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Chromatin is pivotal for regulation of the DNA damage process
insofar as it influences access to DNA and serves as a DNA re-
pair docking site. Recent works identify histone chaperones as
key regulators of damaged chromatin’s transcriptional activity.
However, understanding how chaperones are modulated during
DNA damage response is still challenging. This study reveals that
the histone chaperone SET/TAF-Iβinteracts with cytochrome c fol-
lowing DNA damage. Specifically, cytochrome c is shown to be
translocated into cell nuclei upon induction of DNA damage with
camptothecin, but not upon stimulation of the death receptor
or stress-induced pathways. Cytochrome c was found to com-
petitively hinder binding of SET/TAF-Iβ to core histones, thereby
locking its histone binding domains and inhibiting its nucleosome
assembly activity. In addition, we have used Nuclear Magnetic
Resonance spectroscopy, calorimetry, mutagenesis and molecular
docking to provide an insight into the structural features of the
formation of the complexbetween cytochrome c and SET/TAF-Iβ.
Overall, these findings establish a framework for understanding
the molecular basis of cytochrome c-mediated blocking of SET/TAF-
Iβ, which subsequentlymay facilitate the development of new
drugs to silence the oncogenic effect of its histone chaperone
activity.
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Introduction
The oncoprotein SET/template-activating factor (TAF)-
Iβ (SET/TAF-Iβ) – also known as inhibitor-2 of protein
phosphatase-2A (I2PP2A) and inhibitor of histone
acetyltransferase (INHAT) – belongs to the nucleosome
assembly protein (NAP) family of histone chaperones. SET/TAF-
Iβ participates in numerous of cellular processes, including cell
cycle control (1), apoptosis (2), transcription regulation (3)
and chromatin remodelling (4). Many recent studies highlight
the chromatin-related properties of SET/TAF-Iβ. As a histone
chaperone, SET/TAF-Iβ associates to core histones to shield
their positive charge, preventing improper contact with DNA
and facilitating the correct deposition of free histones onto DNA
for nucleosome formation (5).

Recent work points to the crucial role of chromatin dynamics
in DNA damage response (6-8). In fact, histone chaperones
have emerged as key players in the transient disorganization
of chromatin required in the DNA repair process. Thus, the
histone chaperones aprataxin-PNK-like factor (APLF) (6), anti-
silencing function 1 (Asf1) (9), chromatin assembly factor 1
(CAF-1) (10), death domain-associated protein 6 (DAXX) (11),
facilitating chromatin transcription (FACT) (12), histone reg-
ulator A (HIRA) (13), nucleolin (14), p400 (15), nucleosome
assembly protein 1-like 1 (NAP1L1) and 1-like 4 (NAP1L4) (7)
are recruited to damaged chromatin, thereby promoting histone
dynamics in response to DNA damage. Recently, SET/TAF-1β
was found to modulate the DNA damage response by regulating
chromatin compaction (16).

Recently, we have identified SET/TAF-Iβ as a target protein
for cytochrome c (Cc) following the release of the latter from
mitochondria in human cells treated with apoptotic agents (17,
18). While it has been shown that the hemeprotein Cc serves as an
electron carrier between complexes III and IV in the mitochon-
drial respiratory chain, its role in nuclei has yet to be convincingly
elucidated. It has been proposed, however, that Cc accumulation
in the nucleus under apoptotic stimuli relates to nuclear pyknosis,
DNA fragmentation (19) and chromatin remodelling (20). Here,
we show that the SET/TAF-Iβ oncoprotein interacts with Cc
in the cell nucleus in response to treatment of the cell with
camptothecin (CPT), a well-known inducer of DNA damage and
apoptosis, but not to treatment with other apoptosis-inducing
chemical agents. We also demonstrate that Cc impairs the histone
chaperone activity of SET/TAF-Iβ through competitive binding,
thereby preventing the formation of core histone-SET/TAF-Iβ
complexes.

