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ABSTRACT

The fluctuation–dissipation theorem (FDT) provides a means of calculating the response of a dynamical

system to a small force by constructing a linear operator that depends only on data from the internal vari-

ability of the unperturbed system. Here the FDT is used to estimate the response of a two-layer quasigeo-

strophic model to two zonally symmetric torques, both barotropic, with the same sign of the forcing in the two

layers, and baroclinic, with opposite sign forcing in the two layers. The supercriticality of the model is also

varied to test how the FDT fares, as this parameter is varied. To perform the FDT calculations the data are

decomposed onto empirical orthogonal functions (EOFs) and only those EOFs that are well resolved are

retained in the FDT calculations. In the barotropic case good qualitative estimates are obtained for all values

of the supercriticality, though the FDT consistently overestimates the response, perhaps because of significant

non-Gaussian behavior present in the model. Nevertheless, this adds to the evidence that the annular-mode

time scale plays an important role in determining the response of the midlatitudes to small perturbations. The

baroclinic case is more challenging for the FDT. However, by constructing different bases with which to

calculate the EOFs, it is shown that the issue in this case is that the baroclinic variability is poorly sampled, not

that the FDT fails. The strategies developed in order to generate these estimates may be applicable to situ-

ations in which the FDT is applied to larger systems.

1. Introduction

There is interest in using the fluctuation–dissipation

theorem (FDT) to calculate linear response operators

for climate models or, more ambitiously, for the climate

system itself. Heuristically, the FDT says that the fluc-

tuations of a system in equilibrium can be used to predict

how that system will respond to a small perturbation.

Perturb a system of the form

dx0
dt

5M(x0, t) (1)

by a small force

dxf
dt

5M(xf , t)1Df (2)

(we restrict all of our considerations to the case of a time-

independent force). Here x0 is the mean state vector of

the undisturbed system and xf is the mean state vector of

the forced system. The FDT says that the fluctuations

of the unperturbed system can be used to calculate a

linear response operator, L, with which one can directly

compute the response of the time-averaged solution

hxf 2 x0i5 dx5LDf . (3)

Much effort has been devoted to understanding the in-

ternal variability, or ‘‘fluctuations,’’ in observations and
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in models, so it is intriguing to be able to use this

framework to predict how these systems respond to

perturbations.

It is perhaps unsurprising then that the FDT has a

relatively long history in the climate science literature,

beginning with the seminal work of Leith (1975), fol-

lowed among others by Bell (1980), Majda et al. (2005),

Gritsun and Branstator (2007), Ring and Plumb (2008),

and Majda et al. (2010). Recently, the assumptions un-

derlying the FDT and its applicability for the climate

system have been addressed (Majda et al. 2005; Gritsun

and Branstator 2007) andwewill be focusing here on the

‘‘quasi Gaussian’’ formulation of the FDT:

L5

ð‘
0
C(t)C(0)21 dt , (4)

where C represents covariance matrices and t represents

time lags. While nonparametric versions that do not as-

sumemultivariateGuassian statistics have been described

in the literature (Cooper and Haynes 2011), the practical

implementation of more general versions appears to

be very formidable. Other options, such as the blended-

response algorithmof (Abramov andMajda 2009) require

information about the underlying dynamical operator.

Our interest here is in the version that requires only the

covariance matrix in an equilibrium state, with no knowl-

edge required of the underlying dynamics that produce

these covariance statistics. We refer to this classical for-

mulation as simply the FDT in the following.

The accuracy of the FDT in climate problems of in-

terest remains unclear, however. Gritsun andBranstator

(2007) found good agreement between their FDT esti-

mates and the response of an atmosphere-only general

circulation model (GCM) to heating perturbations; we

view this as the most promising result to date. Ring and

Plumb (2008) were not able to obtain accurate estimates

for the response of a dry dynamical core to various

zonally symmetric torques and thermal forcings using a

principal oscillation pattern (POP) analysis, rather than

the full FDT. Whether the full FDT would work better

in this case is unclear. Previous work has also focused on

more idealized systems, such as the Lorenz-96 model

and variants of Burger’s equation (see, e.g., Majda et al.

2005), in order to develop the theoretical framework of

the FDT and to compare alternative formulations. We

believe that there is room for work on intermediate-

complexity systems with large numbers of degrees of

freedom, motivated by climate change issues, but in

which the covariance statistics aremore easily generated

than for primitive equation models on the sphere. These

intermediate systems can also allow for more careful

study of how best to choose a basis on which to project

the evolution of the model state and how best to trun-

cate this basis so that it is small enough to allow robust

estimation of the covariance matrix. The goal is to avoid

subjective choices that complicate the testing of the ro-

bustness and accuracy of the FDT.

With this motivation, in the following work we have

applied the FDT to a turbulent, baroclinically unstable

jet in a two-layer quasigeostrophic (QG) model. The

two-layer model is simple enough that we can relatively

quickly gather a large amount of data, ensuring robust

statistics, and conduct extensive sensitivity tests. At the

same time, its simplicity makes it a strict test of the FDT’s

value to see if it can provide estimates for the model’s

response to forcings that are qualitatively useful if not

fully quantitatively accurate.

Moreover, the two-layer model captures the essential

features of atmospheric circulation in themidlatitudes and

so is also of much scientific interest. A particular motiva-

tion for this work is the presence of annular-mode-like

variability in this model. Annular modes are the domi-

nant mode of variability in the zonal-mean winds in the

extratropics and a clear relationship has been seen in

idealized models between the decorrelation time of this

mode and the response of the midlatitude circulation to

forcing (Chan and Plumb 2009; Gerber et al. 2008; Butler

et al. 2010). This suggests that there is an FDT-like con-

nection between the autocorrelation of the annular modes

and the response of the midlatitude circulation to forc-

ing, though previous applications of the FDT have not

been quantitatively successful (Ring and Plumb 2008; F. C.

Cooper and P. H. Haynes 2013, personal communication).

If the FDT does hold, it would be concerning as many

GCMs have overly persistent annularmodes, potentially

leading to overestimates of the actual response of mid-

latitudes to small perturbations, with consequences for

the response of midlatitude circulation to the ozone hole

as one important example.

