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ABSTRACT 

Glycosidase inhibitors are important compounds that can interfere with several 

biosynthetic processes including N-linked glycosylation and the biosynthesis of several 

glycoproteins. Understanding the biogenesis of naturally occurring glycosidase 

inhibitors would be a crucial step towards the chemical synthesis of analogues of 

choice. This review focuses on the current knowledge regarding the biosynthesis of a 

series of polyhydroxylated saturated nitrogen heterocycles including nojirimycin and 

swainsonine among others, with a potent biological activity as inhibitors of glycosidases 

and transglycosidases. 
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1. Introduction 

Glycosydase inhibitors are a rapidly growing family of molecules mostly 

consisting of polyhydroxylated mono- and bicyclic saturated nitrogen heterocycles 

commonly referred to as iminosugars (Figure 1).[1-3] Compounds like nojirimycin 1, 1-

deoxynojirimycin 2, DMDP 3, castanospermine 4 or swainsonine 5 and their derivatives 

play crucial roles in the biological activities of some pharmaceutically important 

compounds. [4-6] 

 

Figure 1. Glycosidase inhibitors 

 

Nojirimycin 1 was originally isolated from cultures of several strands of 

Streptomyces [7,8] and Bacillus[9] and 1-deoxynojirimycin was isolated from plants of 

genus Morus.[10] Compounds 1 and 2 inhibit various glycosidases having important 

effects on the biosynthesis of membrane and secretory glycoproteins.[11] DMDP 3 can 

be isolated from the cyanobacterial genus Cylindrospermum and it is capable of 

effectively inhibiting digestive glycosidases.[12] The 6-deoxyderivative 4 has been 

isolated from Angylocalyx pynaertii and in contrast to other polyhydroxylated 

pyrrolidines it was found to be unique in inhibiting β–mannosidase.[13] 

Castanospermine 5 was first isolated from the seeds of Castanosperma australe[14] and 

it has demonstrated antiviral activity.[15,16] It is also known that castanospermine 

interfere with the metabolism of glycogen[17] and it inhibits several glycosidases.[18] 

Swainsonine 6 was first isolated from swainsona in Australia but it is also present in 

numerous plants and fungi. Compound 6 has antitumoral activity[19,20] although some 

clinical trials were discouraging.[21] Other natural pyrrolidine alkaloids like alexine 7, 

australine 8 and casuarine 9 have also been isolated from plants and 

microorganisms.[22] 



Post-print de Current Chemical Biology 2014, 8, 10-16 

Calystegines were found in the medicinal plant Atropa belladonna and consist of 

a nortropane skeleton with three or four hydroxyl groups (Figure 2). There are up to 14 

different structures of natural occurring calystegines isolated from a variety of vascular 

plants. They cannot be found in fungi or microorganisms. The chemistry and biology of 

calystegines including chemotaxonomy, biological activity and some insights on the 

biogenesis in the context of co-occurrence with tropane alkaloids have been compiled 

by Dräger in an excellent review[23] and a chapter book,[24] covering literature from 

1998 to middle 2003 and up to 2007, respectively. Since then there has not been 

relevant communications in the topic; so, in this review calystegines will not be treated 

and for previous work the reader is directed to the above mentioned reviews. 

 

Figure 2. Calystegines 

 

The interest in glycosidase inhibitors has increased enormously during the past 

two decades and the number of synthetic approaches to their preparation is extremely 

extensive and growing at a rapid rate.[25,26] One reason for this huge synthetic activity 

is the great variety of biological activity against different enzymes that can be found 

depending on the absolute configuration of the stereogenic centers bearing the hydroxyl 

groups.  