Results
Cc interacts with SET/TAF-Iβ in the nucleus in response to DNA
damage

DNA damage can be induced by ionizing radiation or topoi-
somerase inhibitors (e.g. CPT). Subcellular localization of Cc in
Heltog cells – a HeLa cell line constitutively expressing green
fluorescent protein (GFP)–tagged Cc – showed Cc-GFP predom-
inantly in mitochondria of untreated cells (Fig. 1A: left). Confocal
analysis of cells treated with 20 μM CPT for 4 h revealed a translo-

Significance

Histone chaperones are key regulators of transcriptional ac-
tivity in damaged chromatin regions in the DNA damage re-
sponse. Here we show that Cc targets the histone chaperone
SET/TAF-Iβ in the cell nucleus upon DNA damage, resulting
in the blocking of the SET/TAF-Iβ function. Cc is actually
translocated into the nuclei of cells treated with a specific
DNA damage inducer and not upon death-receptor pathway
or stress-induced stimuli. Cc locks the domains engaged in his-
tone binding of SET/TAF-Iβ, inhibiting its nucleosome assembly
activity. Structural characterization of the complex between Cc
and SET/TAF-Iβ provides a valuable template to design drugs
aimed at silencing the oncogenic effect of SET/TAF-Iβ.
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Fig. 1. CPT-induced nuclear translocation of Cc
and formation of the Cc:SET/TAF-Iβcomplex.(A) Sub-
cellular localization of Cc-GFP stably expressed (green;
upper panel) in Heltog cells upon treatment with
20 μM CPT for 4 h detected by confocal microscopy
(x60 oil objective). Nuclei were stained in blue with
Hoechst. Co-localization of green Cc-GFP fluorescence
and blue nuclear staining is shown in the merge im-
ages (lower panel). Scale bars are 25 μm.(B) Subcel-
lular fractioning showing Cc location upon treatment
with 20 μM CPT for 1 or 4 h. Non-treated and CPT-
treated Heltog cells were fractionated to yield cytoso-
lic, membrane/organelle (Memb./Org.) and nuclear
fractions. Purity of subcellular fractions was verified
by Western blot using anti-α-Tub (50 kDa), anti-Cox
IV (17 kDa) and anti-PARP (116 kDa) antibodies.(C)
IP of SET/TAF-Iβwith Cc after treating Heltog cells
with 20 μM CPT for 4 h. Western blot showed the
detection of SET/TAF-Iβas a ∼34 kDa band (lanes 1
and 4) in the nuclear fraction. Cc-IP of nuclear lysates
from non-treated (lane 2) and CPT-treated cells (lane
5), followed by probing with the SET/TAF-Iβantibody
(upper). Mouse IgG was used as control (lanes 3 and
6). Confirmation of immunoprecipitated Cc from nu-
clear lysates is also shown (lanes 4 and 5) under CPT
treatment (lower).(D) DNA-damage response upon
treatment of Heltog cell cultures with 100 ng/mL
TRAIL, 1 μM STP or 20 μM CPT for 0, 1, 2, 4 and 8 h.
Specific antibody against phosphorylated γ-H2AX was
used in Western blotting. α−Tub antibody was used as
loading control. (E) Subcellular fractioning showing Cc
location upon treatment with 100 ng/ml TRAIL for 2 h
or 1 μM STP for 4 h.

cation of Cc-GFP from mitochondria to the cytoplasm and the
nucleus. The nuclear localization of Cc-GFP has been confirmed
by colocalization with the Hoechst staining (Fig. 1A: right). In
addition, subcellular fractionation of Heltog cells treated with
20 μM CPT showed Cc accumulation in the cell nucleus after
4 h (Fig. 1B). In fact, Cc appeared in the nucleus after 1 h
treatment, as previously observed in HeLa cells treated with
either UV irradiation or CPT (20). Co-detection in the nuclear
cell fraction with nuclear-specific poly (ADP-ribose) polymerase
(PARP) confirmed the Cc translocation into the nucleus (Fig.
1B).

To further demonstrate the relationship between endogenous
SET/TAF-Iβ and Cc in response to DNA damage, in cell inter-
action between them was examined using immunoprecipitation
(IP). An antibody against Cc was used to extract associated
proteins in nuclear lysates of Heltog cells treated with 20 μM CPT
for 4 h. As shown in Fig. 1C, SET/TAF-Iβ co-immunoprecipitated
with Cc after CPT treatment (lane 5), while untreated cells
(control) did not show any band corresponding to SET/TAF-
Iβ (lane 2). To confirm the IP specificity, nuclear lysates from
untreated and CPT-treated cells were probed with the SET/TAF-
Iβ antibody (Fig. 1C: lanes 1 and 4, respectively), while the
negative controls (Fig. 1C: lanes 3 and 6) did not show any band
when mouse immunoglobulin G was used. Cc IP was confirmed

by immunoblotting the same membrane with the anti-Cc antibody
(Fig. 1C).

