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ABSTRACT 

A detailed vibrational Raman-IR spectroscopic and diffractional analyses have been 

performed on basalts from two locations from Tenerife Island: (1) the Arenas Negras 

volcano which belongs to the historical eruption not showing visible alteration and (2) 

Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction 

caused by submarine alteration. These places have been extensively studied due to its 

similarity with the surface of Mars. The analysis is based on the mineral detection of 

selected samples by a Micro-Raman study of the materials. The complementary 

techniques have confirmed the mineralogy detected by the Raman measurement. The 

results show a volcanic environment behavior with primary phases like olivine, 

pyroxene, and feldspar/plagioclase. Moreover, the presence of accessory minerals or 

secondary mineralization like phosphate, iron oxides, zeolite or carbonates shows the 

alteration processes on each outcrop. Moreover, the variation in the crystallinity and 

amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes 

and external weathering processes, which shows several analogies with the ancient 

volcanic activity from Mars. 

Keywords: Mars, Volcanoes, Terrestrial Analog, Raman Spectroscopy, Tenerife Island, 

mineralogy. 
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1. INTRODUCTION  

Nowadays, Raman spectroscopy is considered one of the next generation techniques for 

planetary exploration due to its multiple advantages. Among others, Raman 

spectroscopy is a non-destructive analytical tool, capable of obtaining vibrational, 

rotational and other low-frequency modes information of the selected target (Rull-Pez 

and Martinez-Frias, 2006; Courres-Lacoste et al., 2007). One of the cutting edge 

research field applications for the Raman technique is the planetary science, where 

several instruments are being developed such as the Scanning Habitable Environments 

with Raman & Luminescence for Organics and Chemicals Instrument on NASA 

(SHERLOC) or SuperCam on NASA-France consortium for the NASA mission in 2020 

( Grossman, 2013; Campbell et al., 2015). On the other hand, the next European mission 

to Mars, the ESA-ExoMars rover mission on 2018, will be equipped with a Raman 

Laser Spectrometer (RLS) as part of the analytical suite in the body of the vehicle 

( Rull-Pez and Martinez-Frias, 2006; Courres-Lacoste et al., 2007; Bost et al., 2015). 

The main applications of this instrument are focused on the exobiological and 

geochemical targets. Thus, the RLS is capable to detect different mineral phases, 

establishing the main mineralogical sequences and following secondary ones such as 

carbonates, sulfates and hydrated minerals formation ( Edwards et al., 2004; Rull-Pez 

and Martinez-Frias, 2006; Lalla et al., 2010; Bost et al., 2015). The research and 

technical progress behind the Raman instrument is of fundamental importance for the 

future success. In this regard, it is important to highlight the appropriate preparation of 

the prototypes, the calibration, the realistic measurement conditions, the spectroscopic 
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characterizations of natural samples and mineral species. Thus, it is  necessary to 

analyze different Martian analogue materials, terrestrial analogues and different 

outcrops that will allow scientists to obtain ground accurate information of past and 

present of Mars (Bost et al., 2013, 2015). 

The views of young volcanos and their volcanic features provided, such as Hawaii or 

Galapagos Island, show that the diversity of volcanic landscapes, size of lava flow 

fields, the dimensions of volcanic channels and the mode of emplacement of deposits 

may relate similarities with volcanos on the red planet. In this regards, the Viking 

Orbiter, Apollo, Voyager, and Magellan images can be inferred and confirm it (Xiao et 

al., 2012; Graham et al., 2015). From the geochemical point of view, the results 

enforces these considerations when the data received from NASA missions (MER and 

Curiosity-MSL) is compared (Kuhn, 2015). Apart from the Hawaiian Islands, the 

Canaries Island are one of the most interesting oceanic islands in the world for carried 

volcanic and geophysical research considering the geological complexity and 

heterogeneity in the Archipelago formation (Carracedo, 1999; Parthasarathy et al., 2003; 

Galindo et al., 2005). Furthermore, special attention has been done on the Tenerife 

Island, where multiple types of extrusive structure, petrological and geochemical 

variability are also present. In this regards, 20 million years of volcanism can be 

recognized on the Tenerife Island due to the volcanoes remains emergent until mass-

wasting is completed. These features added to the gravitational general collapses and 

different erosion processes increase the interest for deeper studies (Carracedo, 1999; 

Acocella, 2007) in the fields of analogy with the Martian volcanology (Lalla et al., 2010; 

Lalla, 2014). For this research the two zones chosen present different primary and 

secondary mineralogy where alteration processes and rock/fluid interactions are present 

