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ABSTRACT 
Transition metals (M) and quadruply deprotonated citrate (citr4-) form complexes with 
[M4(citr)4]

(8-) structural building blocks that have at their cores an M4O4 unit with cubane 
topology. At the periphery of the [M4(citr)4]

(8-) unit is an icosahedron formed by twelve oxygen 
atoms with partial negative charges, to which metal atoms can bind in a number of ways to give 
products with discrete molecular structures or with 1-, 2-, and 3-D polymers in the crystalline 
state.  In addition to geometrically regular and irregular shapes, some of these products also 
display reactivity in the solid state, with reversible chemical processes having been observed to 
change the dimension of the polymer or to produce ion transfer with structual modulation. The 
geometries of the products reported to date are analyzed systematically in this presentation, and 
the geometrical relationships between reactants and products in a topotactic solid-state reaction 
are explored in detail.  Unusual solvent uptake and loss in some of these solids is described, with 
reference to the structural features which enable this behavior. 
 
 
INTRODUCTION 
Some years ago we began exploring the chemistry of transition-metal complexes with citrate as a 
ligand, with some urging from our colleagues Fernando Palacio and Javier Campo of the Aragón 
Materials Science Institute, who thought that the prochiral character of citrate could be harnessed 
to give chiral paramagnets and other chiral systems with interesting magnetic properties. This 
aspect of the chemistry has not yet materialized, but the citrate cubanes that emerged from this 
work have turned out to possess unexpected solid-state reactivity as well as their own interesting 
magnetic properties. In this presentation we focus on the crystal structures and solid-state 
reactivity of these systems. 
 
The magnetic properties of transition-metal cubanes, and of citrate cubanes in particular, have 
been studied by Murrie et al., [1], Murray et al., [2,3] and others. [4]  Our own work has added 
some useful results to this body of knowledge, but the general scheme of the magnetism of these 
systems had already been established by others. 
 
Crystals of the citrate cubanes were to reveal a wealth of other behavior, however. We have 
encountered a variety of dynamic effects involving reactivity – chemical bond making and 
breaking – in these molecular solids. It is on this aspect of the chemistry of these compounds that 
we shall focus here. The solid state reactivity, whose origins seem clear as will be described 
below, produces varied results. In one case, a one-dimensional polymer is cross-linked reversibly 
into a 2D net. [5]  In another system a discrete molecule is easily converted by cobalt hopping 
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into an unsymmetrical molecule with concomitant transformation of the original ordered crystal 
into a modulated phase.  
 
In this presentation we shall explore the geometry of the citrate cubanes – they are more than 
simple cubanes – with special emphasis on the structural and topological properties that make 
them reactive. These systems have within them a variety of geometrical forms, and these can be 
characterized using existing geometrical and, where appropriate, distortion parameters.  
 
For single-crystal-to-single-crystal transitions of the sort that we observe for some of the citrate 
cubanes, we will describe a means of relating the initial and final relative dispositions of the 
molecular fragments that take part in the reaction. This is a subject that our laureate for this 
Transactions Symposium, Bruce Foxman, has been talking about for many years. Our treatment 
in this presentation, which we apply to the 1D-to-2D polymer transformation mentioned above 
[5], is based on the ideas that Professor Foxman has expounded. 
 
THE RICH GEOMETRY OF THE CITRATE CUBANES 
We use the term "cubane" for any compound whose core consists of eight atoms that form a 
figure possessing the basic components of a cube – three mutually perpendicular two-fold or 
four-fold symmetry axes and four three-fold symmetry directions inclined at somewhere in the 
vicinity of 54.7º to the two- or four-fold symmetry elements. These criteria are treated rather 
loosely, and in practice the "cube" of a cubane can consist of any eight atoms which, when one 

does not require them to be of the same element, 
form a closed figure that looks something like a 
cube.  
 