To examine whether the observed Cc:SET/TAF-Iβ interaction
is restricted to cells experiencing DNA damage, the effect of
tumour necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) and staurosporine (STP) – two well-known apoptosis-
inducing agents for which DNA damage is not an initiating event
– was studied. TRAIL is a member of the TNF superfamily
either by the extrinsic pathway or by the BH3 interacting-domain
death agonist (Bid)-mediated mitochondrial pathway (21). STP
is a broad-spectrum protein kinase inhibitor that promotes intra-
cellular stress-induced apoptosis (22). Apoptosis induction with
TRAIL or STP may result in DNA damage in later stages of
treatment. Therefore, cell cultures were first tested to determine
whether they exhibited DNA damage following TRAIL- or STP-
induced apoptosis. To this end, Heltog cell lysates were treated
with 100 ng/ml TRAIL or 1 μM STP for 1, 2, 4 and 8 h and
immunoblotted against Ser139-phosphorylated histone H2AX
(γ-H2AX). γ-H2AX is an extremely sensitive marker of DNA
damage as it accumulates rapidly in response to double-strand
breaks (DSBs). As shown, the DNA-damage-dependent accumu-
lation of γ-H2AX occurs after 4 h or 8 h of treatment with TRAIL
and STP, respectively (Fig. 1D). By contrast, CPT promotes
histone H2AX phosphorylation after 1 h. Since no significant
DNA damage was observed following exposure to TRAIL for 2
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Fig. 2. Competition between histones and Cc for binding to SET/TAF-
Iβ.(A) EMSA showing competitive interaction of SET/TAF-Iβwith calf thymus
histones in presence of Cc at increasing concentrations. (B) 1D 1H NMR
spectra monitoring Met-80 methyl signal of reduced Cc in presence of
SET/TAF-Iβand Xenopus laevis core histones. Details of superimposed 1D 1H
NMR spectra of 13 μM reduced Cc (either free [black] or bound to 3.5 μM
SET/TAF-Iβ[pink]) in presence of the Xenopus laevis core histones H2B, H3 or
H4 at increasing concentrations of 5 μg (cyan), 10 μg (orange), 20 μg (green),
30 μg (blue) and 40 μg (red). (C) Impairment of the histone chaperone activity
of SET/TAF-IβbyCc.2 μg SET/TAF-Iβwas combined with 200 ng relaxed plasmid
after being treated with Topo I and incubated with 2 μg HeLa core histones.
Nucleosome assembly activity was tested in absence (lane 3) and presence of
Cc at increasing concentrations (lanes 4-6). Relaxed and supercoiled forms
of circular plasmid DNA are indicated by ʹRʹ and ʹSʹ, respectively. Lane 2
corresponds to DNA plasmid relaxed after treatment with Topo I, whereas
lane 1 (control) shows supercoiled, untreated DNA plasmid.

h or STP for 4 h, these exposure times were selected to further
explore Cc localization. Consequently, following the exposure of
Heltog cell cultures to 100 ng/ml TRAIL for 2 h or 1 μM STP
for 4 h, subcellular fractionation was applied, indicating Cc as
having been translocated from mitochondria to cytosol, but not
to the nucleus (Fig. 1E). This corresponds to findings in previous
studies of Cc release from mitochondria in response to TRAIL
and STP (23, 24). Nevertheless, our study shows Cc as having
been unable to reach the cell nucleus following treatments with
TRAIL or STP (Fig. 1E). This contrasts with the presence of Cc in
the nucleus observed in response to CPT-induced DNA damage
(Fig. 1A and B). Altogether, these results indicate that a specific
DNA-damage stimulus (CPT) triggers nuclear translocation of
Cc, thereby permitting binding to its nuclear target SET/TAF-Iβ.