The mechanism of the various existing glycosidases is known to proceed 

through oxocarbenium-like transition structures[27,28] and it is well-accepted that 

inhibition of typical glycosidase inhibitors occur because such sugar mimics resemble 

the structural features of the transition state.[29] Different configurations as well as 

conformational restrictions in inhibitors help to a better recognition by the enzyme 

contributing to a higher inhibition activity.[30] 

In the large group of glycosidase inhibitors, synthetic studies have already been 

highlighted in several classes,[31-33] e.g. for pyrrolidines,[34,35] piperidines,[36,37] 

bicyclic compounds such as indolizidines[38] and pyrrolizidines[39,40] and imino 

disaccharides.[41,42] However, only a little is known about biosynthetic routes towards 

that sort of compounds. It can be expected that the knowledge of the biosynthetic 
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pathways can be used to manipulate the metabolite pattern of involved microorganisms, 

directing the fermentation process to produce desired metabolites.  

In this review, we summarize the current knowledge regarding the biosynthesis 

of naturally occurring glycosidase inhibitors. Semisynthetic studies on the structural and 

pharmaceutical properties of these compounds have been extensively reported and will 

not be covered here. Similarly, for detailed information of natural occurrence of 

discussed molecules and precise synthetic approaches the reader is referred to previous 

reviews. On the other hand, experimental evidences supporting the existence of various 

routes in microorganisms will be discussed. 

 

2. Biosynthesis of monocyclic compounds. Piperidines and pyrrolidines 

 Nojririmycin 1 has been isolated from a variety of microorganisms including S. 

roseochromogenes, S. lavendulae, S. nojiriensis and S. subrutilus. The last one, when 

grown on a glucose-containing soyabean medium produces both 1-

deoxymannojirimycin and 1-deoxynojirimycin. Experiments with deuterated glucose 

showed incorporation of deuterium at C-6 in both alkaloids indicating that the first step 

in the biosynthesis of both iminosugars is the isomerization of glucose to fructose. 

Accordingly, it is proposed mannojirimycin 17 as the first iminosugar to be formed.[43]  

In fact, when 6,6-[
2
H2]-glucose was employed, NMR analysis of deuterium 

labellled 1-deoxynojirimycin 2 showed that only the equatorial proton at C-1 had been 

replaced by deuterium, in agreement with the oxidation of the primary hydroxyl group 

at C-6 in fructose to give 13 with the loss of one hydrogen atom. The introduction of the 

amino group is certainly unknown and three ways are possible through derivatives 14-

16, all of them being possible precursors of mannojirimycin 17.[44] Elimination of 

water from 17 and further reduction afforded the observed 1-deoxymannojirimycin 19. 

This route was confirmed by using 5-[
2
H]-glucose in the fermentation. Under such 

conditions deuterium was only incorporated at C-2 in mannojirimycin 17. The 1-

deoxynojirimycin 2 obtained in this experiment did not show incorporation of 

deuterium. This is in agreement with the hypothesis that either mannojirimycin 17 or its 

1-deoxy derivative 19 are precursors in the biosynthetic scheme, since loss of hydrogen 

isotope from C-2 would be expected upon epimerization of 17 or 19. Further 

experiments with deuterated substrates deomonstrated that epimerization occurs 

predominantly at nojirimycin level, i.e. between 17 and 1. It had been reported that 1-

deoxynojirimycin 2 could be epimerized to 1-deoxymannojirimycin 19 by a strain of 
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Agrobacterium sp. trough an oxidation to a cyclic ketocompound followed by reduction 

to give the epimeric derivative. However, by considering this hypothesis it is difficult to 

justify the presence of nojirimycin 1. 

 

 

Scheme 1. Biosynthesis of mannojirimycin 17, nojirimycin 1 and their deoxy 

derivatives 19 and 2 from D-glucose in Streptomyces subrutilus 

 

Similar experiments carried out with Bacillus subtilis var niger only produced 1-

deoxynojirimycin 2 and no traces of 1-deoximannojirimycin 19 were found.[45] Also in 

this case, labeling studies demonstrated that glucose is the precursor of 1-

deoxynojirimycin 2. Additional enzyme assays and labeling studies supported that both 

mannojirimycin 17 and nojirimycin1 are intermediates in the biosynthesis of 1-

deoxynojirimycin 2.  