Finally, several papers have investigated the complex

structure of the autocorrelation of the annular modes

(Lorenz and Hartmann 2001; Gerber et al. 2008; Zurita-

Gotor et al. 2014; Zurita-Gotor 2014). In particular,

Zurita-Gotor et al. (2014) showed that this autocorre-

lation includes high- and low-frequency components

that reflect the effects of positive and negative eddy feed-

backs. This may explain the lack of quantitative agreement

in Ring and Plumb (2008), as simplified methods that

effectively assume the structure of the correlations are

unlikely to give accurate estimates and also justifies our

use of the full FDT, which integrates over different

time scales.

The rest of this report is structured as follows. Our

methodology is presented in the next section followed in

section 3 by an examination of how the model responds
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to small perturbations and how its behavior varies as the

supercriticality of the control climate’s jet is varied. The

results of the FDT calculations are then presented in

section 4 before we end with our conclusions.

2. Methodology

a. Model formulation

Anondimensional version of the dynamical equations

of our QG model is given by

›qk
›t

1 J(ck,qk)52
1

td
(21)k(c12c2 2cR)

2
1

tf
dk2=

2ck 2 n=4qk , (5)

where qk 5=2ck 1 (21)k(c1 2c2)1by is the potential

vorticity in the upper (k5 1) and lower (k5 2) layers, ck

represents the corresponding streamfunctions, td is a New-

tonian relaxation time scale, tf is a Rayleigh friction time

scale acting only in the lower layer (this is indicated by the

Kronecker d function), and n is a hyperdiffusion coefficient.

Themodel is set up as a zonally periodic channel with a

baroclinic zone in the center of the domain creating a

baroclinically unstable jet. This jet was obtained by set-

ting the radiative equilibrium temperature (c1 2 c2)

profile to a hyperbolic secant centered at y 5 0. In radi-

ative equilibrium (i.e., in the absence of eddy fluxes) the

lower-layer flow c2 is identically zero so that the zonal

flow in the upper layer U1(y)52›c1/›y52›cR/›y is

2
›cR

›y
5 sech2(y/s) . (6)

The values of the model parameters are non-

dimensionalized versions of those used by Zurita-Gotor

et al. (2014), with the velocity scale set by the strength of

the baroclinically unstable jet and the length scale set by

the radius of deformation.With these parameters the jet

width s is 3.5, b is 0.196, tf is ;15, td is ;100, and n is

0.01. We choose to follow Zurita-Gotor et al. (2014) in

the choice of parameters because they result in quali-

tatively realistic annular-mode variability. With this

nondimensionalization, Phillips’s stability criterion for

uniform vertical shear in the absence of dissipation is

b, 1. The number of model ‘‘days’’ (time units) making

up 1 Earth day is roughly 5. The code is spectral and so

sponges are required near the northern and southern

boundaries; these take the form of strong exponential

damping with the same half-width as the jet. The domain

is wide enough that the sponges do not affect the dy-

namics, as we have verified. The nondimensionalized

zonal and meridional widths are Lx 5 46 and Ly 5 68,

while 42 and 85 zonal and meridional Fourier modes are

retained, respectively, using a standard spectral trans-

form algorithm that computes the projection of non-

linear products onto the retained modes exactly.

Other than differences in the numerical algorithm,

the only difference with Zurita-Gotor et al. (2014) is the

form of the hyperdiffusion, but the magnitude of the

hyperdiffusion has a very small effect on the model cli-

mates. The time-averaged zonal-mean zonal winds and

the time-averaged zonal-mean eddy heat and momen-

tum fluxes (EHF and EMF, respectively) are shown

in Fig. 1.

This model is also similar to that used by DelSole

(1996) in a study using POP analysis. DelSole found that

the empirical operator obtained by the POP analysis

depends on time lag, inconsistent with the Markov

model approximation underlying that technique. The

FDT does not share this limitation.

b. Control simulations and perturbations

To estimate the covariance statistics the model was

integrated for 106 model days, with the first 103 model

days discarded to ensure that the model had equili-

brated. Data were recorded every four model days (i.e.,

every 0.8 Earth days). Tests indicated that higher-

frequency sampling produces no significant change in

the results. The resulting dataset was then divided into

an ensemble of 10 members, each representing ap-

proximately 105 model days of data, to estimate the

sampling error.

The most general zonally symmetric perturbation in

this model can be expressed as zonally symmetric source

terms in the upper- and lower-layer potential vorticity

equations. For a heating perturbationQ and upper- and

lower-layer torques (f1, f2), we have

FIG. 1. (left) Time-averaged zonal-mean zonal wind profiles for

both layers from a 105-day integration of the two-layer model using

the parameter settings of Zurita-Gotor et al. (2014) and (right) the

time-averaged zonal-mean EMF and EHF.
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›q1
›t

5 . . . 2
›f1
›y

1Q and (7)

›q2
›t

5 . . . 2
›f2
›y

2Q . (8)

Equivalently we can think of forcing the barotropic and

baroclinic components of the flow (the sum and difference

of the upper and lower layers). The response to heating is

equivalent to the response to a purely baroclinic zonal

force with f1 5 2f2, and we speak equivalently of the

baroclinic case as the response to heating Q or to a baro-

clinic zonal force. We consider pure barotropic and pure

baroclinic forcing. The FDT prediction for a more general

perturbation (momentum forcing in the upper layer only,

for example) can be obtained from the linear superposi-

tion of barotropic and baroclinic special cases.

We describe the baroclinic case first. Given the

knowledge that the dominant mode of variability in this

model is annular-mode-like (Zurita-Gotor et al. 2014;

see also Figs. 3 and 5 below), consisting of a meridional

shift in the winds and storm track, just as in the atmo-

sphere, we design the latitudinal structure of the forc-

ing to give the FDT the best chance to generate robust

responses. To do this, we choose Q proportional to the

derivative of the radiative equilibrium temperature

field. For small perturbations, this is equivalent to a

latitudinal shift in the baroclinic zone:

Q5Q0

›cR

›y
. (9)

As described below, when performing the FDT com-

putations we decompose the model output into empiri-

cal orthogonal functions (EOFs). To perform this

decomposition a basis with which to compute the co-

variance matrix and a corresponding norm are required.