(marine, hydrothermal and meteoritic water). Thus, Tenerife geology presents all major 
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conditions for becoming a Martian volcanic analogue, due to the geological complexity 

and heterogeneity of the volcanic surface are similar to Mars. In this regard, the geo-

diversity of the two terrestrial analogues is useful for the evaluation of analytical 

conditions, the pre-selection of appropriate target sites, sampling and site 

characterization strategies for overall mission operations (Bishop et al., 2004; Farr, 

2004; Leill? 2009; West and Clarke, 2010; Prinsloo et al., 2011). The main motivation 

of this research is to obtain a complete spectral mineralogical analysis of two volcanic 

outcrops (the Arenas Negras volcano and the Pillow Lavas zones) by Raman 

spectroscopy and presenting its mineralogical analogies with the ancient volcanic 

activity of the Martian planet. In this regard, a complete spectral mineralogy analysis 

from potential models could be used for the understanding of original unaltered material 

on Mars. In addition, the combination of Raman spectroscopy with X-Ray diffraction, 

IR- spectroscopy and SEM Microscopy help us to confirm the Raman information and 

provide complementary information for the characterization of the mineralogy detected. 

2. MATERIALS AND METHODS 

2.1 Geological target description and sampling 

The selected places for the research have been considered especially by the geological 

eruptional period on the Tenerife Island. The first zone is placed on the Anaga massif 

(Fig. 1). It has been selected due to the submarine hydrothermal and weathering 

processes occurred on the outcrop. Moreover, the Pillow Lava formation is an 

unequivocal sign of volcanism on aqueous environment and, likely, the most abundant 

structural type on Earth (Ancochea et al., 1990) being the base of the island underneath 

the sea and the first part of the island formation. In this formation time, the volcanic 

activity was more violent due to the combination of water, gas eruptions and magma 
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surrounding activities, giving the possibility to create peculiar geological fragments 

considering the geochemistry and mineralogy. The studies of these geological outcrops 

indicate an igneous material with the explained origin. They were formed primary by a 

basinitic composition  from “8 Ma”, alkali basalt around from “5.8 Ma” and basinitic 

activity from “4.2 Ma”, with the existence of fossil hydrothermal systems and the 

existence of Fe-rich silica amorphous phase alteration to a groundmass of celadonite 

and opaline mixture rich in Fe-(hydro) oxides (Bustillo and Martez-Frs, 2003; Thirlwall 

et al., 2000). The selection of this outcrop for planetary implications is due to similar 

possible lava deposits have been reported on Mars, which have similar geomorphology 

to the terrestrial Tuyas (Leverington, 2011; Martez-Alonso et al., 2011), where exist the 

possibility of Pillow Lavas formed by the past water activity on Mars. The samples 

were collected from the Igueste ravine at an altitude of eighty six meters, located at 

(28º32’06”N, 16º09’24”W) near the southern coast of Anaga massif in 2009. 

The second area, named as the Arenas Negras volcano (Fig. 1), dates back to one of 

latest eruptions from Tenerife (ca. 400 years ago), which belongs to the triple eruption 

of 1704‒1705 (“Siete Fuentes”, “Fasnia” and “Arenas Negras”). It is worth to note  that 

the samples are minimally affected by the meteoritic water and other external 

hydrothermal process (Solana, 1996; Lalla, 2014). The volcanic material belongs to AA 

lava type, composed by pyroxene-olivine with idiomorphic phenocrystals (millimeter 

size). The olivine is forsterite and the clino-pyroxene is augite (Solana, 1996). The 

matrix is composed by micro-crystals of plagioclase, augite, olivine and idiomorphic 

opaque of different sizes (Hernandez et al., 1993; Lalla et al., 2010). However, the 

secondary alteration could be caused either by the water vapors trapped within the pores 

of the glass particles creating alteration material under closed-system conditions or by 

weathering process (Hernandez et al., 1993; Villasante-Marcos et al., 2014). The sample 
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set was collected by picking out samples on the studied areas during several expeditions 

in 2010, being all of them catalogued and photographed (Fig. 1). In the case of the 

Arenas Negras volcano, thirteen samples were collected from three different zones: 3 

from the first zone TNFG01 (28º19’53”N, 16º22’34”W); six from the second zone 

TNFG02 (28º19’44”N, 16º25’39”W) and two from the third zone TNFG03 (28º19’44

”N, 16º25’39”W). The selection of the zone has been done taking in consideration the 

volcanic crater (TNFG03), the middle zone (TNFG02) and the end of lava eruption 

(TNFG01) and eruption time. In this regard, the magma accumulation at the crater has a 

8‒10 m thick being the last days of the eruption (TNFG03). On the other hand, the 

TNFG03 zone corresponds to the beginning of the eruption where the distal part has a 

thickness of 2‒3 m. The eruption distance has 9 km along the Güimar Valley where the 

water alteration by weathering is increased with the distance.  

