

A. Orera, <u>G. Larraz</u>, M.L. Sanjuán Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza - CSIC), Zaragoza, Spain

Introduction

• Lanthanum oxide takes part in a great variety of solids with technological interest, mainly as support of catalysts for hydrocarbon oxidation.

• The presence of $La_2O_2CO_3$ together with La_2O_3 is beneficial to the catalytic activity [1]. Besides, CO_2 and H_2O are byproducts in these catalytic reactions, so they play an important role in the process.

• La₂O₃-related materials used in catalysis may undergo significant changes during reaction.

• A great effort has been made in establishing the thermal evolution of La₂O₃, La(OH)₃ and La carbonates in varying atmospheric conditions, whit the aim of:

predict the aging behavior of the catalysts

1542

> test the conditions yielding the best performance

• We present a Raman study of La₂O₃-based materials focusing on the identification of phase content and thermal mechanisms involving hydration and carbonation effects.

Experimental

• La_2O_3 converts to $La(OH)_3$ when exposed to air. So it has been use as starting material for our studies.

- Raman spectra were recorded in a Dilor XY microspectrometer with a CCD detector.
- A Linkam TS1500V stage was used for high temperature measurements.

Experiments in different atmospheres were performed to check the temperature range of each phase

Phase Identification

To begin with, Raman spectra of the main derivatives of $La(OH)_3$ have been identified.

Attempts to synthesize pure tetragonal oxycarbonate I-La₂O₂CO₃ were unsuccessful, the Ia phase being always present.

All these phases have been verified by XRD.

Fig. 1 Raman spectra of La₂O₃ based materials.

Phase Formation and Stability in different atmospheres

Evolution With CO₂ (Air)

When CO₂ is present, as in catalytic reactions involving hydrocarbons, the scenario is very different:

Phase content depends on the thermal history of the sample:-

Durity of the starting material □ Retention times at each temperature **G** Flow of gas

Dehydration of $La(OH)_3$ in two steps is observed, yielding a mixture of C and A La_2O_3 that evolve to the hexagonal phase as temperature is increased.

In-Situ Heating experiments

Fast heating minimizes carbonation effects (only type Ia-La₂O₂CO₃ is detected) and favors dehydration to A-La₂O₃.

- A. Orera acknowledges the financial support provided by Consejo Superior de Investigaciones Científicas through a JAE-Doc contract.