Cc binds to SET-TAF-Iβ and blocks histone binding
In order to explore the biological significance of the

Cc:SET/TAF-Iβ interaction in the cell nucleus in response to
a DNA-damage stimulus, we tested the ability of Cc to pre-
vent histone binding to SET/TAF-Iβ. Hence, an electrophoretic
mobility shift assay (EMSA) was performed to detect complex
formation between SET/TAF-Iβ and calf thymus histones and to
further study the effect of the addition of Cc. The mobility of
the histone mixture, as well as Cc and SET/TAF-Iβ, are shown
in Fig. 2A (lanes 1 to 3). Due to their opposite charges, Cc and
SET/TAF-Iβmigrated in reverse directions. The lower mobility of
SET/TAF-Iβ following histone addition (Fig. 2A: lane 4) indicates
the formation of chaperone-histone complexes. The addition of
Cc at increasing concentrations to the SET/TAF-Iβ and histone
mixture (Fig. 2A: lanes 5 to 14), made the chaperone mobility
match that observed for the Cc:SET/TAF-Iβ complex (lane 15),
revealing that Cc competes with histones for the SET/TAF-Iβ
binding site.

To confirm the EMSA results, Nuclear Magnetic Resonance
(NMR) measurements of reduced Cc were recorded in the pres-
ence of SET/TAF-Iβ and Xenopus laevis core histones H2B, H3
and H4. The use of isolated core histones allowed for a com-
parison of their respective binding affinities for the chaperone
in competition with Cc. However, binding to core histone H2A
could not be tested, as the recombinant expression of H2A was
not possible. Specifically, the Met80-εCH3 NMR signal of the
methionine axial ligand of Cc (Met80) was monitored. As shown,
this signal broadens beyond the detection limit upon the addition
of SET/TAF-Iβ (Fig. 2B). This is due to the long diffusional
correlation time of Cc bound to SET/TAF-Iβ, which results in
a fast signal relaxation. As expected for a binding competition,
titration of the Cc:SET/TAF-Iβ solution with increasing con-
centrations of H2B, H3 or H4 core histones led to dissociation
of Cc from SET/TAF-Iβ and the recovery of the Met80-εCH3
signal. Circular dichroism (CD) spectra of SET/TAF-Iβ and core
histones H2B, H3 and H4 corroborated the proper secondary
structure organization of the proteins (Fig. S1).

To compare the binding thermodynamics of the complexes
formed by SET/TAF-Iβ with Cc and core histones, Isothermal
Titration Calorimetry (ITC) experiments were performed. Mea-
surements revealed the interaction between Cc and SET/TAF-
Iβ being slightly exothermic and entropically driven (binding
enthalpy, △H, -0.9 kcal mol-1) with a dissociation constant (KD) of
3.1 μM and a Cc:SET/TAF-Iβ stoichiometry of 2:1 at 25 ºC (Table
1). Notably, the binding of Cc to SET/TAF-Iβ exhibited weak
positive cooperativity (Fig. S2), yielding a cooperativity constant
(k) of 3.8 and leading to a smaller KD value and a very positive
enthalpy of interaction for the second site (Table 1). In other
words, the binding of the first Cc molecule increases 3.8 times the
affinity for the binding of a second Cc molecule to SET/TAF-Iβ.
Cooperativity can be ascribed to direct ligand-ligand interactions
or to protein conformational changes. Therefore, it might be
plausible that, following the binding of the first Cc molecule,
SET/TAF-Iβ undergoes a conformational change that facilitates
the interaction with the second Cc molecule.

As before, ITC experiments were used to quantitatively assess
the binding of SET/TAF-Iβ to the core histones H2B, H3 and
H4 from Xenopus laevis. As shown, (Fig. S3, Table 1) H3 binds
SET/TAF-Iβ with a lower affinity (KD = 25 μM) than H2B (KD
= 2 μM) or H4 (KD = 6 μM). These values agree with those
previously reported for the interaction of SET/TAF-Iβ with H2B
(KD = 2.87 μM), but differ slightly for H3 (KD = 0.15 μM) (25).
In all cases, the stoichiometry of histone:SET/TAF-Iβ interactions
was 2:1 (Table 1).