2.2 Experimental setup and Conditions: 

The micro-Raman mineralogical characterization of the samples was performed with a 

microscope Nikon Eclipse E600 coupled to a spectrometer KOSI Holospec f/1.8i with 

best resolution of 5 cm‒1, illuminated by a laser REO LSRP-3501 He-Ne 632.8 nm. The 

detection was performed by a CCD Andor DV420A-OE-130. The laser power used was 

14 mW with a spot diameter of 15 µm and the Raman mapping of the bulk surface of 

the sample was done by the Micro-Raman Prior Proscan II motorized stage in automatic 

mode in order to detect the different mineralization. However, the optimum recording 

conditions were obtained by varying the laser power, microscope objective and the 

confocal spot size (XY instrument) as required for the different samples. The spectra 

were directly acquired on the sample material without any sample preparation. The FT-

Raman analysis was performed with a Fourier Transform Raman (FT-Raman) Bruker 
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RSF 100/S, which allows the analysis of high fluorescence samples, making it is more 

suitable for some samples than the visible Raman equipment. The FT-Raman 

spectrometer is composed by a Nd:YAG Laser at 1064 nm, spectrograph with spectral 

range 851‒1695 nm (NIR) and best spectral resolution of 2 cm‒1. The detector is a 

Bruker CCD model D418T cooled by liquid N2. The working conditions achieved a 

spectral resolution of 4 cm‒1 and a diameter spot of 100 µm approximately.  

The X-ray diffraction analyses were carried out with a XRD diffractometer Philips 

PW1710 equipped with automatic divergent slit graphite monochromator and Cu-anode. 

Experimental conditions: CuKα radiation, λ = 0.154nm, a niquel filter, an aluminum 

sample-holder, 40 kV generator voltage, generator current 30 mA with a relation 

intensity of 0.5 (α1/α2) and angle range (2θº) from 5 to 70º. The Terra XRD 

diffractometer instrument based on the MSL-CheMin concept with a detector (1024 X 

256 pixels) 2D peltier cooled CCD camera for XRD with a source cobalt X-ray tube of 

30Kv-300uA was also used. For the XRD analysis a preparation was necessary, 

consisting on the powdering of a minimum part of the samples (2‒4 mg) and sieved 

with a granulometry lower than 150 µm. 

The complementary analysis with scanning electron microscopy (SEM) was performed 

with an ESEM-Quanta 200F Microscope. For this analysis, no sample preparation was 

necessary and the measurements were directly performed on the bulk samples. 

The infrared spectroscopic data were obtained by means of a Fourier Transform Infrared 

spectrometer with an attenuated total reflectance accessory (FTIR-ATR). The ATR-

FTIR Pelkin Elmer Spectra 100 spectrometer system was equipped with a diamond 

ATR universal system, and the spectral range spans from 650 to 4000 cm‒1 with 4 cm‒1 

spectral resolution. The samples used on these analyses were the same as the ones 

prepared for the XRD analyses.  
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3. RESULTS AND DISCUSSION 

3.1 Raman spectroscopy results 

Table 1 and Figs. 2 and 3 compile and summarize the mineral species and phases 

identified by Raman Spectroscopy on the two studied zones.  

The olivine species detected on both sites correspond to a forsterite, clearly visible by 

the typical doublet band at 820 and 850 cm‒1 in accordance with the literature (Chopelas, 

1991). Also, the detected mineral species show other vibrational modes which are: (1) 

the lattice mode of the olivine, both “translational and rotational” SiO4 movements and 

the translational motions of the cations (Mg2+, Fe2+) in the crystal lattice at the zone 

below 400 cm‒1; (2) the internal bending vibrational modes of the SiO4 ionic group at 

the region 400‒700 cm‒1; and (3) the internal stretching vibrational modes of the SiO4 

ionic group at the 700‒1000 cm‒1  region (Kuebler et al., 2006). On the basis of 

theoretical modeling, it has been demonstrated that the high frequency peaks of the 

olivine are originated from a mixing of symmetric and anti-symmetric stretching modes 

of SiO4 units (Piriou and McMillan, 1983; Lam et al., 1990). In this regard, the doublet 

at 820‒850 cm‒1 are the most intense peaks on the olivine Raman spectra. These peaks 

are used to identify the olivine in the multi-phase spectrum due to the fact that the 

relative peak height of the doublet is function of crystal orientation. In other words, it 

serves as a calibration method for chemical, compositional and structural 

characterization of this kind of mineral species (Kuebler et al., 2006; Mouri and Enami, 

2008; Yasuzuka et al., 2009). The calibration method proposed by several author 

(Kuebler et al., 2006; Yasuzuka et al., 2009) has been applied on the samples collection 

and the results point to an forsterite-olivine behaviour detailed on Table 2. Nevertheless, 

compared to the Arenas Negras volcano, the Pillow Lava zone presents weak/poor 
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results caused by an insignificant detection of olivine, which have been probably altered 

by the hydrothermal process on the submarine pillow lava formation. Thus, the 

Mg#=Mg/(Mg+Fe) estimation method is very sensitive to the pressure, the composition 

and the alteration process (Kuebler et al., 2006; Mouri and Enami, 2008). 