Since the climate statistics of the control and perturbed

models are zonally symmetric only the EOFs of the

zonal-mean circulation are required by the FDT. Al-

though the numerical model is formulated using po-

tential vorticity as the prognostic variable, better results

are obtained when performing the FDT calculations

using the zonal-mean zonal wind to define the basis and

norm. Using the zonal-mean potential vorticity variance

as the norm when computing the EOFs results in EOFs

with more finescale structure than if the zonal-mean

zonal wind variance is used as the norm. This finescale

structuremagnifies errors in the FDT calculations and so

the results are cleaner when using the zonal-mean zonal

wind. To directly apply the FDT formalism in this basis

the potential vorticity forcings need to be converted into

zonal wind tendencies [ just as in Ring and Plumb

(2008)]. For our baroclinic forcing the result is

›uk
›t

[ (21)kF , (10)

where k indicates the model level and F(y) is obtained

by solving

�
›2

›y2
2 2

�
F5

›Q

›y
5Q0

›2cR

›y2
. (11)

This zonal wind tendency is shown in Fig. 2b. Physically,

it forces a southward shift of the baroclinic component

of the radiative equilibrium jet (see Fig. 2a) and the

response to this perturbation is shown in Fig. 2c.

The relationship betweenQ and the zonal tendency F

accounts for the effects of the mean meridional circu-

lation. In the barotropic case of equal zonal forces in the

two layers there is no induced meridional circulation

and the imposed potential vorticity tendency is pro-

portional to the derivative of the zonal force in both

layers; that is,

›uk
›t

5 fk , (12)

where fk is as in Eq. (8). We choose the profile of this

force to be similar to that obtained from Eq. (11) for the

baroclinic zonal wind tendency by simply setting f1 and

f2 to

f15 f25 f0
›2cR

›y2
. (13)

This zonal wind tendency represents a southward shift of

the barotropic component of the radiative equilibrium jet

and is shown in Fig. 2d. The response is shown in Fig. 2e;

note that the barotropic and baroclinic forcings produce

qualitatively similar equivalent barotropic responses.

The amplitude of the forcings must be small enough

that the responses are in the linear regime and large

enough that these linear responses can be isolated accu-

rately from the model’s variability. We have found that

f0 5 Q0 5 0.01 is safely in this range, verifying that the

changes in the responses are negligible when the forces

are increased or decreased by a factor of 2. Forces of this

strength shift the baroclinic zone by roughly 24% of the

half-width of the jet (s). Tests in which the domain size

was doubled but the resolution was kept constant in-

dicated no sensitivity of the responses to domain size.

After performing these calculations with the param-

eters of Zurita-Gotor et al. (2014), the simulations were

repeated while varying b in increments of 0.05 from the

original value of roughly 0.2 up to a value of 0.4 (when

b is decreased from 0.2, the width of the domain begins

to affect the model’s response). This induces substantial
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changes in the model behavior, which will be discussed

in section 3, and was done in order to test how the FDT

fared under different parameter settings. In every case

the forces were again halved and doubled to check that

the responses are linear functions of the perturbation

strength.

c. Regularization strategy

As has been discussed by, for example, Gritsun and

Branstator (2007), errors in the calculation of the linear

operator L are a function of the length of the available

data, n, and the ‘‘effective’’ number of degrees of free-

dom (Martynov and Nechepurenko 2004). The former

simply arises from the central limit theorem, which says

that the errors in the estimates of the linear operator L

will be proportional to 1/
ffiffiffi
n

p
(Gritsun and Branstator

2007). The second is a result of the C(0)21 term. For a

system with many degrees of freedom, C(0) is likely to

be an ill-conditioned matrix, resulting in large errors

when its inverse is estimated. However, only a subset of

the total degrees of freedom are relevant for the FDT

computation, while the other degrees of freedom simply

decay and so cause errors in the estimation of C(0). The

goal of regularization is to minimize the effects of the

latter degrees of freedom.

The most commonly used way of regularizing the C(0)

matrix in FDT studies is to truncate the number of included

degrees of freedom. This strategy involves a balance be-

tween including enough dimensionality to capture the

behavior of the data and not including unnecessary di-

mensionality. To do this we have followed previous works

by projecting the data onto the EOFs and then truncating

the number of EOFs included in the calculations.

The two-layer model with a climate that is symmetric

about the center of the channel has two types of zonal-

mean zonal wind EOFs: half are symmetric about the

center of the channel and the other half are antisym-

metric. The leading EOF has an antisymmetric annular-

mode-type structure, the next leading EOF has a pulsing

symmetric structure, and so on. Symmetric perturba-

tions and responses only project onto the symmetric

EOFs while antisymmetric perturbations and responses

only project onto the antisymmetric EOFs. Hence only

the antisymmetric EOFs have been used here as the

perturbations described above are both antisymmetric.

For some cases the higher rankingEOFswere not purely

symmetric or antisymmetric owing to sampling issues,

but they were still recognizably symmetric or antisym-

metric and so were binned accordingly. Tests indicated

that this separation did not affect the results.

In addition to this partition we initially considered

two ways of defining the EOFs: calculating them sep-

arately for each layer or for both layers simultaneously.

We term the former ‘‘uncoupled EOFs’’ and Fig. 3a

shows the leading EOF calculated for each layer sep-

arately. We term the latter ‘‘coupled EOFs’’ and

Fig. 3b shows the leading EOF calculated using both

layers simultaneously.

FIG. 2. (a) Profile of ›cR/›y, (b) the baroclinic perturbation to the zonal momentum equa-

tions applied to the two-layer model, and (c) the resulting model response (the zonal wind

tendency is inverted from the thermal forcing); (d) the barotropic perturbation (note: the

perturbations to the upper and lower layers plot on top of each other) and (e) the model

response. The vertical gray lines in (c) and (e) show the position of the maxDu metric.

