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ABSTRACT

Fruit quality is the main criterion used for selection of new varieties in
peach, and it is usually defined by the conjunction of organoleptic and nutritional
traits and postharvest behavior. The aim of this study was the identification of
guantitative trait loci (QTL) for several fruit quality traits using an F1 segregating
population of 75 seedlings derived from the cross between ‘Venus’ and ‘Big Top’
nectarine cultivars. The progeny was evaluated over several years for agronomic and
pomological characteristics (including basic quality traits and antioxidant compounds
content) and also genotyped using SNPs included in the ‘IPSC 9K peach SNP array v1’
developed by the International Peach SNP Consortium, which carries 8,144 SNPs. Two
preliminary dense genetic linkage maps were constructed for ‘Venus’ and ‘Big Top’,
with 160 and 208 markers placed onto 11 linkage groups, respectively. A second round
was used to identify QTLs that were mapped over twelve LG representing seven peach
chromosomes. Some of the QTLs mapped in the same position of previously reported
QTLs, interestingly QTLs for fructose in LG 6 and phenolic compounds in LG2 were
detected for the first time. LG4 in ‘Venus’ and LG5 in ‘Big Top’ maps presented the
highest density of QTLs controlling several traits. This work represents the first study
identifying QTLs for fruit quality traits using the high-density SNP array ‘IPSC 9K
peach SNP array v1’ in an F1 nectarine family.

INTRODUCTION

The peach [Prunus persica (L.) Batsch] is one of the most important economically
fruit crop in the world after apples and pears (FAO, 2012). In 2010, Spain was the third main
producer country in the world after China and Italy, with around 1.4 million tons in 73,000 ha.

The external quality of fruits is determined by shape, colour and size, while the
internal quality is determined by the texture, sugars, organic acids and antioxidant compounds
contents, which contribute significantly to the taste and aroma of the fruit (Hudina et al.,
2012). The last decade has seen the proliferation of an enormous number of scientific studies
focused on the activity of antioxidant compounds present in our diet because they contribute
to prevent the occurrence of degenerative diseases (Russo et al., 2012). Biochemical and
genetic studies on the mechanisms of action of phytochemicals provide a functional
explanation of how and why a diet rich in fruits and vegetables is considered healthy (Russo
et al., 2012). It is now believed that polyphenols may exert their beneficial action through the
modulation of gene expression and the activity of a wide range of enzymes and cell receptors
(Chagne et al., 2012, and references therein). However, the health effects of dietary
antioxidant compounds depend on the total amount consumed and on their bioavailability. In
addition, the content in antioxidant compounds can vary according to the location within the
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fruit (skin vs flesh), the stage of fruit maturity and even the location of the fruit within the tree
(Chagné et al., 2012).

Most of traits related to fruit quality are quantitatively inherited and their genetic
control are still unknown (Eduardo et al., 2011). Dissection of the genetic components
underlying complex agricultural traits in plants has so far used mainly experimental bi-
parental crosses and a limited number of genetic markers (Verde et al., 2012). Over the last
two decades, availability of genetic knowledge of peach as the model for Prunus and the
Rosaceae has accelerated with the development of molecular markers, linkage and physical
maps, comparative genomics studies, databases, and the very recent release of the full genome
sequence of a dihaploid peach genotype (Arus et al.,, 2012). Also the development of
Illumina’s Infinium BeadArray Technology platform, an extremely high-throughput single
nucleotide polymorphism (SNPs) genotyping system, allows the detection of up to 2.5 million
SNPs per single DNA sample (Verde et al., 2012). In this context, the IPSC have developed,
characterized and validated the first version of an array in peach which carries 8,144 SNPs.

In peach, several Mendelian characters involved in fruit quality have been already
studied and mapped (see Arus et al., 2012, for a recent review), such as peach/nectarine,
polycarpel and flesh color (Bliss et al., 2002), melting/non melting flesh (Warburton et al.,
1996), and freestone/clingstone (Dettori et al., 2001). Moreover, several authors (Dirlewanger
et al., 1998; Etienne et al., 2002; Quilot et al., 2004; Cantin et al., 2010) have localized QTLs
involved in the control of physico-chemical components of different fruit quality traits, such
as sugars and organic acid contents on linkage groups 4, 5 and 6. Regarding antioxidant
compounds, Dirlewanger et al. (2006) analyzed the genetic control of fruit phenolics in the
peach F2 population (‘Ferjalou-Jalousia’® x ‘Fantasia’) and detected QTLs involved in
phenolic compounds on LGs 1, 2, 4 and 6.

The aim of the present research was to analyze the genetic control of the main
organoleptic fruit quality traits evaluated for four years in an F1 population derived from the
cross of “Venus’ x “Big Top’ nectarines. In this paper we presented preliminary results for the
first identification of genomic regions that regulate the main fruit quality traits using the IPSC
9K peach SNP array. These results will contribute to define the peach antioxidant compounds
map that can be useful for breeding and Marker Assisted Selection (MAS) purposes.