Concerning to the pyroxene mineral species, the Raman technique shows the existence 

of diopside and augite. Moreover, the analyses of the spectral pattern, developed by 

other authors (Wang et al., 2001), taking into account the empirical rules and spectral 

convention enforces the previous results. Special attention has been paid to  the 

following regions: (1) the 1100‒800 cm‒1 region (where the strong asymmetric peak at 

1000 cm‒1 approximately and some wide and weak peaks on its two wings caused by 

the Si-Onbr stretching are found); (2) the 800‒600 cm‒1 region (with a strong doublet or 

an asymmetric single peak near to 660 cm‒1 due to the Si-Obr stretching); (3) the 

600‒450 cm‒1 region with a group of peaks which overlap each other, being of middle 

intensity and which correspond to the O-Si-O bending; (4) the 450‒300 cm‒1 region 

formed by overlapped strong peaks caused by a M-O stretching and M-O bending; and 

(5) some peaks of moderate intensity found below 300 cm‒1 (Wang et al., 2001) . A 

detailed comparison of the intensity or the FWHM (Full Bandwidth at Half Maximum) 

of the principal bands has been performed for the different spectral regions detailed on 

Table 3. This comparison reveals that Pillows Lavas zone samples have a more 

amorphous behavior and possibly a more disordered structure than the Arenas Negras 

volcano samples provoked by the submarine hydrothermal activity and the possible 

overlapping of other mineral species (Huang et al., 2000; Wang et al., 2001; Prinsloo et 

al., 2011). On the Marion Island, the results shows a similar behavior of glassy phase 

systems (Prinsloo et al., 2011) and the main cause is the rapid cooling of the lava 

extrudes from a volcano, without a correct crystal growing. In the case of submarine 
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alteration, the melting point of the crystal formation is decreased, increasing the 

obsidian glass formation.  On the other hand, the calibration method developed by 

other authors (Huang et al., 2000; Wang et al., 2001), considering Mg/(Mg+Fe+Ca) 

relative concentration,  where a relative change in the position of the peaks at 327 cm‒1 

and at 665 cm‒1 has been applied (Table 3). For the Arenas Negras samples, the 

Mg/(Mg+Fe+Ca) value is approximately “0.4 ± 0.1” while it is “0.5 ± 1” for the Pillow 

Lava zone. This corresponds to a diopside-augitie behavior (Huang et al., 2000; Wang 

et al., 2001) .  

The tectosilicate groups detected on the target outcrop are a plagioclase series between 

labradorite and andesine in the Pillow Lava zone and a plagioclase series (albite-

oligoclase)- K-feldspar (albite-anorthoclase) on the Arenas Negras volcano. However 

this depends upon the sample under analysis. The detailed identification on the Raman 

spectral pattern was achieved by the  spectral region method, where the strongest 

vibrational bands are produced by the structure of SiO4 of tectosilicate group and 

located below 600 cm‒1 (Freeman et al., 2008). Thus, special consideration has been 

taken for the characteristic triplet or doublet bands, located on the 450‒515 cm‒1 region 

where the strongest peak is at 505‒515 cm‒1. Moreover, other vibrational regions have 

been considered for the correct mineral identification such as the 200‒400 cm‒1 zone 

which corresponds to the rotational-translational modes; the 600‒800 cm‒1 spectral 

zone, where the Raman modes are produced by the deformation modes of the 

tetrahedral; and the 900‒1200 cm‒1 region, where the vibrations are assigned to the 

vibrational stretching mode of the tetrahedral structure (Freeman et al., 2008). 

Hematite has been detected both on Pillow Lava zone and the Arenas Negras volcano 

(Figs. 2a and 3a). Hematite is the most common Fe-oxide in nature, and it presents a 

polymorph structure caused by the high thermodynamics stability. The most important 
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bands are: the vibrations at 221 and 490 cm‒1 caused by an Ag mode; the vibrations at 

245, 295, 305, 410 and 607 cm‒1 being assigned to an Eg mode; and  the broad peaks at 

1323 cm‒1 is caused by the magnons effects (Jubb and Allen, 2010).  On the other 

hand, magnetite (Fe2O3) has also been detected on both zones, where the most intense 

peak of this oxide structure is found at 660 cm‒1 and it can be assigned to the A1g 

symmetry mode, while the other two peaks detected correspond to the F2g mode at 550 

and 504 cm‒1 (Rull et al., 2007; Jubb and Allen, 2010). The analyses of the spectral 

patterns show that the Arenas Negras volcano presents a more crystalline behavior than 

the Pillow Lava zone. Furthermore, the concentration of hematite/magnetite is bigger on 

the Arenas Negras volcano than in the Pillow Lava zone which could be explained by 

the Fe2+ and the Fe3+ cations incorporation in other crystalline solution/mineral species 

caused by the hydrothermal alteration on the submarine processes.  