AUGUST 2015 LUT SKO ET AL . 3165



The calculations below were carried out with both

kinds of antisymmetric EOF but the calculations using

the coupled EOFs were expected to have less error

than those carried out with the uncoupled EOFs as the

lag-0 covariancematrix of the coupled EOFs is likely to

be more well-conditioned than that for the uncoupled

EOFs, being diagonal by definition. A physical in-

terpretation for this is the strong coupling between

the upper and lower layers through the potential vor-

ticity; hence, treating the layer EOFs as independent

degrees of freedom produces a poorly conditioned co-

variance matrix. We do not show the results of calcula-

tions using uncoupled EOFs here, but this was indeed

the case.

Having defined the EOFs, the question raised in the

introduction of how many EOFs to retain remains. This

is a central concern whenever the FDT is applied to

large systems and is discussed in detail in section 4a.

d. Testing Gaussianity

The formulation of the FDT we have used assumes

that the system is Gaussian. This is unlikely to be the

case in practice, but to our knowledge the relationship

between non-Gaussian behavior and bias in FDT esti-

mates is still unclear. We have not attempted to explore

this question rigorously but to help address this issue we

have used Mardia’s test to calculate the multivariate

skewness g and kurtosis K, and so test for multivariate

Gaussianity. These are given by

g5
1

n2
�
n

i51
�
n

j51

[(xi 2 x)TC(0)21(xj 2 x)]3 and (14a)

K5
1

n
�
n

i51

[(xi 2 x)TC(0)21(xi 2 x)]2 , (14b)

where x is the state vector of length d and n is the

number of data points in each ensemble member (105)

(Wilks 2006). We have calculated g and K for each en-

semblemember separately and then averaged the results.

Overbars denote mean values. With these definitions two

test statistics can be defined, Tg and TK:

Tg 5
n

6
g and (15a)

TK 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

8d(d1 2)

r
[K2 d(d1 2)] . (15b)

For a multivariate normal system Tg will have a x2 dis-

tribution with [d(d 1 1)(d 1 2)]/6 degrees of freedom

while TK will have a normal distribution with mean zero

and standard deviation one (Wilks 2006). Hence, once

Tg and TK are estimated p values can be calculated to

test the assumption of Gaussianity: if the p value of each

of these is less than 0.05 the null hypothesis that the data

is normally distributed can be rejected at the 95% level.

e. Another computational note

Estimating
Ð T
0 C(t) dt is very time consuming: themost

obvious algorithms require O(d2nr) operations, where n

and d are as before and r is the number of data points

corresponding to a lag T. In an unpublished manuscript,

Cooper and Haynes have shown that this can be reduced

to an O(nd2) calculation by a suitable rearrangement of

the double summation over the r time lags and n data

points. As it has not previously been published the details

of this algorithm are given in the appendix.

3. Model results

a. Behavior of the model as b is increased

Varying b substantially affects the model’s behavior,

even before perturbations are applied. For instance, the

time-averaged behavior of the zonal jets changes no-

ticeably as b is increased. In the upper layer the jet, which

is similar to the radiative equilibrium jet when b 5 0.2,

becomes narrower and strengthens, while adding struc-

ture in the ‘‘wings’’ (see top panel of Fig. 4). In the lower

layer the jet becomes narrower but its strength does not

change significantly asb is increased (see bottompanel of

Fig. 4).

From an FDT perspective the variability of the model

is centrally important and this is also affected by in-

creasing b, with the flow becoming more persistent. This

can be seen in Fig. 5, which shows the autocorrelation of

the first principal component for the different cases.

Clearly, the annular mode becomes more persistent as

b is increased so that when b 5 0.4 the autocorrelation

oscillates significantly even at very long lags. This is

FIG. 3. (a) The leading uncoupled EOF in each layer when

b 5 0.2; (b) the leading coupled EOF (blue) and the sixth anti-

symmetric coupled EOF (red) for the same case. The lines to the

left correspond to the upper layer and the lines to the right corre-

spond to the lower layer.
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associated with the development of a low-frequency

peak in the eddy momentum forcing spectrum as b is

increased (not shown). Another noticeable feature,

which may be related, is that the transition between the

negative eddy feedback, which causes the autocorrela-

tion to decay rapidly, and the positive eddy feedback,

which causes the autocorrelation to decay less rapidly,

takes place sooner and becomes noticeably sharper as

b is increased [see inset of Fig. 5; also see Zurita-Gotor

et al. (2014) for a discussion of the positive and negative

eddy feedbacks].

In addition to becoming more persistent as b is in-

creased, the model also becomes less Gaussian. This can

be seen in the left panels of Fig. 6, which plot the

multivariate skewness and kurtosis test statistics for the

first six coupled antisymmetric EOFs for three values of

b (note: in this and in all subsequentfigures theplus orminus

one standard deviation envelope is calculated by dividing

the standard deviation of the ensemble estimates by
ffiffiffiffiffi
10

p
).

The skewness increases monotonically with b and,

while the kurtosis does not follow as clear a trend, the

b5 0.2 data are closest to the 95% confidence interval. In

all cases the data show significant departures from

Gaussianity. This is concerning for the FDT, which of

course assumes that the data are at least approximately

Gaussian and may be of relevance to the results below.

To test if the non-Gaussianity arises from the joint

probability distributions or if the univariate probability

distributions for the individual modes are non-Gaussian,

we have removed the coupling between modes by ran-

domly disordering each of the principal component time

series. This substantially reduces the departures from

Gaussianity (see right panels of Fig. 6), though the data

are still not quite Gaussian. There is also less dependence

on b. The interactions between modes thus explain much

of the departures from Gaussianity as well as the in-

creasingly non-Gaussian behavior as b is increased.

b. Model responses

The model responses to the two perturbations in the

initial setting with b 5 0.2 are shown in Figs. 2c,e. In

both cases the response is antisymmetric, has the same

sign in each layer, and is stronger in the upper layer than

in the lower layer. There is also a significant response in

the wings in each case, suggesting that the response

FIG. 4. Comparison of the time-averaged zonal-mean zonal

winds as b is varied from 0.2 to 0.4. (top) The upper layer and

(bottom) the lower layer.