The SET/TAF-Iβ histone binding domain is engaged during
binding to Cc

Considering that Cc binds to SET/TAF-Iβ and affects its in-
teraction with core histones, we aimed at determining whether Cc
recognizes the SET/TAF-Iβ histone-binding domain. SET/TAF-
Iβ forms a headphone-shaped homodimer, each monomer con-
sisting of an N-terminus, a backbone helix, an “earmuff” domain
and an acidic disordered stretch (5) (Fig. S4). The region of
SET/TAF-Iβ responsible for histone binding and chaperone activ-
ity comprises the lower area of the so-called “earmuff” domain (5).
In order to examine the SET/TAF-Iβ region involved in binding
to Cc, two different SET/TAF-Iβ deletion mutants were designed.
The first included the N-terminus along with the backbone helix
(hereafter referred to as SET/TAF-Iβ(1-80) [amino acids 1 to 80]),
whereas the second (hereafter referred to as SET/TAF-Iβ(81-277)
[amino acids 81 to 277]) encoded the “earmuff” domain and the
acidic stretch of the C-terminus. Worth particular mention is that
CD spectra of both mutants indicated a secondary structure simi-
lar to that of the wild-type protein (Fig. S1). ITC of Cc interactions
with SET/TAF-Iβ(1-80) and SET/TAF-Iβ(81-277) showed the binding
reaction in both cases (Fig. S5: upper). However, weak calorimet-
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Table 1. Thermodynamic values inferred from ITC measurements. Thermodynamic equilibrium parameters for the interaction of
wild-type and mutant SET/TAF-Iβ with Cc, H2B, H3 or H4 core histones. Equilibrium dissociation constant (KD), enthalpy (△H), entropy
(-T△S), Gibbs free energy (△G) and reaction stoichiometry (n) are shown. Protein-protein interaction affinity is defined by Gibbs energy
for binding: △G = -RT lnKA = RT lnKD. △G has two different contributions, △H and -T△S, according to equation △G = △H - T△S.
*Cooperativity parameters (Gibbs energy [△g], enthalpy [△h] entropy [-T△s] and cooperativity constant [k]) are indicated for cooperative
binding.

Protein complex △G (kcal mol-1) △H (kcal mol-1) -T△S (kcal mol-1) KD (μM) n

Cc:SET/TAF-Iβ -7.5 (△g -0.8)* -0.9 (△h 6.1)* -6.6 (-T△s -6.9)* 3.1 (k 3.8)* 2.0
H2B:SET/TAF-Iβ -7.8 -2.6 -5.2 2.0 2.1
H3:SET/TAF-Iβ -6.3 -3.9 -2.4 25 2.0
H4:SET/TAF-Iβ -7.1 -1.4 -5.7 6.0 1.9
Cc:SET/TAF-Iβ(1-80) -5.9 1.9 -7.8 44 0.98
Cc:SET/TAF-Iβ(81-277) -6.8 6.7 -13.5 9.6 0.98
Cc:S162A/K164A/D165A -7.1 -2.4 -4.7 6.3 1.9
Cc:T191A/T194A/D195A -6.4 -4.4 -2.0 22 1.9

Fig. 3. NMR titrations of 15N-labeled Cc with SET/TAF-Iβ. (A) Superimposed
[1H-15N] 2D HSQC spectra of 15N-labeled Cc, which is either free or bound to
dimeric SET/TAF-Iβat Cc:SET/TAF-Iβ molar ratio of 1:0.25.(B) Mapping of Cc
residues perturbed upon binding to SET/TAF-Iβ. Cc surfaces are rotated 180°
around vertical axes in each view. Residues are colored according to their
△δAvg (ppm).

ric signals in the thermogram of SET/TAF-Iβ(1-80) throughout the
titration with Cc (Fig. S5: upper) suggest a weak interaction with
an estimated KD of 44 μM (Table 1). On the contrary, the affinity
between Cc and SET/TAF-Iβ(81-277) was higher and yielded a KD
of 9.6 μM. The results indicate a binding preference of Cc for the
C-terminus of SET/TAF-Iβ and explain the way Cc hampers the
chaperone’s ability to bind to histones.

Fig. 4. Figure 4. Proposed model of Cc-mediated nucleosome assem-
bly disability under DNA damage. Schematic assembly of nucleosomes by
SET/TAF-Iβunder homeostasis (upper) and its impairment by Cc upon nu-
clear translocation under DNA damage conditions (lower) both showing:
mitochondrial outer membrane (MOM), mitochondrial intermembrane space
(IMS), mitochondrial inner membrane (MIM) and matrix (MM).