The carbonate detected on the samples is calcite, very commonly found as a secondary 

product from hydrothermal alteration in the modern Earth system. The Raman 

vibrations in the carbonates can be obtained from the vibration of the (CO3)
2‒ internal 

modes, the vibration of hydroxyl molecules and the vibration modes M-O from the 

interactions between cations and O of either (CO3)
2‒, external or lattice modes. The 

most intense vibrations are the symmetric stretching of CO3 at 1086 cm‒1; the 

symmetric bending of CO3 at 715 cm‒1; and the external vibration of CO3
‒ at 285 cm‒1  

(Rull et al., 2004; Rividi et al., 2010). It is necessary to quote that the signal was very 

low and sloped in comparison with other mineral species such as the pyroxene and 

olivine on the Pillow Lava zone. On the other hand, in the Arenas Negras volcano, the 

calcite was detected in conjunction with zeolite (Urmos et al., 1991; Hernandez et al., 

1993). Moreover, a method, developed by Rull et al (Rull-Perez and Martinez-Frias, 

2003), has been applied for obtaining the paragenesis of the mineral species. The 
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analysis of measured parameters such as intensity and FWHM of the main peaks at 

1086, 715 and 280 cm‒1  converge to a magmatic formation in both sites (Rull-Perez 

and Martinez-Frias, 2003). The structure of hydrotalcite states that there is a broad 

range of compositions depending on cations. However, on the Anaga Pillow Lavas 

zone, the measurements show only a Raman vibration at 1060 cm‒1, which is caused by 

the combination of symmetric and antisymmetric stretching of the CO3
‒. Nevertheless, 

more peaks are necessary to perform an identification of the specific hydrotalcite 

species (Moroz et al., 2001; Frost et al., 2005). Concerning to the paragenesis, the 

rock/fluid interaction with submarine water is clearly the main cause of formation. 

The calcium phosphate detected on the Arenas Negras volcano corresponds to an apatite 

structure, from which several Raman and IR active modes like the PO3-
4, OH- and CO2-

3 

active modes have been measured (Mooney et al., 1968; Antonakos et al., 2007; ). The 

Td symmetry of the PO3-
4 vibrational mode creates the  stretching mode A1 at 960 cm‒1 

zone, the doubly degenerated bending E mode at 420 cm-1, the triply degenerated anti-

symmetric stretching mode F2 at 1017 cm‒1 and the triply degenerated bending F2 at 567 

cm‒1 (Ohea et al., 1974; Cooney et al., 1999; Antonakos et al., 2007; Hill and Jha, 2007; 

Zattin et al., 2007). 

The zeolites from the Arenas Negras volcano samples are abundant in the vesicular tops 

and bottoms of the basalt flows and flow breccias. The detailed classification of the 

zeolite performed by the Raman based classification technique determinates that it is a 

phillipsite. The spectra have been compared with different Raman spectral data from 

zeolite obtained from Raman online database such as RRUFF. Moreover, the vibrations 

at 420 and 480 cm‒1 have been compared with the reference (Pechar, 1981), being in 

agreement with other authors (Gatta et al., 2010). 

3.2 X-Ray diffraction analysis  
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The qualitative mineralogical analysis was performed based on the peak positions and 

its comparison with other standard patterns on the Fig. 4. For the analysis of different 

phases in multiphase specimens, the commercial software Phillips PW-1876 Pc-identify 

was used, which compares peak intensities attributed to the identified phases. These 

analyses reveal the existence of tectosilicates (plagioclase and K-feldspar), pyroxene 

(diopside or augite possibly) and olivine (forsterite) lines.  Moreover, it is important to 

mention the existence of hematite and magnetite in a lower proportion for both analyzed 

zones. Nonetheless, the results are in agreement with the Raman analyses verifying the 

principal mineral phases.  