FIG. 5. Autocorrelation of the first principal component as b is increased (5 model days ’ 1

Earth day).
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involves other aspects of the model besides the annular

modes (which have little structure in the wings in this

parameter setting). The gray lines in Figs. 2c,e mark the

maximum of the model responses; a criterion that we

have used to evaluate the performance of the FDT is the

estimate of the response at these locations, which we

term ‘‘maxDu.’’ This criterion is relevant if one is more

interested in capturing themagnitude of the responses in

the center of the domain than in the wings.

As b is increased, the responses become stronger and

narrower. Focusing on the barotropic perturbation, we

find a clear change in strength, shown by the black lines

in Figs. 7a,c, which plot maxDu in each layer versus

b (note the near linear relationship between the two

variables). More detail concerning the structure of the

responses is given by the black lines of Fig. 8, which show

that besides the change in strength, the response is

narrower in the center and stronger in the wings as b is

increased. The baroclinic responses will be discussed in

Fig. 16 and are similarly affected by increasing b.

These variations are partly the result of the changing

role of eddies in determining the model’s response. To

demonstrate this, we have repeated the experiments

with the nonlinear terms in the model removed, elimi-

nating the eddy fluxes so that the balance in the model

is between the forcing, the Newtonian relaxation, and

the friction. Figure 9 compares the resulting ‘‘no eddy’’

responses to the two perturbations with the full model re-

sponses in the b 5 0.2 and b 5 0.4 cases (the no-eddy

responses are independent of b). For the barotropic

perturbation the b5 0.2 case is actually quite similar to

the no-eddy response, with the eddies simply acting to

amplify and broaden the response in the center of the

domain slightly as well as to add structure in the wings.

This resemblance may be related to the similarity be-

tween the time-mean jet and the radiative equilibrium

profile in this setting. However, as b is increased the

response of the full model changes (red lines in Fig. 9)

while the no-eddy response is unaffected, showing that

eddies increasingly push the full model’s response away

from the no-eddy response. In the baroclinic case there

is no response in the lower layer when eddies are turned

off, so that no matter what value b takes, eddies play a

large role in determining the response of the model. The

FDT will have to capture this changing eddy behavior.

4. FDT calculations

a. Choosing how many EOFs to retain

Making an appropriate choice of howmany degrees of

freedom to retain is crucial for producing accurate FDT

estimates. Given that we have already generated the

model responses an obvious choice would be to keep

FIG. 6. (left) Ensemble-mean estimates of the multivariate (top) skewness Tg and (bottom)

kurtosis TK test statistics as a function of the number of included antisymmetric EOFs for

different values of b. The gray shaded regions show the 95% confidence intervals corre-

sponding to a 10-member-mean sample multivariate skewness and kurtosis, when the un-

derlying data are Gaussian and these statistics are distributed as explained in section 2d. The

colored shading shows plus or minus one standard deviation divided by
ffiffiffiffiffi
10

p
of the estimates.

(right) As in (left), but where the principal component time series are randomly disordered to

remove the coupling between EOFs.
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only those EOFs onto which these responses project;

however, we would like to know how many EOFs to

retain a priori, without resorting to running the model

first; this is part of the motivation for using the FDT in

the first place.

As can be seen from Fig. 10, the leading EOF explains

between 65% and 75%of the variance for every value of

b, quantifying the dominance of the annularmode in this

model and suggesting that the most obvious strategy

would be to retain only the leading EOF in each case.

This is also appealing owing to the hypothesized con-

nection between the response of the midlatitudes to

perturbations and the autocorrelation time scale of the

annular modes, and so this is the first strategy we have

adopted. However, given that the responses have sig-

nificant structure in the wings, it is likely that more

EOFs are required for accurate FDT calculations. There

are then two a priori criteria that could be used to decide

how many EOFs to retain: 1) determine how many

EOFs are well resolved and discard the rest or 2) retain

the minimum number of EOFs required to explain some

threshold of variance. Note that these are likely to be

related: EOFs that explain significant variance will be

excited more often and hence be better resolved. How-

ever, the choice of threshold is subjective and so we have

focused on the first criterion.

To determine how many EOFs were well resolved we

followed DelSole (1996) and calculated how many

EOFs were well separated by the North et al. (1982)

criterion. Here, well separated means that the separa-

tion between the eigenvalues corresponding to the

EOFs is greater than the sampling error in the eigen-

values themselves. More explicitly, we calculated the

value of Sn for each eigenvalue, ln:

Sn 5
2ln

ln212 ln11

. (16)

From Fig. 5 the decorrelation time is of order 1000

model days and each ensemble member contained 105

FIG. 7. (a) Variation of maxDu as b is increased (black circles) and the corresponding

ensemble-mean FDT estimates for the upper layer using the leading EOF (blue triangles) and

the first five antisymmetric EOFs (red diamonds). The shading is the plus orminus one standard

deviation envelope while the straight lines represent linear least squares fits to the data. (b) As

in (a), but for the RMS error instead of maxDu. (c),(d) As in (a),(b), but for the lower layer.
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model days so the relative error, «, was of order 10%.

We used this to define an antisymmetric, coupled EOF

as well separated when «Sn , 1 and the vertical black

lines in Fig. 10 mark for each value of b the first EOF

that was not well separated by this criterion. In every

case only the first five EOFs were well separated. The

horizontal black lines in Fig. 10 also show that the first

five EOFs explained roughly 95% of the variance in

every case. For comparison, previous FDT studies have

typically retained between 90% and 99%of the variance

(Gritsun and Branstator 2007; Ring and Plumb 2008;

Fuchs et al. 2015).

This is a plausible criteria, which can be used without

considering the model responses, but there is a problem

when applying this criterion to the case of a baroclinic

perturbation. Returning to Fig. 2, the baroclinic forcing

perturbation produces an equivalent barotropic re-

sponse. This response projects strongly onto the leading

EOF but the perturbation does not and instead projects

strongly onto the sixth EOF. Examining the structure of

the EOFs shows that for every value of b this corre-

sponds to an ‘‘equivalent’’ baroclinic EOF (layer values

have opposite sign but different magnitude; see red line

in Fig. 3b), in contrast to the first five EOFs, which are

equivalent barotropic. Hence, it is unsurprising that this

EOFwas poorly resolved (note that it is not as smooth and

antisymmetric as the leading EOF) and does not explain

much variance, as the equivalent baroclinic variability of

the two-layer model is overwhelmed by the equivalent

barotropic variability. In every case the sixth EOF also

decorrelates very quickly, typically in one or two model

days, further suggesting that it is not being resolved from

the noise and so will cause problems for the FDT.