In actual fact the transition-metal citrate cubanes 
that we and others study possess a wealth of 
geometrical diversity. The cube at their core 
serves as a starting point for exploring the 
shapes involved.  With reference to a 2D 
polymer of cobalt citrate cubanes that was 
reported recently [6], and which has the overall 
shape shown in Fig. 1, we will describe the 
principal geometrical features of these 
structures. This crystal, formed by layers of the 
square polymer, has space group P(-4)21c, and 
the formula {Cs2[Co(H2O)6][Co6(C6H4O7)4-
(H2O)8]12H2O}n. In Fig. 1 it can be seen that the 

cubane and surrounding ligands (in color) are linked to their neighbors in this case by bridging 
octahedrally coordinated Co(II) centers; one symmetry unique part of the bridge is also colored 
in the figure. This particular structure has bridges in two perpendicular directions, giving the 
square 2D polymer. 
 

Figure 1. 
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At the heart of the structure is the cubane, of composition Co4O4 -- four Co(II) centers and four 
hydroxy oxygen atoms from as many quadruply deprotonated citrate ligands, which surround the 
cube as will be described presently. The cubane, shown in Fig. 2, consists of two interpenetrating 
tetrahedra. This unit can be connected so as to look like a distorted cube (Fig. 2, left), or it can be 
drawn as a "stella octangula," emphasizing the Co (center) or O (right) tetrahedra. The Co4 
tetrahedron is of notably larger dimension than is the O4 figure. 
 
The shapes of figures such as the tetrahedra of Fig. 2 can be characterized in terms of their 
distortions from ideal shapes, using their quadratic elongation parameter (Equation 1) and their 
tetrahedral angular variance (Equation 2). [7] 
 
 

(1) 
 
 
 
 
 

(2) 
 
 
 
 
The tetrahedral quadratic elongation parameter, Eq. 1, uses the ratio of the distance of a vertex 
from the center of the tetrahedron, ℓi, to ℓo, which is the corresponding distance in a regular 
tetrahedron with the same volume as the figure being characterized. The variance of the 
tetrahedral angles, Eq. 2, tends to exaggerate larger deviations from a regular shape and thus 
makes it easy to distinguish between regular and distorted figures. For the quite regular Co4 and 
O4 tetrahedra of Fig. 2, <tet> has values of 1.002 and 1.001, respectively, while the 
corresponding values of (tet)2 are 2.481 and 5.766 º2. (The units of the tetrahedral angular 
variance are degrees squared.) 
 
One of the principal agents in the interesting properties of the citrate cubanes is the citrate ligand 
itself. It provides a structural context for the cubane which augments the possibilities for 
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synthesizing systems with solid-state reactivity and with magnetically interesting properties. Fig. 
3 shows the cubane with one of the four citrate ligands that surround it. The hydroxy oxygen is at 
one corner of the cube. The short carboxylate leg of the citrate forms a chelate through O2 to a 

neighboring Co atom, and both of the 
longer methylenecarboxylate legs do the 
same (O4, O6). So there are three chelates 
involving each citrate -- one five-
membered ring and two with six atoms 
each. Each of the carboxylate groups has 
just one of its partially charged O atoms 
bound to cobalt. That leaves the other -- 
for example, O7 in Fig. 3 -- free to engage 
in bonding and/or non-covalent 
interactions at the periphery of the unit. In 
this structure, O7 binds a non-cubane Co 
atom, Co2, which bridges cubanes to 
extend the polymer (vide infra).  
 

Fig. 3 shows just one citrate. There are 
four around the cube, forming an 
arrangement with S4 symmetry in all of 
the structures that we have observed to 

date. Each citrate has a charge of (4-), and in this structure the cobalt centers are all Co(II); so the 
Co4(citrate)4 fragment has a formal charge of (8-). Judicious choices of cations and 
crystallization conditions can be used to obtain structures with different overall shapes and 
dimensions, which in turn can give subtle differences in the magnetic properties of these 
systems, as reported recently. [8] This structure has the bridging [Co(H2O)4]

(2+) units, two per 
cubane, one independent [Co(H2O)6]

(2+) and 
two Cs(+) per cubane to balance the charge. 
 