3.3 ATR-FTIR analysis 

The ATR-FTIR complementary analysis only shows the most intense vibration of Al-

silicates at 1630 cm‒1 and silicates at 1000 cm‒1 in the mixture (Fig. 5). The main 

problem is that the minor mineral phases are masked by the host matrix mineral phases 

when crushed and mixed, and these cannot be detected in the spectra due to a relatively 

high detection threshold inherent to this kind of technique. However, IR-Spectroscopy 

is a very sensitive technique to the hydrogen bonding of the OH‒ at 3300 cm‒1 and the 

water vibration at 3600 cm‒1 (Nakamoto, 1978; Rull et al., 2004). This feature plays an 

important role in determining the aqueous mineral identification in natural samples, 

which could be consequence of the rock-water interaction. As a result, the presence of 

Al-OH species, OH‒ bands and H2O vibrations can be confirmed (Nakamoto, 1978). 

The results could point to the hydration of the groundmass, caused either by the action 

of percolating water in the subaerial environment (the Arenas Negras volcano) or the 

action of the sea water in the case of the submarine environment (Pillow Lava zone). 

3.4 SEM analysis 
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The results of SEM show the ubiquitous occurrence of the zeolites (phillipsite), which 

were only found in the many cavities of the rock, whose abundance and size are 

variable, forming radiating clusters with minor quantities of calcite (Fig. 6). The results 

are in agreement with the literature, the phillipsite has been identified by direct 

comparison to other SEM photograph, where similar alteration processes have occurred 

(Hernandez et al., 1993; Gatta et al., 2010; ).  

3.5 Discussions of the results 

The mineralogy detected by the different techniques is summarized in Table 4. On the 

different outcrop, the mineral species detected correspond to a primary and secondary 

mineralization. The Pillow Lava zone has been submitted from the first processes of the 

island formation compared to the Arenas Negras volcano. The secondary minerals 

detected correspond to different variety of origins such as hydrothermal process or 

submarine processes. However, the mineralogy on the Arenas Negras volcano presents 

several similarities, despite the spectral differences on the Raman analysis.  

The olivine is forsterite on the different zones, being in agreement with the references. 

On the other hand, the pyroxene detected are diopside-augite and considering the 

Raman detailed analysis, the spectral differences correspond to the broadening band 

which could be related to the submarine alteration or the overlapping on the mineral 

detection. The feldspar and plagioclase on the host matrix was detected by Raman 

spectroscopy and confirmed afterward through the two complementary technique (X-

Ray diffraction and Infrared spectroscopy). Their composition varies depending on the 

samples and zones and this is indicative that the different cation content is conditioned 

by the local environment (temperature of formation and cooling rates). Furthermore, it 

causes a discontinuous Bowen series reaction in some cases (Haldar and Tijar, 2014). In 

the case of the oxides, they were detectable only by Raman spectroscopy and XRD, the 
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Pillow Lava outcrop presents less quantity detection compared to the Arenas Negras 

volcano. In this regard, the Fe is incorporated in other solid crystalline solution and 

glass by the submarine alteration.  

The calcite presents a hydrothermal volcanic origin taking into account the Raman 

analysis of the spectra. The apatite corresponds to a volcanic accessory mineral, 

however it could be attributed to a contamination from submarine sediment (Pillow 

Lavas) or biological contamination (the Arenas Negras volcano) (Prinsloo et al., 2011). 

The zeolite was detected only by Raman spectroscopy and confirmed by SEM. The 

origin of this mineral specie is clearly hydrothermal. The lava in the historical eruptions 

extruded with a big amount of water vapors at the south of Tenerife and it probably 

reacts fast with volcanic glasses at high temperatures in a closed-system (Hernandez et 

al., 1993; Rodruez et al., 2015). Therefore, the detected zeolite crystals has been 

originated by a similar hydrothermal process such as the Deccan Trap outcrop in India, 

where the glass is hydrated and dissoluted with the subsequent nucleation and growth of 

the zeolite (Hernandez et al., 1993; Parthasarathy et al., 2003; Parthasarathy and Sarkar, 

2014). Also, several authors have obtained this zeolite phase by hydrothermal processes 

of synthetic water free glasses of some compositions by P-T-t (Pressure-Temperature 

close system) close system using distilled water at 200/250ºC and 4‒5 weeks  being in 

agreement with the natural result found on the outcrop (Ghobarkar et al., 2003; 

Parthasarathy et al., 2003; Parthasarathy and Sarkar, 2014; ).  