Recently, the complete genome sequence of Bacillus amiloliquefaciens has been 

determined[46] and a gene cluster that initiates the biosynthesis of 2 in such 

microorganism has been identified and provided further evidence for the pathway 

illustrated in Scheme 1.[47]
 
Additionally, three enzymes involved in the first steps of 
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the biosynthesis have also been identified. Noteworthy, the same gene cluster has been 

found in Bacillus atrophaeus[48] as well as in Bacillus subtilis,[49] known producers of 

1-deoxynojirimycin 1. 

The biosynthetic route to 1-deoxynojirimycin 2 is, however, different for higher plants 

as demonstrated by Shibano and co-workers.[50] These authors studied the biosynthesis 

of 2 by using 1-[
13

C]-glucose in the higher plant Commelia communis. While a 

significant 
13

C enrichment was observed at C-6 for compound 2 obtained in 

microorganisms, in the case of that being produced in plants the 
13

C enrichment was 

located at C-1. These experiments resulted in the proposal outlined in Scheme 2. 

According to this hypothesis C-1/C-5 cyclization is produced in the original glucose 

molecule without any type of inversion. Additional support was provided by the fact 

that the same 
13

C enrichment was observed in fructose obtained  from administration of  

1-[
13

C]-glucose. 

 

 

Scheme 2. Biosynthesis of nojirimycin 1 and1-deoxynojirimycin 2 from D-glucose in 

Commelia communis. 

 

When imination is produced on fructose, formed by isomerization of glucose, the same 

process led to DMDP 3 (Scheme 3). Indeed, compound 3 is obtained from 1-[
13

C]-

glucose under the same conditions employed for the preparation of 1-deoxynojirimycin 

2.[50] 
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Scheme 3. Biosynthesis of DMDP 3 from D-glucose in Commelia communis. 

 

Broussonetines are polyhydroxylated pyrrolidines bearing a long carbon chain at C-2. 

They have been isolated from Broussonetia kazinoki.[51] 
13

C NMR spectroscopy 

studies after feeding experiments using 1-[
13

C]-glucose demonstrated that broussonetine 

J 27 is synthesized through routes similar to those of sphingosine and 

phytosphingosines.[52] Similar results were obtained for broussonetines C 28 and E 29. 

 

 

Figure 3. Broussonetines 

 

Accordingly, in the case of broussonetines, it is assumed that after typical 

transformation of D-glucose into serine by well-known metabolic routes[53,54] the 

introduction of the side chain is achieved by condensation of serine with palmitoyl-

CoA. The labeling pattern found in the side chain also indicated that the palmitoyl 

fragment was formed through the acetate-malonate pathway (Scheme 4). The absolute 

configuration of the pyrrolidine moieties in most broussonetines is related to D-serine 

except in the case of broussonetine U 30 in which is related to L-serine. 
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Scheme 4. Biosynthesis of broussonetine J from D-glucose in Broussonetia kazinoki.  

 

3. Biosynthesis of bicyclic compounds. Indolizidines. 

 The biosynthesis of the piperidine nucleus of bicyclic iminosugars starts with the 

production of pipecolic acid, which is the precursor of several compounds such as 

swainsonine or slaframine. Pipecolic acid was found to be a product of lysine 

catabolism in animals, microorganisms and plants. Grobbelaar and Steward established 

the transformation oflysine into pipecolic acid through route A (Scheme 5) by using 

labeled lysine in bean plants Phaseolus vulgaris.[55] According to their findings the 

nitrogen of the pipecolic acid should be supplied by the α-amino group of the lysine. 

 

 

Scheme 5. Biosynthesis of pipecolic acid from lysine.  
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 On the other hand, Gupta and Spenser demonstrated that in rats  the conversion 

of lysine into pipecolic acid proceeds via ε-amino-α-ketocapric acid 35.[56] This 

mechanism indicated that the nitrogen atom of the pipecolic acid should be supplied by 

the ε-amino group of lysine (Scheme 5, route B). Similar experiments carried out with 

Neurospora crassa and Phaseolus vulgaris afforded identical results being in conflict 

with previous findings. Further studies in animals and plants demonstrated that both 

routes A and B, illustrated in Scheme 5, distinguishable at the loss of a particular amino 

group of the lysine, are possible. In fact, there are several experimental evidences 

supporting the existence of various routes in microorganisms, as well as specific 

enzymes involved in some steps. This topic has been reviewed elsewhere[57] and the 

reader is referred to that publication for more details concerning the biosynthesis of 

pipecolic acid. 