To further confirm the C-terminus of SET/TAF-Iβ as the
region interacting with Cc, two SET/TAF-Iβ mutants were ob-
tained by replacing three adjacent amino acid residues from
the “earmuff” domain by alanine residues (Fig. S4). Mutants
S162A/K164A/D165A and T191A/T194A/D195A (Fig. S4: green
and red, respectively) failed to bind to histones and demonstrated
significantly reduced histone chaperone activity (35% of wild-type
activity) (5). According to the calorimetric data resulting from the
titrations of the two SET/TAF-Iβ triple mutants with Cc (Fig. S5:
lower panels), the S162A/K164A/D165A mutant shows a higher
affinity towards Cc (KD = 6.3 μM) than T191A/T194A/D195A
(KD = 22 μM). These findings suggest that threonine residues at
positions 191 and 194 and aspartate at 195, located in the lower re-
gion of the “earmuff” domain, are involved in the interaction with
Cc, as they are in the histone remodelling activity of SET/TAF-Iβ.

SET/TAF-Iβ histone chaperone activity is impaired by Cc
As binding to core histones is essential for the histone chap-

erone activity of SET/TAF-Iβ, the ability (or inability) of Cc to
affect such activity was tested using a supercoiling assay (Fig.
S6). As shown, SET/TAF-Iβ assembled nucleosomes through the
introduction of negative supercoils in the DNA plasmid in the
presence of Topoisomerase I (Topo I) and core histones (Fig.
2C: lane 3). Strikingly, the chaperone activity of SET/TAF-Iβ
was found to have been impaired following the addition of Cc
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in increasing concentrations (Fig. 2C: lane 4 to 6). Controls
corresponding to the supercoiling assay in the presence of isolated
SET/TAF-Iβ, HeLa core histones, Cc or a combination are also
shown (Fig. S7). Altogether, these findings unequivocally demon-
strate that Cc binds to SET/TAF-Iβ and strongly hinders its ability
to function as a histone chaperone.

The Cc heme crevice faces SET/TAF-Iβ upon binding
To dig into the structural features of the interaction between

Cc and SET/TAF-Iβ, the Cc:SET/TAF-Iβ interaction was moni-
tored by recording [1H, 15N] Heteronuclear Single-Quantum Cor-
relation (HSQC) spectra of fully reduced 15N-labelled Cc, which
was either free or bound to unlabeled SET/TAF-Iβ. Titration of
SET/TAF-Iβ onto 15N Cc resulted in a significant broadening
of the Cc resonances, thereby suggesting the formation of the
Cc:SET/TAF-Iβ complex (Fig. 3A). Additionally, specific reso-
nances from residues at the complex interface may show en-
hanced broadening. Consequently, the line-widths (△△ν1/2Binding)
of 15N-labelled Cc resonances were analyzed in a pure Cc sample
and a 1:0.25 Cc:SET/TAF-Iβ mixture . Signals showing this effect
corresponded to Thr19, Lys39, Gly41, Gln42, Tyr48, Lys79, Ile81,
Ala92 and Leu94 in the 15N dimension (Fig. S8). Hence, these
residues can be expected to be at or near the region of Cc
interacting with SET/TAF-Iβ.

In addition to specific line broadening, several amide reso-
nances in the [1H, 15N] HSQC spectra of Cc exhibit chemical-
shift perturbations (CSPs) in the presence of SET/TAF-Iβ (Fig.
3A). For instance, the details of the superimposed spectra (Fig.
S9A) shows that Ala50 and Glu89 resonances shift gradually
at increasing Cc:SET/TAF-Iβ ratios (1:0.06, 1:0.12 and 1:0.25).
These CSPs indicates that these residues experienced a change
in their chemical environment in the presence of SET/TAF-Iβ.
Then, they may belong to the complex interface.

In order to identify the residues involved in the complex
interface, an average CSP analysis (△δAvg) of the Cc amide signals
was obtained. As shown, 15N Cc resonances from Gln16, Gly77,
Val83, Lys88, Glu89 and Asp93 experience significant chemical
shifts (△δAvg ≥ 0.075) following binding to SET/TAF-Iβ (Fig.
S9B). Strikingly, residues of 15N Cc demonstrating CSPs are
located on the N- and C- terminus regions on the side of the
exposed heme periphery (Fig. 3B).