Given the evident sampling error, we clearly would

not wish to include the sixth EOF in our calculations;

however, it appeared to be necessary for the baroclinic

case. As such, for the barotropic case we only retained

the first five EOFs while in the baroclinic case we per-

formed the calculations using both five and six EOFs.

b. Barotropic perturbation

1) ONE EOF

We begin the presentation of our results by discussing

how well the model responses to the barotropic pertur-

bation were estimated using the leading EOFs. As has

been mentioned, one of the motivations for this study

was the hypothesis that the autocorrelation time scale of

the annular modes controls the strength of the response

of themidlatitudes to small perturbations. In the context

of the FDT, this amounts to saying that the integral of

the annular-mode autocorrelation can give an accurate

estimate of the model’s response.

To test this, the blue lines in Fig. 8 compare the ensemble-

mean FDT estimates of the upper-layer responses using the

leading EOFs to the true responses for three different

values of b. In each case 2000 model time units, or 400

Earth days, were used as the upper-limit T. This upper

limit was chosen as the autocorrelation of the principal

components had approximately decayed to zero in all

cases at this lag (Fig. 5). The FDT overestimated the

model’s response and failed to capture the response in

the wings; however, the estimates were still reasonable,

particularly in the b 5 0.3 case, which had a very small

root-mean-square (RMS) error (see Figs. 7b,d). The

FDTwas also able to at least approximate the difference

in magnitudes between the responses of the two layers

(Fig. 7).

Although a single EOF cannot be expected to capture

the full structure of the response, an interesting question

is whether it can capture how the strength of the re-

sponse varies with b. To test this, we examined how the

estimates of maxDu varied as b was increased (Fig. 7).

As was mentioned previously, there is a near linear re-

lationship in both layers between maxDu and b, with a

least squares fit to the data giving a linear slope of 0.61 in

the upper layer and 0.25 in the lower layer. Repeating

FIG. 8. Comparison of upper-layer model responses to the baro-

tropic perturbation for three values of b (black lines) and ensemble-

mean FDT estimates using the leading coupled EOF (blue lines) in

each case. The shading is plus or minus one standard deviation.
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this calculation for the FDT estimates, slopes of 0.49 and

0.11 were obtained. These differ significantly from the

true slopes but, given that the slopes are of the right sign

and magnitude, the FDT using only the dominant EOF

can be said to capture the qualitative changes in the

linear response as supercriticality is varied.

To first order then, the FDT did a reasonable job of

estimating the model’s response with just the leading

EOFs. To ensure that these estimates were robust to the

choice of the upper limit of integration,Twas varied from

40 to 3000model days in each case. From Fig. 5 onewould

expect theb5 0.4 case to be themost sensitive toT and so

we show how the FDT estimate of maxDu in the upper

layer was affected by changing T in this setup in Fig. 11a

(the results in the lower layer and for other values of

b were similar). The estimate was relatively stable for T

greater than 1000 days, though there was some oscillatory

behavior owing to the structure at long lags. It is possible

that better estimates could have been obtained in each

case by choosingTmore carefully butwewere not seeking

to tune our calculations in this way and so felt comfortable

using an upper limit of 2000 model days. Note that this is

much longer than previous FDT studies, which have used

values ofT closer to 30 Earth days (150model days) and is

necessary because of the unrealistically long decorrelation

times in our model.

2) FIVE EOFS

The results of the previous section are promising;

however, based on section 4a, five EOFs were expected

to produce the best estimates. Hence, we repeated the

calculations of the previous section with the first five

EOFs, the results of which are shown for the upper layer

in Fig. 12. A significantly better fit was now obtained,

particularly in the wings, and though the FDT continued

FIG. 9. (a),(c) The model response to the barotropic perturbation without eddies (black) and

the model responses with eddies, and b5 0.2 (blue) and b5 0.4 (red). (b),(d) As in (a),(c), but

for the baroclinic perturbation.

FIG. 10. The cumulative variance explained by the antisymmetric

EOFs for three values of b. The horizontal black lines mark the

95% line while the vertical black lines denote the first EOF, which

was not well separated.
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to overestimate the magnitude of the response, this

overestimation was generally less than when only the

leading EOFs were included. Figures 7b,d quantify this

by comparing the RMS error of the estimates using the

leading EOF only and using the first five EOFs. In gen-

eral, using five EOFs produced lower RMS errors, except

for the b 5 0.3 and b 5 0.35 cases when the estimates

using five EOFs overestimated the magnitude of the re-

sponse more than the estimates using the leading EOF.

However, even in these cases using five EOFs resulted in

much better estimates of the wings of the responses. The

cause of the overestimation is unclear but is presumably

related to the non-Gaussian behavior mentioned in sec-

tion 3. For instance, the overestimation and the sampling

error generally increase with b (Fig. 12), similar to how

the data become less Gaussian.

As another way of presenting these results, in the left

panels of Fig. 13 the upper-layer no-eddy response has

been subtracted from every curve in Figs. 12a,c,e, leav-

ing the ‘‘eddy only’’ response (the lower-layer results

are similar). The ability of the FDT to capture the effects

of eddies on the response is clearly quite good as the

FDTwas able to produce accurate estimates for the shape

of the eddy-only response, though once again the response

in the center of the domainwas overestimated, particularly

for larger values of b. Similarly, the right panels show the

model response of the upper-layer potential vorticity flux

and the corresponding FDT estimates (the potential vor-

ticity flux response can be calculated directly from the

estimates of the zonal-mean zonal wind response). These

calculations show that the FDT is qualitatively capturing

how the eddy responses vary with b.