MATERIALS AND METHODS

Plant material and quality traits evaluated

The progeny assayed was a segregant F1 population of 75 seedlings obtained from a
controlled cross, between Prunus persica cvs. ‘“Venus’ (female parent) and ‘Big Top’ (male
parent). “Venus’ is a freestone, melting and yellow flesh nectarine cultivar, whereas ‘Big Top’
is a clingstone, melting and yellow flesh nectarine cultivar. The segregant population is
entirely melting flesh, either cling- or freestone. The resulting seedlings were budded on the
same rootstock (GF 677) and established (one tree per genotype) at the Experimental Station
of Aula Dei-CSIC (northern Spain, Zaragoza) in 2002. Trees were grown under standard
conditions of irrigation, fertilization and pest and disease control. Fruits were harvested over
four years at commercial maturity (2007-2010).

During four years, agronomic and biochemical fruit quality traits were measured
individually in each seedling tree. Annual yield, fruit weight, flesh firmness, soluble solids
content (SSC), titratable acidity, pH, vitamin C, total phenolics, flavonoids, anthocyanins,
relative antioxidant capacity (RAC) and sugars were evaluated in each independent seedling
as reported by Abidi et al. (2011).



Phytochemical extraction and analysis

For the biochemical analyses, samples of 5 grams of fruit flesh were used, as flesh is
usually consumed in peaches. All samples were frozen in liquid nitrogen and kept at -20°C
until analysis. For vitamin C analysis, samples were kept in 5 mL of 5 % metaphosphoric acid
for preservation of ascorbic acid, frozen in liquid nitrogen and stored at -20 °C until analyses.
Then, samples were homogenized, centrifuged and supernatant was recovered as described by
Cantin et al. (2009b) and Abidi et al. (2011). Vitamin C, total phenolics, flavonoids,
anthocyanins and RAC were evaluated with colorimetric methods and measured using a
spectrophotometer (Beckman Coulter DU 800) as described by Abidi et al. (2011). For sugar
profile, the sugar composition and quantification were analyzed by HPLC as described by
Cantin et al. (2009a) with some modifications described in Abidi et al. (2011).

Genotyping, Map construction and QTL analysis

For genotyping, DNA was extracted from young leaves of “Venus’, ‘Big Top’ and all
the progeny (75 genotypes) by using the DNeasy Plant Mini Kit (QIAGEN Inc., Valencia,
CA), following manufacturer’s instructions. For SNPs marker analysis, concentration and
quality of DNA was checked using PicoGreen. Samples were genotyped using the
RosBREED_ Peach 10k 11494376 A chip from Illumina which includes more than 8,144
SNPs peach markers (Verde et al., 2012) following the single base extension assay (Steemers,
et al., 2006) and manufacturer conditions included in the Illumina® Infinium® HD Assay
Ultra protocol.

Individuals that showed the same genotype as the female parent “Venus’ in all the
markers were identified as self-pollinated seedlings. All polymorphic, non-skewed and non-
repetitive markers were selected. For map construction, pseudo-testcross strategy was used
(Grattapaglia and Sederoff, 1994) using JoinMap® 4.0 software (Van Ooijen, 2006). To
facilitate the mapping process all SNP markers were codified adding the scaffold numbers as
a prefix ahead the name of each marker. For practical reasons this codification were
maintained in the results and discussion section. Two mapping rounds were performed. In the
first round, the preliminary number of groups (linkage groups) was established using the
recombination fraction criterion. The value where most of the nodes had markers with one or
the minimum number of different prefixes was used. The preliminary order for markers was
established using the Regression Mapping option and map distances in centimorgans (cM)
were calculated in all linkage groups using the Haldane’s mapping function. The order was
compared to its known physical position inside the scaffold, in this moment; all the markers
initially excluded because of their identical segregation pattern were considered. At this point,
only markers following a correlative physical order attending the scaffold number and
position in Mbp were selected. A second mapping round was done to map the QTLs. In this
round, the order of each linkage group and map distances in centimorgans (cM) were
established following manufacturer’s instructions. QTL analysis was performed with R/qtl
software using multiple-QTL-Model (MQM) in the R platform (Broman et al., 2003).

RESULTS AND DISCUSSION

Phenotyping and marker selection

The results for agronomical and fruit quality traits evaluated in the 2007-2010 year
period were summarized in Table 1 (Zeballos, 2012). The mean values were obtained from 69
seedlings. A wide phenotypic variation was found for most of the traits studied in this
progeny. These variations supported the quantitative nature of these traits.

Out of the 8,144 SNPs markers, 64% were non polymorphic, 22% showed the same
segregation pattern and 4% presented a distorted segregation. A total of 675 SNPs were



informative with Gentrain Scores ranging from 0.35 to 0.92 and 405 markers were used for
both maps.