Notably, a similar surface patch of Cc is involved in the inter-
actions with cytochrome c oxidase (26) and cytochrome bc1 (27) in
the mitochondrial respiratory chain. Interestingly, the interaction
between Cc and the SET/TAF-Iβ chaperone implicated ten lysine
residues – namely 5, 7, 8, 22, 25, 53, 72, 73, 86 and 88 (Fig. 3B) –
thereby evidencing the key role of electrostatic forces in the for-
mation of Cc:SET/TAF-Iβ complexes. Similarly, lysine residues
are also involved in the interaction with cytochrome bc1 (27, 28).
Given the well-known “lysine masking activity” of SET/TAF-Iβ
that prevents the acetylation of histone lysines inside the INHAT
complex (3), it is plausible that SET/TAF-Iβ also recognizes the
lysine residues from Cc.

Intriguingly, the Cc residues thought to play an important
role in the interaction between the hemeprotein and apopto-
sis protease-activating factor-1 (Apaf-1) – namely, Lys7, Lys25,
Lys39 and Lys72 (29) – perfectly match those identified in this
study as interacting with SET/TAF-Iβ. Furthermore, whereas
studies of the complex formed between Cc and pro-survival pro-
tein Bcl-xL identified both His26 and Gly41 as the most important
Cc residues affected upon binding (30), the present study shows
a change only in Gly41 following the addition of SET/TAF-Iβ to
the Cc sample.

A structural look into the Cc:SET/TAF-Iβ complex and NMR-
based molecular docking models

With the aim of defining Cc:SET/TAF-Iβ complex interface
regions, NMR restraint-driven docking was performed. CSPs

obtained from NMR analysis of the Cc:SET/TAF-Iβ complex at
a 1:0.25 ratio were used as input data. From the 500 solutions
obtained from the NMR-based docking for Cc:SET/TAF-Iβ (Fig.
S10A), Cc geometric centres are represented around Robertson
(ribbon) diagrams of SET/TAF-Iβ. In agreement with the two
binding sites observed by ITC titrations, the models predicted
by the NMR restraint-driven docking yielded two differentiated
clusters. One of these clusters included the vast majority of
highest scoring models (Fig. S10A: cluster 1), whereas the second
cluster encompassed less than 50 solutions (Fig. S10A: cluster
2). Interestingly, nearly all the probe solutions are located in the
same region of SET/TAF-Iβ – namely, between its “earmuff” do-
mains. This finding supports the data reported in earlier sections
of this study suggesting a Cc binding preference for the SET/TAF-
Iβ histone-binding domain. Indeed, the highest scoring solution
from the first cluster revealed how Cc leans its heme group to
approach the lower region of a SET/TAF-Iβ “earmuff” domain
(Fig. S10B). The surface representation of both proteins shows
them to be in close contact. A secondary set of Cc structures with
higher energies (cluster 2) was found near the backbone helices
(Fig. S10C).

Discussion

Inefficient repair of DNA lesions results in genome instability,
which can, in turn, lead to premature aging and cancer (31).
Chromatin dynamics regulate transcriptional activity in response
to DNA damage by promoting accessibility to DNA and serving
as a docking site for repair and signalling proteins, thereby in-
creasing repair efficiency (8, 32). Recent works reveal how histone
chaperones temporarily evict histones from a damaged site in
order to facilitate access of repair factors to DNA lesions (9).
However, once a DNA break is repaired, histone chaperones
return histone proteins to the repaired site (33) and promote the
recovery of transcriptional activity (7, 13).

The data presented in this study shows the histone chaperone
and oncoprotein SET/TAF-Iβ to specifically interact with Cc in
cell nuclei in response to CPT-induced DNA damage. While
translocation of Cc to the nucleus had previously been observed
(19, 20), the specific role of Cc in the nucleus has yet to be
fully elucidated. However, this work shows Cc translocates into
the cell nucleus in response to CPT-induced DNA damage, but
not following the TRAIL-activated extrinsic pathway or STP-
triggered stress-induced apoptosis. The present study demon-
strates that nuclear translocation of Cc occurs early in the DNA
damage response – just one hour after CPT treatment. The
finding suggests that Cc might be imported into the nucleus by
diffusion through the nuclear pore complex, although the precise
molecular mechanism is as yet unknown. As neither TRAIL nor
STP trigger Cc entry into the cell nucleus, the interaction between
Cc and SET/TAF-Iβ seems to be specifically linked to CPT-
induced DNA damage.