Our a priori calculations suggested that five EOFs

would be required to produce the best estimates but to

check this we varied the number of EOFs included in our

calculations from 1 to 15. When fewer than five EOFs

were used the results were not as accurate (sometimes the

FDT estimates even had the wrong sign), suggesting that

too-few degrees of freedomwere included, whereas when

six or more EOFs were included the results varied widely

because of the sampling error. In line with our expecta-

tions then, five EOFs consistently produced the best FDT

estimates in terms of the shapes and amplitudes of the

responses. However, using fiveEOFs did not improve the

estimate of the slope of maxDu versus b, giving slopes

of 0.87 and 0.36 for the upper and lower layers, re-

spectively (Fig. 7; note the larger sampling errors). These

results also point to the importance of only keeping the

FIG. 11. (a) FDT estimate of the value of maxDu in the upper

layer using the leading coupled EOF for the case b 5 0.4 as

a function of the upper-integration limit T. The blue dots show the

ensemble mean while the shading is plus or minus one standard

deviation. The horizontal dashed line shows the value of maxDu for
the model response. (b) As in (a), but using the first five antisym-

metric coupled EOFs in the FDT calculations and (c) for the

b 5 0.35 case also using five EOFs.

FIG. 12. As in Fig. 8, but the FDT estimates used the first five

antisymmetric coupled EOFs.

3172 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



well-resolved EOFs. Choosing to retain 90% of the

variance would have produced worse estimates and

similarly if 99% of the variance had been retained, yet a

priori there was no way of knowing that retaining 95%

would work better than either of these.

To obtain these estimates a value of 2000 model days

was again used forT in all cases except when bwas set to

0.35. In this case it was found that the estimates took

much longer to converge (see Fig. 11a) and so the FDT

estimate for b 5 0.35 case shown here was obtained

using 5000 model days for T; in the other cases we

continued using 2000 model days in order to limit the

sampling error. It is unclear why this case took so much

longer to converge as in the other cases the estimates

had essentially converged after roughly 1500model days

(e.g., Fig. 11b), though it is noticeable that the FDT

estimate for the b 5 0.35 case overshot significantly at

short lags.

c. Baroclinic perturbation

The discussion in section 4a showed that the FDT was

unlikely to produce a good estimate for the model’s re-

sponse to the baroclinic perturbation using this basis as

the perturbation does not project onto the well-resolved

EOFs. For instance, the left two panels of Fig. 14 show

that when five EOFs were used in the b 5 0.2 case the

FDT estimate substantially underestimated the response

and the estimate was also of the wrong sign. The right

panels then show that when six EOFs were used the FDT

estimate had approximately the right magnitude but

again had the wrong sign. The FDT performed just as

poorly for other values of b.

FIG. 13. (a),(c),(e) As in Fig. 12, but the no-eddy response has been subtracted from every

curve. (b),(d),(f) Themodel response of the upper-layer potential vorticity flux in black and the

corresponding FDT estimates in blue.
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To get around the problem of capturing the pertur-

bation while ensuring that the EOFs were well sampled,

we repeated these calculations using two alternative

bases. The first basis was constructed by separating the

data into their barotropic and baroclinic components

and then calculating a new set of EOFs. The barotropic

variability is less dominant than the equivalent baro-

tropic variability and so might not be as well sampled,

but conversely the purely baroclinic variability might be

easier to resolve than the equivalent baroclinic vari-

ability. Indeed, using the symmetry/asymmetry of the

EOFs as ameasure of the sampling errors, the baroclinic

EOFs were better sampled. Only the leading barotropic

and baroclinic EOFs were included in the FDT calcu-

lations (calculations in which more EOFs were included

produced worse estimates); however, this was enough to

ensure that both sets of perturbations and responses

projected strongly onto the EOFs.

In the barotropic case these new EOFs performed

worse than the coupled EOFs, as the resulting FDT es-

timates predicted that the model’s response would de-

crease in strength with b. Nevertheless, the estimates

were still reasonable in all cases apart from for b 5 0.4

(see Fig. 15). On the other hand, much better estimates

for the baroclinic perturbation were obtained (Fig. 16;

the agreement for the lower layer was similar) and the

FDT now correctly predicted that the response would

increase with b, though the slope was significantly over-

estimated: the response when b 5 0.2 was substantially

underestimated while the response when b 5 0.4 was

slightly overestimated. In all cases an upper limit of 2000

model dayswas again used and the estimateswere checked

to ensure that they were robust to the choice of T.

The FDT can thus produce reasonable estimates for

the baroclinic case following the procedure from before

but dividing up the data in such a way as to improve the

sampling.We interpret this as saying that the sampling is

the issue, not a more fundamental failure of the for-

malism due, in particular, to non-Gaussianity.

A second alternative basis was generated for each

perturbation by first subtracting the variability associ-

ated with the forcing vector from the data and calcu-

lating EOFs for the remaining variability. These EOFs

were then combined with the forcing vector to produce

the new basis. New bases thus had to be tailored to each

perturbation and could not be reused for other pertur-

bations to the forcing. Also, the different forcing vectors

were not independent of the EOFs and so the C(0)

matrices were no longer diagonal. On the other hand,

this choice of basis still does not assume anything about

the form of the response.

Once these baseswere generated only thewell-separated

EOFs were retained—in addition to the forcing vector—in

order to reduce the sampling errors (only the leading EOF

was well separated). This approach was very sensitive to

the length of the dataset, so using the whole time series

produced better, and more robust, estimates than taking

the average of the ensemblemembers. However, once the

estimates had converged they were quite accurate.

The barotropic estimates were very similar to those using

FIG. 14. Ensemble-mean FDT estimates for the model’s response to the baroclinic pertur-

bation in the case b 5 0.2. (a),(c) The results using the first five coupled antisymmetric EOFs

and (b),(d) the results using the first six coupled antisymmetric EOFs. The color scheme is as in

Fig. 8. (top) The upper layer and (bottom) the lower layer.
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the coupled EOFs, while the baroclinic estimates cap-

tured the leading order behavior for every case except

when b 5 0.2 (Fig. 17).