The biosynthesis of slaframine 42 has been studied in Rhizoctonia leguminicola 

a fungus that causes black spot disease of red clover.[58] By using radiolabelled 1-

[
14

C]-lysine and 6-[
14

C]-lysine it has been demonstrated their incorporation into 

slaframine.[59] Moreover, that incorporation was efficiently blocked by adding 

pipecolic acid, thus indicating that pipecolic acid is an intermediate in the prcess of 

biogenesis. The same authors also studied the origin of pipecolic acid in Rhizoctonia 

leguminicola and verified the biosynthetic pathway illustrated in Scheme 5.[60] Further 

experiments with radiolabelled pipecolic acid showed incorporation of radioactivity to 

slaframine in the expected positions. 

The origin of the pyrrolidine ring of slaframine was also investigated[61] and it was 

found to be formed from malonic acid and acetic acid. Spectrometric analysis of 

radiolabelled/deuterated compounds indicated that the methyl carbon of acetate is joined 

to the carboxyl carbon of the pipecolate. These results suggest the formation of 

intermediate 38 by acylation of malonate with pipecolic acid (Scheme 6). Furthermore, 

preparation of deuterated 40 allowed to identify this compound as an advanced 

intermediate in the biogenesis of slaframine[62] and to propose 1-

oxooctahydroindolizine 39 as the intermediate precursors of 40. In addition to slframine 

42, swainsonine 6 was also isolated from Rhizoctonia leguminicola.[63] By employing 

perdeutero pipecolic acid it was demonstrated that both slaframine and swainsonine 

have common precursors in their biogenesis.[64] 
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Scheme 6. Biogenesis of slaframine from lysine in Rhizoctonia leguminicola 

.  

 In the case of swainsonine, compound 39 is reduced by the other face providing 

43. Oxidation at C-8a of this intermediate should be postulated, probably through an 

iminium ion, with subsequent reduction by the appropriate face to provide the R 

configuration of swainsonine 6 (Scheme 6). Further experiments with deuterated 

compounds allowed to corroborate that hypothesis.[65]  

 The biosynthesis of swainsonine 6 has also been studied in plants. In particular, 

studies carried out with Astragalux oxyphysus showed that swainsonine 6 is 

biosynthesized in that plant by a very similar pathway (if not identical) to that in the 

fungus by incorporating pipecolic acid into the swainsonine skeleton.[66] On the other 

hand, it has been observed that the plant does not produce slaframine 42; neither does it 

produce intermediates 40 and 41. 

 The role of both pipecolic acid and malonic acid in the biosynthesis of 

swainsonine 6 has also been pointed out by stimulating production of such alkaloid by 

transformed root cultures of Swainsona galegifolia.[67] 

 

4. Conclusions 

Polyhydroxylated saturated nitrogen heterocyles provided a variety of biosynthetic 

challenges. Up to now, several aspects related to their biogenesis have been revealed. 

However, there is still much work to do. Further investigations are still required to 

clarify the biosynthetic enzymes involved in the catalytic processes. Such enzymes 
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should be of a great value for enzymatic approaches to iminosugars and their 

biomimetic synthesis. There are experimental evidences indicating that different 

biosynthetic mechanisms operate on diverse microorganisms (for instance Bacillus 

subtilis vs. Streptomyces subrutilus for 1-deoxynojirimycin) or higher plants. Very 

recently, a gene cluster has been identified providing evidence of the biosynthetic 

pathways. In this regard, the catalytic mechanism of individual domains should continue 

to be probed by using standard mutagenesis techniques with studies involving purified 

enzymes. By acquiring this knowledge it will be possible to design new analogues by 

developing more sophisticated and improved strains. The fields of synthetic organic 

chemistry and biochemistry will be united by employing new bioorganic tools for 

further chemical elaboration of new compounds of pharmaceutical interest. 
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