition structures were characterized 

by one imaginary frequency. All the located TSs were confirmed to connect to reactants 

and products by intrinsic reaction coordinate (IRC) calculations.17 The IRC paths were 

traced using the second order González-Schlegel integration method.18 Calculations 

have been carried out considering solvent effects (THF) with the PCM model19 and 

including discrete molecules of dimethyl ether to complete the coordination sphere of 

lithium.20 NCI (non-covalent interactions) were computed using the methodology 

previously described.21 Data were obtained with the NCIPLOT program.21c A density 

cutoff of ρ=0.1 a.u. was applied and the pictures were created for an isosurface value of 

s=0.4 and colored in the [-0.03,0.03] a.u. sign(λ2)ρ range using VMD software.22 The 

electronic structures of stationary points were analyzed by the topological analysis of 

the  electron localization function (ELF).23 The ELF study was performed with the 

TopMod program24 using the corresponding monodeterminantal wavefunctions of the 

all structures of the IRC. The analysis of the gradient field or topology of ELF25 has 

showed to be a powerful tool for rationalizing the electron delocalization in molecular 

systems26 providing detailed insight of the nature of the chemical bond in a variety of 

reacting systems.27 Animation given in the supporting material was created by 

extracting and processing all points of the IRC with an in-house program and saving the 

corresponding images to create an animated GIF. Nitrone N1 (R1 = R2 = Me) and 

ynolate Y1a (R3 = Me) have been chosen as models for the study. Also, the reaction 

with the simplest ynolate Y1b (R3 = H) has been calculated for the purpose of 

comparison (Scheme 4). 

 

Results and Discussion 
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Addition of lithium ynolate. The first step in the reaction between N1 and Y1a is the 

formation of complex C1a without energy barrier (Scheme 4) in a similar way to the 

reaction of nitrones with other organolithium reagents.10 After formation of complex 

C1a only TS1a could be located at 9.4 kcal/mol above the ground state. The 

geometrical constraints imposed by both the linear triple bond and the coordination to 

lithium  avoids the possibility of considering other approaches between nitrone and 

ynolate.   

 

 

Scheme 4. Reaction between nitrone N1 and ynolates Y1a,b 

 

The energy profile for the reaction and main geometrical features of TS1a and other 

stationary points are given in Figure 1 while Table 1 reports absolute and relative 

energies.  The found C-C and C-O distances in TS1a were 2.04 and 3.20 Å, 

respectively. This computed transition structure corresponds to an apparently one-step 

but highly asynchronous cycloaddition. However, contrary to typical dipolar 

cycloadditions of nitrones,28 the C-O distance is more in agreement with an electrostatic 

interaction rather than a forming bond, as reported by Schleyer and co-workers29 in the 

case of polar [3+2] cycloadditions.  Any attempt of locating a ketene intermediate like 

IN (Scheme 3) failed. We found that structures of this type are not stable as equilibrium 

states. Attempts to optimize them led back to complex C1a (or go ahead to P1a), a 

strong evidence that a stepwise mechanism for this reaction is not favored. Similar 
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results have been found with ynolate Y1b which formed the corresponding C1b leading 

to P1b through TS1b (for geometries, energy data and details see Supporting 

Information) with an energy barrier of 8.1 kcal/mol. 

 
Figure 1. Energy diagram (M06-2X/cc-pVTZ/PCM=THF) and stationary points for the 

reaction betweeen nitrone N1 and lithium ynolate Y1a. Relative free energy values 

(ΔG298) are given in kcal/mol. 

 

Table 1. Calculated (/M06-2X/cc-pVTZ/PCM=THF) free (ΔG, hartrees) and relative 

energies (ΔΔG, kcal/mol) of the stationary points corresponding to the reaction of 

nitrone N1 with Y1a.a 

 ΔG ΔΔGb 

N1 -248.34944  

Y1a -663.73457  

C1a -757.13530 -5.3 

TS1a -757.11198 9.4 

P1a -757.17258 -28.7 

N1+Y1a

C1a

TS1a

P1a

(0.0)

(-5.3)

(9.4)

(-28.7)
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a For nomenclature of stationary points see Figure 1. bReferred to isolated starting 
materials (N1+Y1a); an isolated molecule of solvent (Me2O) has been added for 
coherence. 
 