CPT selectively targets the essential mammalian enzyme
Topo I in nuclei (34). CPT binds covalently to Topo I and su-
percoiled DNA, thereby forming a ternary complex that inhibits
DNA religation and generates a greater number of DSBs (35).
Recently, it has been proposed that histone chaperones play a
central role as histone carriers in chromatin disassembly con-
nected with DNA repair and transcription recovery following
DNA damage (7, 9, 13, 33). Thus, histone chaperones such as
HIRA (13), FACT (12), nucleolin (14), APLF (6) Asf1 (9), CAF-
1 (10), DAXX (11), p400 (15), NAP1L1 and NAP1L4 (7) actively
promote transient chromatin disorganization and histone reshap-
ing in response to DNA damage (8). Since SET/TAF-Iβ belongs
to the NAP1 family, it is tempting to hypothesize a role – similar
to that described for the above mentioned histone chaperones
– for SET/TAF-Iβ in chromatin reshaping in response to DNA
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lesions. Such a role would also explain the Cc-mediated inhibition
observed here.

The results of ITC and NMR titrations performed in the
present study reveal the oncoprotein SET/TAF-Iβ as binding
specifically to Cc. Interestingly, Cc uses the surface residues sur-
rounding its heme group to interact with the histone chaperone,
as it does with its respiratory partners cytochrome c oxidase (26)
and cytochrome bc1 (27), and its apoptotic partner Apaf-1 (29).

Mutagenesis and NMR-based docking analysis carried out
here demonstrated that Cc docks between the two histone binding
domains of SET/TAF-Iβ, thereby preventing the binding of the
latter to core histones. Therefore, and as inferred from nucleo-
some assembly activity assays, it may be concluded that Cc not
only binds to SET/TAF-Iβ, but also hampers the latter’s histone
chaperone activity. It may therefore be proposed that, following
DNA damage induced by CPT, the translocation of Cc into the
cell nucleus and resulting core histone displacement may hinder
SET/TAF-Iβ nucleosome assembly activity (Fig. 4). Thus, the
specific inhibition of SET/TAF-Iβ by Cc could contribute not only
to the suppression of the former’s normal chaperone activity when
apoptosis is inevitable and such activity is no longer necessary,
but also to obstruct nucleosome remodelling that follows DNA
damage repair.

Our finding that Cc interacts with the oncoprotein SET/TAF-
Iβ upon its release from mitochondria suggests that the role of Cc
in the execution of apoptosis is wider than previously held, insofar
as it goes beyond caspase cascade activation, by also inhibiting
pro-survival Cc partners. To our knowledge, the SET/TAF-Iβ
oncoprotein is indeed the first Cc target in the nucleus to be
identified either in homeostasis or during apoptosis. The results
presented not only reveal the molecular basis for the blocking of
SET/TAF-Iβ activity by Cc, but also suggest that the inhibition of
this oncoprotein could be a promising objective in the develop-

ment of anti-cancer drugs. More specifically, an understanding of
the molecular interfaces in the complex formed by SET/TAF-Iβ
□and its inhibitor, Cc, could facilitate the development of new
drugs aimed at silencing the oncogenic effect of SET/TAF-Iβ
histone chaperone activity.

Material and Methods
Expression and purification protocols of Cc, wild-type

SET/TAF-Iβ, SET/TAF-Iβ(1-80), SET/TAF-Iβ(81-277), mutants
S162A/K164A/D165A and T191A/T194A/D195A, and Xenopus
laevis core histones H2B, H3 and H4 are described in SI
Materials and Methods. Experimental details of apoptosis
induction, subcellular fractionation, Western blot analysis,
IP, ITC, EMSA, CD, NMR, nucleosome assembly assays and
molecular docking calculations are likewise described in SI
Materials and Methods.
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