On the Table 4 is also presented a mineral comparison with the mineral detected on 

Mars considering the references (Bishop et al., 2004; Chevrier and Math, 2007; Bish et 

al., 2013; Wang et al., 2015). The mineral comparison have been considered the results 

from the analysis from Martian meteorites and Rover analysis. In this regard, the 

analysis from the Tenerife selected outcrops present similar mineral detection such as 
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the Crater Gusev’s mineralogy (Rice et al., 2010; Bish et al., 2013 ). Moreover, the 

Gale crater shows signatures of feldspar, pyroxene, magnetite and olivine. Also the data 

shows indication of phyllosilicate in the presence of basanites and a minor amount of 

sulfates (Bish et al., 2013). Concerning to the alteration minerals such as zeolite, they 

have been detected on the dust by orbiters (Ruff, 2004; Wray et al., 2009). As it can be 

observed, the mineralization presented on the outcrop and the compared with the 

Martian shows that the analogues present similar types of mineral origin: evaporitic 

process, water alteration, hydrothermalism and weathering (Chevrier and Math, 2007)).  

Moreover, future field-testing of the portable instrumentation and analysis of resulting 

multispectral with other analytical techniques (XRD and IR) have shown to be valuable, 

including the identification of spectral and synergy working of the Raman 

instrumentation with other techniques for planetary research. Also, the Raman data can 

reveal overall outcrop mineralogy and mineral structure, being a crucial factor in the 

selection of drill targets and interpretation of the local geology.  

4. CONCLUSSIONS 

Different samples from Pillow Lava zone from Anaga zone and the Arenas Volcano 

were characterized and studied by Raman spectroscopic techniques and several 

laboratory complementary techniques for the very first time, through a complete 

analysis of the mineralogy from the selected materials. Crystalline primary phases such 

as olivine, pyroxene, oxide, feldspar; and secondary minerals like carbonate, zeolite and 

phosphate have been confirmed by Raman spectroscopy and in some case confirmed by 

complementary methods detailed along this paper. Also, other amorphous/glassy 

materials, resulting from the hydrothermal alteration and weathering, were detected.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
The crystalline phases of mineral species described along the paper are similar to those 

reported on materials of other volcanic terrestrial analogues and Mars observations. 

However, the samples present some differences on the secondary mineral species, such 

as the zeolite. The possibility to distinguish the zeolite by Raman spectroscopy helps us 

to deduce the rock-process formation or rock-process alteration. Thus, the enlargement 

of knowledge on terrestrial analogues helps on the planetary research with 

astrogeological implications, specially focused on the development of future Martian 

missions. 

It has been shown that Raman spectroscopy on the altered igneous rocks is capable of 

detecting minor mineral phases which can be used to correlate the spectra with the 

cooling rate and temperature formation of the rocks, becoming a very useful technique 

for in-situ planetary exploration. Thus, the results reveal that Raman techniques are 

powerful and robust systems for the detection of aqueous processes and support the 

continued endeavors to use the Raman spectroscopy for Mars exploration. The 

combination of complementary (IR, XRD and SEM) techniques with Raman allows us 

to obtain comprehensive information about the mineralogy and to interpret the future 

information to be received from the solid solution structure on the Martian surface. 
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List of Figures 

Figure 1. (A) Pictures of sampling zone of the Anaga massif and selected samples. (B) 

Simplified geological and topographic map of Tenerife illustrating the distribution of 

visible vents and the map of mafic emission centers and vent alignments on Tenerife 

Island. (C) Pictures and of sampling zone of “Las Arenas Negras volcano and selected 

samples, where is detailed the three zones-studied (Credits: Google). (D) Simplified 

scheme of the Tenerife formation: (1) Submarine eruptions (20‒50 Ma); (2) ancient 

basaltic formation (7 Ma); (3) latest basaltic series-II, III, IV–(3 Ma); (4) gravitational 

slandslide (800 Ma.); and (5) valley formation and historical eruptions.  

Figure 2. Raman spectra of the main phases recorded on the Arenas Negras volcano: (a) 

pyroxene, (b) forsterite, (c) apatite, (d) hematite, (e) plagioclases, (f) calcite and (g) 

zeolite + calcite. 

Figure 3. Raman spectra recorded on the Pillow Lava main phases: (a) hematite + 

magnetite, (b) alteration magnetite, (c) magnetite, (d) hydrotalcite + organics, (e) 

plagioclase, (f) forsterite + pyroxene + calcite and (g) pyroxene. 

Figure 4.  XRD diffractograms of different selected samples. (a) Pillow Lava (sub-

sample 1); (b) Pillow Lava (sub-sample 2); (c) Pillow Lava (sub-sample 3); (d) Las 

Arenas Negras Volcano (TNFG01); (e) Las Arenas Negras Volcano (TNFG02); (f) Las 

Arenas Negras Volcano (TNFG03). Mineral assignment: (●) Plagioclase, (■) Pyroxene, 

(�) Hematite, (♦) Feldspar, (▲) Olivne and(▼) Goethite. 

Figure 5. ATR-FTIR Infrared Spectra from Pillow Lava zone and the Arenas Negras 

volcano. The H2O and OH- vibration and the Al-OH silicate vibration bands can be 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
observed. (a-c) Pillow Lava (selected samples spectra) (d) TNFG01 sample and (e) 

TNFG03 sample. 