 The ultimate reason for the instability of a species like IN in which lithium atom 

is coordinated to the oxygen atoms, is due to geometrical restrictions imposed by the 

hybridization of the ynolate carbon atom bonded to the oxygen. The carbon atom which 

is highly electrophilic does not change the sp-hybridization during the first half of the 

reaction. Consequently, it is too close to the nucleophilic nitrone oxygen and a collapse 

between the two centers takes place in a second half of the reaction (for an animation 

see supporting material). Thus, the formation of P1a takes place in a single kinetic step 

but in two stages. Actually, the formation of the two new σ bonds is non-concerted and 

the process can be considered a typical two-stage reaction in agreement with the 

definition given by Domingo and co-workers.30 

 The intrinsic reaction coordinate illustrated in Figure 2 confirms the two stage 

character of the reaction as well as the presence of a so-called hidden intermediate.31 

The IRC analysis (Figure 2) also explains the difference of C-C and C-O forming bond 

lengths observed in TS1a. Monitoring of the two forming bonds is also illustrated in 

Figure 2. Initially (first stage), at TS1a, the C-C bond is forming (dC-C = 2.04 Å) 

whereas the C-O distance (dC-O = 3.20 Å) only indicates a non-covalent interaction (see 

below) but not a bond formation. After this TS is passed and the reaction progresses 

(point a) the C-C bond is practically formed (dC-C = 1.56 Å) whereas the C-O bond is 

still not formed (dC-O = 2.86 Å) and the IRC slope is relaxed. In the middle of the 

formed plateau the hidden intermediate is revealed (point b, dC-C = 1.54 Å, dC-O = 2.63 

Å). At the end of the plateau (point c), C-C bond is already formed (dC-C = 1.53 Å) and 

C-O bond is being formed (dC-O = 2.27 Å). Only at the end of the reaction (point d) the 

C-O bond could be considered formed (dC-O = 1.44 Å). A close inspection of the RMS 

gradient norm along IRC reveals that whereas for TS1 the norm is 0.00 (as expected for 

a transition structure), at point b (hidden intermediate) the norm dips, approaching but 

not reaching zero. 
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Figure 2. Computed (M06-2X/cc-pVTZ/PCM=THF) reversed intrinsic reaction 

coordinate (IRC) for the reaction between nitrone N1 and ynolate Y1a showing the 

relative energy (top left), the gradient norm showing a prominent  hidden intermediate 

(bottom left) and monitoring of C-C (top right) and C-O (bottom right) bonds along the 

IRC. Selected points of the IRC are TS1a, a, b, c and d 

 

 Rzepa and co-workers pointed out that hidden intermediates could be evidenced 

as real ones by electronically influencing the corresponding geometry.32 However, in 

our case, the sp-hybridization of the ynolate carbon linked to oxygen forces to a 

collapse between that carbon and nitrone oxygen once the first C-C bond is formed. We 

tried to reveal a real intermediate by adding and additional discrete solvent molecule in 

order to affect the geometry of the TS and thus increase the distance between carbon 

and oxygen atom. In fact, under such conditions it was possible to identify the 

corresponding minimum IN1a at 3.9 kcal/mol above the reagents (N1 and Y1a) 

(Scheme 5). The O-Li  and C-O distances were found to be 2.88 and 3.10 Å, 

respectively. The existence of intermediate IN1a could account for an alternative 

stepwise mechanism in which the lithium atom maintains a pentacoordinated 

environment. However, the corresponding species bearing pentacoordinated lithium 

resulted to be less stable, in agreement with previous calculations.33 The corresponding 
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starting complex C2a is located at 3.9 kcal/mol above the reagents, and the TS TS2a, 

leading to IN1, has an energy barrier of 15.2 kcal/mol (5.8 kcal/mol higher in energy 

than the Li-tetracoordinated TS1a). Consequently, the possibility of a stepwise 

mechanism should be disregarded. The elimination of the terminal methyl group at the 

ynolate (Y1b) does not affect the results and a similar higher energy pathway than the 

corresponding Li-tetracoordinated was found (for geometries, energy data and details 

see Supporting Information). 
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NCI and ELF analyses. To understand the C-C and C-O bond formation processes 

along the two-stage one-step addition of lithium ynolates to nitrones, topological ELF 

and NCI analyses of selected relevant points of the IRC have been carried out. ELF 

analysis has been revealed as an excellent tool to understand bonding changes along the 

reaction path.34 Domingo and co-workers reported several examples illustrating the 