While the four cobalt centers in the cube are 
responsible for a large part of the interesting 
magnetic properties that these systems 
possess, it turns out that from a structural 
and dynamic point of view, the interior of 
the cubane – the part that looks like a cube – 
is not its most interesting aspect. Fig. 4 
shows the cubane with all four citrate 
ligands. The five-membered chelates gird 
the cube on its lateral edges, while the six-
membered rings span the edges at the top 
and bottom in the figure. Each carboxylate, 
which has one of its oxygen atoms in the 
chelate ring with a Co(II) vertex of the cube, 
has its other oxygen atom, also partially 
negatively charged, pointing outward, where 

Figure 3. 

Figure 4.  
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it can bind further metal atoms or participate in hydrogen bonds, or both. These twelve 
peripheral oxygens confer upon this fragment the ability to enter into a remarkable diversity of 
structures and to participate in transformations in the solids thus formed.  
 
These twelve oxygen atoms, taken on their own, form an icosahedron, which in this case is not 
the regular icosahedron that one can find in text books. This is a twelve-vertex figure with 

twenty faces and 30 edges, an irregular 
icosahedron elongated along the four-fold 
axis of the crystal (the vertical direction in 
Fig. 4). Fig. 5 shows this three-dimensional 
figure, viewed along the tetragonal four-fold 
axis and emphasizing the oxygen atoms at the 
vertices. As drawn, the faces are all 
triangular, but there is no further similarity to 
a regular icosahedron. This figure has 
crystallographic S4 symmetry, and the twelve 
oxygen vertices can be divided into three 
groups of four, each forming a tetrahedron 
with distinct geometry. There are four cobalt 
atoms attached to this polyhedron; these are 
the octahedrally coordinated cobalt atoms that 
bridge neighboring cubanes in the 2D net 
shown in Fig. 1.  
 
It is instructive to examine the three 
concentric tetrahedra that can be extracted 
from this figure. Taking O5 and its three 
congeners, related by the crystallographic (-4) 

symmetry element, we can see that this tetrahedron is elongated along the crystallographic c-axis 
(Fig. 6a). The tetrahedron formed by O3 and its congeners is compressed along the same 
direction (Fig. 6b). However, the figure formed by O7 is quite regular (Fig. 6c), and it is here 
that the bridging Co(II) centers are attached. Co2 is attached laterally to O7, in such a way that 
the Co2 tetrahedron (Fig. 6d) is wider but not higher than the O7 figure. The geometry of Co2 
attachment to the icosahedron, which can be seen in Figures 5 and 6, is such that the two 
Co2...Co2' edges that are perpendicular to the crystallographic c-axis, are perpendicular to each 
other. The propagation of the polymer thus follows two mutually perpendicular directions, which 
coincide with the a- and b-axes of the tetragonal cell (Fig. 1). 
 

Table 1. Tetrahedral quadratic elongation and angular variance (deg2) for peripheral O atoms 
in four Co citrate cubanes. 

 tet>(O) (tet)2(º2) 
 O3 O5 O7 O3 O5 O7 

this structure 1.3483 1.2247 1.0018 827.4987 882.0394 7.0677
Cs+ 1.4100 0.9795 1.2523 918.9217 8.4082 979.3230
Rb+ 1.3809 1.0023 1.2712 877.1153 8.8635 1044.7242

diamondoid 1.3367 1.0079 1.2301 808.8568 32.2729 901.2848

 

Figure 5. 
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Table 1 gives the distortion parameters for the tetrahedra formed by O3, O5 and O7, each with  
its symmetry relatives. The corresponding parameters are also given for the structures with the 
same anionic net but with Cs(+) or Rb(+) as cation. The row labeled "diamondoid" represents a 
structure with a 3-D polymeric net of Co citrate cubanes. (In these latter three structures, the 
names of O5 and O7 are reversed with respect to the structure described here. We have not 
changed the names in the table.) 

Figure 6.  