5. Conclusions

In this work, we have used the FDT to estimate the

response of a baroclinically unstable jet in a two-layer

QG model on a b plane in a periodic channel. The

control climate that is perturbed is symmetric about the

center of the channel. We consider two perturbations,

both of which produce zonal wind responses that are

antisymmetric about the center of the channel and are

therefore annular-mode-like, but differ in the vertical

structure of the forcing. For the barotropic perturbation

the FDT gives robust and quantitatively useful estimates

for a range of values of b using the first five antisymmetric,

coupled EOFs, though it consistently overestimates the

response, perhaps owing to significant departures from

Gaussianity in the data. This is exactly how many EOFs

are well separated according to the criterion of North et al.

(1982), though more rigorous testing would be required to

check that this is a general result.Reasonable estimates are

also obtained using just the leading EOF in each case and

the FDT was able to approximately predict how the

amplitude of the response increases with b. This adds to

the evidence that the annular-mode time scale plays an

important role in determining the response of the mid-

latitudes to small perturbations, though it should be

noted that our results are still more qualitatively accu-

rate than quantitative and it is not clear that inaccuracies

in Ring and Plumb (2008) are a result of their use of a

POP-based formalism.

Conversely, the baroclinic perturbation is more chal-

lenging for the FDT. The perturbation to the forcing

projects too weakly onto thewell-resolvedEOFs for these

to produce accurate estimates, but adding the poorly re-

solved EOFs that the forcing does project onto results in

large errors. This agrees with the findings of Gritsun and

Branstator (2007), who obtainedworse FDT estimates for

baroclinic forcings than for barotropic forcings. Our re-

sults suggest that the difficulty of predicting responses to

forcings of this kind might be due to the fact that atmo-

spheric variability is dominated by equivalent barotropic

structures. To get around this problem we have devised

two new strategies for performing the FDT calculations.

In the first, the data were divided into their barotropic and

baroclinic components and new EOFs were calculated.

This alternative basis better resolves the baroclinic

variability and so can handle the baroclinic perturba-

tion. The second method uses bases tailored to each

FIG. 15. Ensemble-mean FDT estimates for the upper-layer

model responses to the barotropic perturbation using the leading

barotropic and baroclinic EOFs for three values of b. The color

scheme is as in Fig. 8.

FIG. 16. As in Fig. 15, but for the baroclinic perturbation.
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forcing perturbation. This approach produced accurate

estimates for both barotropic and baroclinic forcing

perturbations but was more sensitive to the length of the

time series.

Taken as a whole, these results show the importance

of sampling when applying the FDT to climate systems.

On the one hand, adding poorly resolved EOFs reduces

the accuracy of FDT estimates, but the perturbation and

the response must both be captured by the well-resolved

EOFs in order to obtain accurate estimates. This is similar

to the findings of Fuchs et al. (2015), who obtained better

FDT estimates for the response of an intermediate-

complexity GCM to realistic heating perturbations than

to idealized ‘‘hot spot’’ perturbations.

The strategy of using the perturbation to the forcing as

the leading basis vectormight provide away around some

of these difficulties. This approach is different from that

used in previous studies in that it requires calculating a

new basis for each forcing perturbation but still does not

require knowledge of the model’s response. Hence, fu-

ture FDT studies might consider a hybrid strategy in

which a conventional basis is used for forcing perturba-

tions that project strongly onto the leading modes of

variability, while more specialized bases are used for

perturbations that are poorly captured by the conven-

tional EOFs. As a topical example, it may be possible to

use a carefully constructed basis to produce FDT esti-

mates for the response in more complex models of the

midlatitudes to high-latitude stratospheric cooling.

Finally, although our results have investigated the im-

portance of resolution, there are still several other out-

standing issues with using the FDT for climate purposes.

For instance, we have suggested that the overestimates of

the magnitude of the response are correlated with non-

Gaussian behavior in the model, but we have been unable

to show quantitatively how departures from Gaussianity

bias FDT estimates. Another question is how the impor-

tance of resolution varies as the size of the system in-

creases. The system considered here has relatively few

active degrees of freedom because of its zonal symmetry

and because of the symmetry of the control climate about

the center of the channel, and we work with five to six

EOFs. In contrast, in the study of Gritsun and Branstator

(2007) the linear operator involved 1800 three-dimensional

EOFs. For such a large system it is possible that even if a

few EOFs were poorly sampled, these would constitute a

much smaller fraction of the total number of included

degrees of freedom and so their inclusionwould not affect

the FDT estimates as significantly as including a single

additionalEOF can here. In any case, although progress is

still needed before the FDT is ready to quantitatively

address larger questions such as estimating climate re-

sponses fromobservations, wehave shownhere that it can

in some cases reproduce the response of a two-layer

model to small perturbations in forcing with considerable

accuracy. A linear, perturbative theory can thus be

substituted for the eddy flux theories otherwise needed to

predict these responses.
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APPENDIX

Cooper–Haynes Algorithm

To integrate the lag-covariance matrices we have

used an algorithm proposed by Cooper and Haynes

in an unpublished manuscript. First note that we are

integrating

FIG. 17. As in Fig. 16, but the first basis vector took the form of

the baroclinic perturbation. Only one EOF was retained in addi-

tion to this vector and these calculations used the whole time series

rather than an ensemble (hence there are no estimates of the

sampling error). The lower-layer results are similar.
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C(t) dt’

ðT
0
C(t) dt . (A1)

For a particular lag t the entry in C(t) for two elements,

a and b, of the model state vector X is

C(t)ab 5
1

n2 q2 1
�
n2q

p51

xpyq1p (A2)

where n is the total length of the time series, q is the

number of data points representing a lag t and

xa5Xa(t)2Xa ,

yb 5Xb(t)2Xb .

Now taking r to be the number of data points

representing a lag of T the trapezoid rule can be used to

write the integral as
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where Dt is the spacing in time of the data points. The

last term on the right-hand side can be approximated as

(for r � n)
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.

The sum inparentheses can thenbeupdated fromthep2 1th

operation using just one subtraction and one addition

operation. The algorithm thus takes of the order n op-

erations, so that the whole matrixC(t) can be integrated

using d2n operations, where d is the spatial dimension of

the dataset.
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