utility of this topological analysis.35 NCI analysis20a, 21 shares several similarities with 

the Atoms in Molecules approach but, in addition, three dimensional regions are 

provided in order to detect, in a qualitative way, both attractive (van der Waals and 

hydrogen-bonding) and repulsive (steric) interactions.36 The NCI analysis, which only 
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requires the density function, ρ(r), has demonstrated to be efficient and applicable to a 

variety of systems,37 including nucleophilic additions to C=N double bonds.38 We 

carried out the complete ELF analysis for the IRC (197 points) illustrated in Figure 2 for 

the reaction between nitrone N1 and ynolate Y1a. From this analysis we considered 

points 77 (TS1), 79, 80, 158 and 159 of the IRC as the most relevant ones according to 

Domingo and co-workers, who showed that single bond formation between two atoms 

begins by merging two monosynaptic basins into a new disynaptic basin, associated 

with the formation of the new bond.39 The ELF basin populations of those selected 

points, including initial complex C1a and final product P1a are listed in Table 2. The 

attractor positions and the atom numbering of ELF and NCI for relevant points of the 

IRC are shown in Figure 3  

Table 2. ELF basin populations for the reaction of nitrone N1 with Y1a.a 

 C1aa TS1ab P79 P80 P158 P159 P1ac 

d(C3-C7) 3.35 2.04 1.98 1.93 1.52 1.51 1.51 

d(C6-O2) 3.49 3.20 3.22 3.21 1.79 1.74 1.44 

V(C3) ---- ---- 0.10 ---- ---- ---- ---- 

V(C7) ---- 0.74 0.94 ---- ---- ---- ---- 

V(C3,C7) ---- ---- ---- 1.18 1.97 1.96 1.97 

V(C6) ---- ---- ---- ---- 0.19 ---- ---- 

V(O2) ---- ---- ---- ---- 0.39 ---- ---- 

V(C6,O2) ---- ---- ---- ---- ---- 0.68 1.33 

V1(C6,C7) 2.15 2.51 2.42 2.38 2.10 2.09 2.08 

V2(C6,C7) 1.59 2.06 2.46 2.42 2.18 2.17 2.06 

V3(C6,C7) 2.21 ---- ---- ---- ---- ---- ---- 

V1(C3,N1) 1.86 2.71 2.41 2.33 1.78 1.78 1.78 

V2(C3,N1) 1.98 ---- ---- ---- ---- ---- ---- 
a Corresponding to the initial point 1 of the IRC.  b Corresponding to point 77 of the 
IRC. c Corresponding to the final point 197 of the IRC. 
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Figure 3. Most relevant ELF attractors at selected points of IRC of the reaction between 

nitrone N1 and ynolate Y1a. 

  

 The ELF topological analysis of the attractors for starting complex C1a shows 

three disynaptic basins associated each one to the C-C triple bond, whose electron 

density integrates 5.95 e (e.g. V1(C6,C7), V2(C6,C7) and V3(C6,C7)) and to the C=N 

double bond, whose electron density integrates 3.84 e (e.g. V1(N1,C3) and V2(N1,C3)). 

The picture for the final product P1a displays two disynaptic attractors associated with 

the expected C-C (e.g. V(C3,C7)) and C-O (e.g. V(C6,O2)) new single bonds 

integrating to 1.97 and 1.33 e, respectively. Also, two disynaptic attractors associated 

with C-N single bond (e.g. V(N1,C3)) and C-C double bond (e.g. V1(C6,C7)) and 

V2(C6,C7) integrating 1.78 and 4.14 e, respectively are showed. The NCI analysis of 

C1a (Figure 4) shows a clear favourable interaction (green-blue surface) between the π 

systems corresponding to ynolate and nitrone 

 At TS1a no monosynaptic basin appears at the nitrone carbon C3 but one is 

present for C6 atom integrating 0.74 e. At this TS the C6-C7 bonding region is 

P79 P80

P158 P159

V(C7)
V(C3)

V(C3,C7)

V(O2,C6)
V(C6)

V(O2)
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characterized by V(C6,C7) integrating 4.57 e (from 5.95 at C1a), and indicating that 

transfer of the electron density from the triple bond to the nitrone has started. Indeed, 

the C3-N1 bonding region is characterized by only one disynaptic basin V(C3,N1) 

integrating 2.71 e (from 3.84 e at C1a). The NCI analysis of TS1a shows the forming 

bond as a strong favorable interaction (blue ring) corresponding to the electronic 

transference above mentioned. Also, a weak interaction (green surface) is present 

between the nitrone oxygen and C6. This observation is in agreement with a favourable 

interaction but not with a forming bond between C6 and O2 atoms. At P79, the V(C7) 

monosynaptic basin increases integration to 0.94 e and a new monosynaptic basin 

V(C3) integrating to 0.1 e appears at the electrophilic center C3 of the nitrone moiety. 