(a) (b) 

(c) (d) 
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This distorted icosahedron of electronegative oxygen atoms does not always attach metals in a 
symmetric fashion. In one compound that we have studied, [5] and which will be considered 
again below, successive cubanes were linked by a double bridge in one direction, by a single 
bridge in another, and each cubane also had two pendant [Co(H2O)5]

(2+) fragments attached to it, 
but not in any symmetrical fashion.  Furthermore, not all of the cubanes that we have prepared 
form polymeric structures; we have observed discrete molecules and 1-, 2- and 3D polymers. 
 
 
ORTHONORMAL REFERENCE FRAMES AND THE GEOMETRICAL RELATION-
SHIP BETWEEN REACTANTS AND PRODUCTS IN SINGLE-CRYSTAL TRANS-
FORMATIONS 
When single-crystal-to-single-crystal transformations occur, they are usually described in terms 
of the "before" and "after" conditions of the crystal. If the relative dispositions of the reactants 
are unchanged in the transformation, it is described as topotactic.  
 
The reactions that we have encountered in transition-metal citrate cubanes may be called 
topotactic if one applies some lassitude to the definition of that term. In reality the relative 
dispositions of the reactants change in the single-crystal based reactions that we have observed. 
Among other things, the reactions are non-adiabatic and involve changes in the compositions of 
the crystals. Our reactions have invariably involved movement of, or some other change 
involving water molecules. In the 1D-to-2D polymer crosslinking that we observed some years 
ago [5], the reaction is provoked by dehydrating the crystal under mild conditions. The 
crosslinking occurs in the regions of the crystal abandoned by water, and it is accompanied by 
some collateral rearrangement of the structure – i.e., other than the crosslinking itself -- that also 
involves metal-ligand bond breaking and concomitant metal-aqua bond formation (a process 
called hydrolysis in other contexts). 
 
We can provide a good description of the relationship between the "before" and "after" states in a 
single-crystal-to-single-crystal transformation, by using graphics derived from the individual 
phases. Alternatively, we can combine the atomic coordinates from the two phases and, choosing 
an appropriate common origin, we can analyze to some extent just how the atoms have moved 
with respect to each other. In this case we have to convert atomic coordinates from both the 
initial and final phases to an orthonormal reference system, because the unit cell will have 
changed in the case of a general transformation. It is this conversion to orthonormal coordinates 
that we shall consider next, because for a real, unmitigated single-crystal-to-single-crystal 
transformation – one whose initial and final phases are analyzed in the same crystalline sample – 
exact information on the relative dispositions of the two phases is available. With an appropriate 
choice of experimental conditions, namely using the same diffractometer and without removing 
the sample from its mount during the phase transition, the orthonormal reference frame of the 
diffractometer can be used as a common geometrical basis for the initial and final phases. As 
mentioned earlier, Bruce Foxman saw this possibility and has encouraged us to look into it. 
 
Before describing how we have used this technique, for comparison we will first review the type 
of conversion to orthonormal coordinates that is usually used in crystal structure analyses. The 
most common need for orthonormal coordinates arises when one wants to draw pictures. 
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(Distance and angle calculations can be done using crystallographic coordinates in combination 
with the metric tensor.) For usual purposes, then, we are not comparing two phases, but rather 
simply converting our crystallographic coordinates to an orthonormal reference frame that can be 
understood by graphics plotters. This does not require that the original crystallographic reference 
frame be related to a laboratory reference system. A popular transformation is that which was 
described and derived in detail by Dunitz [9]. 
 
In relation to the crystallographic reference system a, b, c, the orthonormal reference frame 
described by Dunitz, defined by vectors A, B, C, has A parallel to a, B in the ab-plane and 
perpendicular to a, and C perpendicular to both A and B and disposed so as to form a right-
handed system if a, b, c are right-handed. The ORTEP manual [10] describes the same system 
succinctly as having its three axes parallel to a, to (a × b) × a, and to (a × b) = c*.  The 
transformation from fractional crystallographic coordinates (x,y,z) to Cartesian coordinates 
(X,Y,Z) is given by Equation 3, in which V is the unit-cell volume. 
 

 
 
 
 

(3) 
 
 
 
 
 
 
The inverse transformation from these orthogonal coordinates to fractional crystallographic 
coordinates is given by Equation 4. 
 