Genetic linkage maps of ‘Venus’ and ‘Big Top’ and QTL analyses

In the first mapping round 160 SNP markers were mapped onto 11 linkage groups in
the “Venus’ parent (Fig. 1). Nine groups included markers with the same prefix but two LGs
included markers with more than one prefix. Nine scaffolds were represented in the map (1, 2,
3,4,5,6,7,8and 17). The length of the LGs ranged from less than 5 ¢cM to around 60 cM. In
nine groups out of 11, all markers shared the same prefix inside each linkage group (Fig. 1).
Linkage groups 3 and 4 included markers with more than one prefix, LG3 had two over
twenty (2/20) and LG4 eight over eighteen (8/18) markers.

For the “‘Big Top’ parent we followed the same strategy as in the “Venus’ map. In the
first mapping round, 208 SNP markers were grouped on 11 linkage groups (Zeballos, 2012).
Five linkage groups (LG4, LG6, LG7, LG10 and LG11) showed markers with the same prefix
(Fig. 2). Three linkage groups (LG2, LG8 and LG9) included only one marker with different
prefix (1/37, 1/13 and 1/9), LG3 and LG5 had two markers with different prefixes (2/35 and
2/18) and LG1 included 8 markers with different prefixes (8/39).(Fig. 2). Ten scaffolds were
represented in this map (1, 2, 3, 4, 5, 6, 7, 8, 10 and 13).

The second mapping round included 102 SNPs and 5 SSRs (data not shown) in the
‘Venus’ parent, and 123 markers on the ‘Big Top’ parent, on nine and ten LGs respectively.
The second round was used to identify QTLs that were mapped over twelve LG representing
seven peach chromosomes (data not shown). Some of the QTLs were mapped in the same
position of previously reported for antioxidant compounds and soluble solids content found in
the same population (Cantin et al., 2010) and other unrelated peach progeny populations
(Quilot et al., 2004; Dirlewanger et al., 2006; Arus et al., 2012). QTLs for fructose in LG 6
and phenolic compounds in LG2 were detected for the first time. LG4 in *Venus’ and LG5 in
‘Big Top’ maps presented the highest density of QTLs controlling several traits.

CONCLUSIONS

This study represents the first study identifying QTLs for fruit quality traits using the
high-density SNP array ‘IPSC 9K peach SNP array v1’ in an F1 nectarine family. These
results will contribute to a better understanding of the genetic control of the most important
nutritional quality traits of peach and nectarine fruit.
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Tables

Table 1. Units, minimum, maximum and mean values for the pomological traits evaluated
in the “Venus’ x ‘Big Top’ progeny. Data are mean + SE (n=69 genotypes).

Trait Units Minimum Maximum  Mean SE
Production/yield Kg . tree™ 0.83 19.70 709 £0.29
Fruit weight Grams (Q) 69.44 375.87 18522 +£3.30
Flesh firmness Newton (kg.cm™) 6.23 60.76 40.78 +0.68
Soluble Solids Content  °Brix 9.20 2020 1336 +0.13
pH pH units 3.00 4.40 3.68 £0.02
Titratable acidity (TA) g malic acid . (100 g FW)™ 0.25 1.86 0.68 +0.02
Ripening index (RI) SSCITA 7.55 66.98 25.60 +0.84
Total sugars g. (kg Fw)?! 45.34 20518 89.10 +1.52
Sucrose g. (kg FW)* 23.16 125.33 5850 +1.04
Glucose g. (kg FW)* 6.59 4091 12.09 £0.29
Sorbitol g. (kg FW)* 0.99 28.28 6.39 £0.31
Fructose g. (kg FW)*! 7.43 2775 1232 +0.21
Vitamin C (mg AsA) . (100 g FW) ™ 1.17 1211 411 +0.13
Total phenolics (mg GAE) . (100 g FW)™ 12.10 58.85 3225 +£0.90
Flavonoids (mg CE) . (100 g FW)* 1.58 60.13 12.64 +0.61
Anthocyanins (mg C3GE). (kg FW)™* 0.32 25.72 316 *0.22
RAC (ug TE) . (g FW)* 125.30 1099.60 4514 +11.76

AsA: ascorbic acid, FW: fresh weight, GAE: gallic acid equivalents, CE: catechin equivalents, C3GE: cyanidin-3-glucoside
equivalents, TE: trolox equivalents, RAC: Relative Antioxidant Capacity
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Fig. 1. Preliminary “Venus’ genetic linkage map showing the position of
SNP markers (right side) and genetic distances in cM (left side).
Eleven linkage groups have included nine scaffolds. Markers that do
not share the same prefix inside a LG are in bold and underlined.
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Fig. 2. Preliminary ‘Big Top’ genetic linkage map showing the position of SNP markers (right
side) and genetic distances in cM (left side). Eleven linkage groups have included ten
scaffolds. Markers that do not share the same prefix inside a LG are in bold and
underlined.