These monosynaptic basins merge into a new disynaptic basin, V(C3,C7) integrating 

1.18 e, at the following point of the IRC (P80), indicating that the first C3-C7 bond is 

already being formed  at d(C3,C7) = 1.93 Ǻ. The NCI analysis reflects that the same 

favorable interaction between C6 and O2 observed for TS1a is still present (Figure 4), 

while C3-C7 bond has been completely formed. 

 Going ahead on the IRC, the V(C3,C7) disynaptic basin increases its population 

till 1.86 e at point 97 (point a, Figure 2) with a C3-C7 distance of 1.56 Ǻ; at this point 

the C3-C7 bond is essentially formed. Notably, no monosynaptic basins appear at C6 

and O2, indicating that, at this point, the formation of the second C6-O2 single bond 

does not have begun. At P158, the C3-C7 bond is formed completely (d(C3,C7) = 1.52 

Ǻ) and the electron density of V(C3,C7) disynaptic basin is 1.97 e. At this point, two 

new V(C6) and V(O2) monosynaptic basins appear, integrating 0.19 and 0.39 e, 

respectively. At P159 (d(C3,C7) = 1.51 Ǻ, d(C6,O2) = 1.74 Ǻ), these monosynaptic 

basins merge into the new V(C6,O2) disynaptic basin integrating 0.68 e which 

corresponds with the formation of the second C6-O2 single bond. The NCI analysis of 

P159 (Figure 4) also reflects a transformation of the previously observed favorable 

interaction into the bond between C6 and O2 atoms (for a complete animation  of both 

ELF and NCI analyses for the whole IRC see supporting information). 
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Figure 4. NCI analysis of relevant points C1a, TS1a, P80 and P159. 

 

These results are in agreement with a two-stage one step process in which initially, the 

C3-C7 single bond is formed in the first part of the reaction path, whereas the second 

C6-O2 single bond is formed during the second part of the reaction. Figure 5 shows the 

evolution of electronic populations along the reaction coordinate for selected bonds. 

When the first C3-C7 bond is formed, the C3-N1 double bond becomes single one and, 

simultaneously, the C6-C7 triple bond becomes a double bond. At the same time the 

C6-O9 bond increases its population up to 2.6 e, too low to be considered a double 

bond. Consequently, it is evident that a species resembling a ketenic intermediate is not 

formed at any moment. This situation is maintained along the reaction until the second 

C6-O2 bond is formed. At that moment, the electronic population of C6-O9 bond return 

to typical values corresponding to a single bond. The bond forming evolution illustrated 

in Figure 5 is fully consistent with a chemical reaction accounting in a single kinetic 

step, being evident that the two bonds C3-C7 and C6-O2 are formed in a consecutive 

way. 
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Figure 5. Evolution of electronic basin populations along the reaction coordinate. EP 

close to 6 represents a triple bond while those close to 4 and 2 represent double and 

single bonds, respectively.  

 

Conclusions 

In summary, in the reaction of nitrones with ynolates both sp hybridization and 

coordination to lithium atom are responsible of placing carbon and oxygen atoms at 

such a distance in TS1 which, given the electronic and geometric features of the 

reaction, results to be close enough to promote the formation of the C-O bond once the 

C-C bond is formed in a typical two-stage reaction corresponding to a single kinetic 

step. Consequently, no ketene intermediates are formed. The ELF bonding analysis of 

the IRC of the reaction confirms the highly asynchronous mechanism in which the 

formation of C-C and C-O bonds of the final isoxazolidine accounts in a consecutive 

way. Transfer of electronic density from the triple bond of the ynolate towards the 

electrophilic C-N double bond is completed during the first stage of the reaction and 

only when the first C-C bond is formed the formation of the second C-O bond begins. 

The NCI analysis is consistent with the presence of favorable interactions between C6 

and O2 prior the bond formation and reveals the moment in which the new bonds are 

formed. 

 

C3-C7 bond formation C6-O2 bond formation
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