 
 
 
 

(4) 
 
 
 
 
 
For placing a crystal in a fixed, common reference frame that can be used for before-and-after 
structures, we can use a convenient transformation that is available in the context of any structure 
analysis with any modern single-crystal diffractometer. This begins with an instrument-fixed 
orthonormal reference frame, an example of which is shown in Fig. 7. The reference frame has 
its origin at the intersection of the rotation axes of the goniometer – that is, at the crystal. In the 
example shown in the figure, the x-axis of the orthonormal frame points to the x-ray source; the 
z-axis points up, and the y-axis completes the right-handed system. We should add here that we 
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have used for this example a 
diffractometer that is no 
longer in production. Some 
modern instruments use this 
reference frame, and others 
use different systems; but the 
outline of the following 
scheme is the same in all 
cases. 
 
This instrument-fixed 
reference system is normally 
used by the diffractometer as 
a basis for describing the 
geometry and orientation of 
the reciprocal lattice. But it 
can also be used to describe 
the direct lattice and atomic 
coordinates. The well known 
device that relates the crystal 
to this reference frame is the 
orientation matrix, [UB], 
whose columns are the 

orthonormal coordinates of the reciprocal lattice basis vectors a*, b* and c* in this reference 
frame, when all of the angles of the goniometer are set at their respective zero values. It is 
necessary to specify that these are the coordinates at specific values of the goniometer angles, 
because the reciprocal lattice rotates with the crystal, while [UB] does not change with rotation 
but rather describes a fixed orientation. The exceptional utility of this matrix derives from the 
fact that it converts reciprocal lattice coordinates hkℓ into the orthonormal coordinates of the 
corresponding reciprocal lattice vector d*(hkℓ), Equation 5.  
 
 
 
 
.  

(5) 
 
 
 
 
 
 
Thus, instrument space, consisting of goniometer rotations, detector position, spot position on the 
detector and associated information, can be transformed readily to an orthonormal coordinate 
system, facilitating no end of manipulations for experiment design and interpretation. 
 

Figure 7. Example of single-crystal diffractometer geometry and 
orthonormal reference frame, from Reference [11]. 
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For present purposes, we are more interested in the direct crystal lattice, whose analogous "real 
axis matrix" can easily be calculated beginning with the orientation matrix. In practice we begin 
with the orientation matrix, because that is readily available in diffractometer output. The 
columns of [UB] are Cartesian vectors and can be used directly in evaluating the kinds of 
expressions found in text books for direct and reciprocal cells (Equations 6,7). 
 
 

(6) 
 
 
 
 

(7) 
 
 
The direct cell vectors and scalars are readily available through such expressions. Of particular 
interest is the real axis matrix, the analogue of [UB] in direct space, which relates coordinates in 
crystal space to the laboratory orthonormal reference frame, for the crystal orientation when all 
of the goniometer angles are set to zero (Equation 8). In the equation, lowercase (xyz) are 
fractional crystallographic coordinates, and uppercase (XYZ) are coordinates in the instrument-
fixed orthonormal reference frame. 
 
If a crystal has undergone a non-destructive transformation, so that [UB] can be determined 
before and after the change, and assuming that structural models can be extracted from 
diffraction data measured before and after as well, the atomic coordinates from both analyses can 
be transformed to the same orthonormal reference frame, that of the diffractometer, for 
comparison purposes. 
 
 
 
 
 

(8) 
 
 
 
  
 
 
COMPARISON OF CRYSTAL STRUCTURES BEFORE AND AFTER A SINGLE-
CRYSTAL-TO-SINGLE-CRYSTAL TRANSFORMATION 
We shall use an older example to illustrate the use of orthogonal coordinates derived from the 
real axis matrix in the comparison of the "before" and "after" structures of a crystal that 
undergoes a solid-state chemical reaction accompanied by a change of unit cell. In [5] we 
reported on the single-crystal to single-crystal transformation of a one-dimensional polymer of 
cobalt citrate cubanes, which can be provoked to undergo a cross-linking reaction in the solid to 
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produce a two-dimensional polymer whose single crystal structure can be analyzed by 
diffraction.  Figure 8 shows the structures of {Cs2[Co7(citr)4(H2O)13.5]·7.5H2O}n 1, 
 (C24H58Co7Cs2O49)n and {[Co(H2O)6]{Cs2[Co6.5(citr)4(H2O)9]}2·3H2O}n 2, (C48H86Co14Cs4O83)n. 
Compund 1 has a zig-zag chain of cobalt citrate cubanes, doubly bridged in one direction and 
singly bridged in another to form a serrate structure. The gaps between adjacent chains in Figure 
8 (top) are occupied by unligated water molecules. With mild heating in a stream of dry nitrogen, 
a single crystal of 1 becomes a single crystal of 2. In this process, pendant Co(II) centers of 1 

(Co7 and congeners) 
are ligated by citrate 
carboxylate oxygen 
atoms of the 
neighboring chain to 
give the 2-D polymer 
2. Another of the 
pendant Co centers of 
1, Co8, comes loose 
from its citrate ligand 
and takes on one more 
aqua ligand to become 
a [Co(H2O)]6

(2+) 
cationic complex. This 
transformation can in 
principle be made to 
take place in one 
crystal, without 
removing the crystal 
from the diffractome-
ter. The 2-D polymer 
shown in Figure 8 
(bottom) has two 
double-bridge sys-
tems in one direction 
and the original 
single bridge in the 
second dimension. 
 
While the same 
crystalline sample 
was used for both of 
these structures, and 
the transformation 
was conducted on the 
diffractometer, in the 
actual event the 
crystal had been 
removed from the 

Figure 8. 
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diffractometer (but kept on its pin) between the time of data collection for the first structure and 
the phase transition and second structure. If we use the orientation matrices [UB] for 1 and 2, as 
determined by the diffractometer, to prepare orthogonal coordinates for use in a drawing with the 
two structures superposed in their orientations on the instrument, the result reflects the fact that 
the orientation of the crystal has changed (Figure 9, where gray represents the 1-D mother phase 
and red the 2-D, crosslinked daughter phase).  
 

Figure 9. 
 
With a simple assumption, the [UB] matrices can also be used to obtain a reasonable estimate of 
the relationship between the orientations of the sample before and after it was removed from the 
diffractometer. Since the crystal remained on its pin during the brief time that it was taken off the 
instrument, we can assume that the change of orientation when it was returned to the 
diffractometer consisted entirely of rotation about the laboratory z-axis. It is then easy to use the 
two orientation matrices to estimate the rotation angle. In this case, although there is a change in 
the crystal c-axis upon transformation, we were able to estimate with confidence, using a local 
computer program, that the change in orientation consisted of a 39.6º counterclockwise rotation 
of the pin on the goniometer head.  On the basis of this estimation, a superposition of drawings 
of the two structures, Figure 10, is much closer to the picture expected for a topotactic reaction. 
In Figure 10 gray represents the original phase, the 1-D polymer; and red is the structure after the 
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crosslinking reaction. The contraction of the distance between the original chains is clear in both 
in-plane and longitudinal views. 
 
 

Figure 10. The mother (gray) and daughter (red) phases in the transformation of the 1-D polymer 
of Co citrate cubanes, Cs2[Co7(citr)4(H2O)13.5]·7.5H2O}n 1, to a 2-D crosslinked derivative, {[Co-
(H2O)6]{Cs2[Co6.5(citr)4(H2O)9]}2·3H2O}n 2. The orientations of the two compounds were 
derived exclusively on the basis of their orientation matrices on the diffractometer.    
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The important feature of the superposed pictures in Figure 10 is that the orientations of mother 
and daughter phases have been derived exclusively from their orientations on the diffractometer.  
No coordinate fitting has been done.  This method of comparing the before- and after- pictures of 
a crystal that has undergone a single-crystal to single-crystal transformation, which was 
suggested by Bruce Foxman, gives a clean experimental view of the relationship between the 
two phases. 
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