Figure 6.  SEM Photograph of the zeolite occurrence. Radiating cluster of the zeolite 

crystal inside the cavities from the Arenas Negras volcano (a) and (b). 
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Table1. Summary of crystalline inorganic phases detected by Raman spectroscopy on 

the Pillow Lava zone and the Arenas Negras volcano. 

Characteristic (peaks/cm‒1) Pillow Lava Zone The Arenas Negras volcano 

821, 853 Olivine (Forsterite) Olivine (Forsterite) 

324, 358, 385, 663, 1004 Pyroxene (Diopside, Augite) Pyroxene (Diopside, Augite) 

280, 460/463, 480/485, 505 K-Feldspar/Plagioclase K-Feldspar/Plagioclase 

283, 712, 1087/1085 Carbonate (Calcite) Carbonate (Calcite) 

221, 246, 295, 405, 490, 607, 1315 Oxide (Hematite) Oxide (Hematite) 

550, 663 Oxide (Magnetite) Oxide (Magnetite) 

420, 567, 960, 1017 ****** Phosphates (Apatite) 

420, 480 ****** Zeolite (Phillipsite) 

1061 Carbonate (Hidrotalcite) ****** 
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Table 2. Band analysis of olivine in the different outcrops on the principal Raman 

vibration (after Kuebler et al., 2006; Mouri and Enami, 2008)   

Sample 
Band at  820 

cm‒1 
(DB1) 

Band at 850 
cm‒1 

(DB2) 
Equation 1 Equation 2 

Las Arenas Negras volcano 
TNFG1 821 851 Forsterite85 Forsterite80 
TNFG1 822 848 Forsterite90 Forsterite90 
TNFG2 821 851 Forsterite80 Forsterite80 
TNFG2 819 849 Forsterite70 Forsterite80 
TNFG3 821 853 Forsterite90 Forsterite85‒90 
TNFG3 821 850 Forsterite70‒80 Forsterite75‒80 

Pillow lava zone 

TNF (fresh part) 
821 848 Forsterite80 Forsterite80‒90 
819 853 Forsterite60‒70 Forsterite80‒90 

TNF (external 
part) 

820 851 Forsterite90 Forsterite80‒85 
818 847 Forsterite40‒60 Forsterite60‒65 

Equation 1 
(Kuebler et al., 

2006) 

Fo(DB1,DB2) = ‒206232.988995287 + 80.190397775029 (DB1) 
+ 399.350231139156 (DB2) ‒0.0424363912074934 (DB1)2 ‒ 
0.2357973451030880 (DB2)2 

Equation 2 
(Mouri and 

Enami, 2008) 

Mg# = ‒610.65 + 1.3981 (DB2) – 0.00079869 (DB2)2  

Mg# = ‒3715.8 + 8.9889 (DB1) – 0.0054348 (DB1)2 
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Table 3. Band analysis of the Raman vibration on the pyroxenic mineral from the 

different outcrop. The peaks have been normalized to the maximum  

Position band analysis 

Sample 
Band at 1000 
cm‒1 (DB1) 

Band at 665 
cm‒1 (DB2) 

Band at 325 
cm‒1  (DB3) 

Equation 

The Arenas Negras Volcano  
TNFG1 

(Sample 1) 
1001 664 324 Diopside 

TNFG1 
(Sample 2) 

1002 661 321 Diopside 

TNFG2 
(Sample 1) 

1006 663 319 Diopside 

TNFG2 
(Sample 2) 

1003 663 324 Diopside 

TNFG3 
(Sample 1) 

1004 664 323 Diopside 

TNFG3 
(Sample 1) 

1002 659 320 Diopside 

Pillow lavas zone 
TNF (Sample 

1) 
1002 665 **** Diopside 
1001 668 325 Diopside 

TNF (Sample 
2) 

1000 667 **** Diopside 
1002 668 323 Diepside 

Equation 
(Huang et al., 

2000) 
Fe(2) = 10406 – 15.649 (DB2);  Fe(3) =  1415 – 4.3554 (DB3) 

FWHM band analysis 
TNFG1 22,556 19,338 
TNFG2 21,430 20,218 
TNFG3 19,890 18,341 

TNF 32,460 30,181 
TNF 25,145 23,450 
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Table 4. Resume of the mineral species detected on Tenerife and the Mineral comparison with 

Mars. X indicates that these species were uniquely identified with the technique, while O 

indicates that compatible results. 

Minerals 
Pillow Lavas  

Arenas Negras 
Volcano 

Reported 
on Mars 

Raman XRD IR Raman XRD IR  

Oxides  

Magnetite (Fe3O4) X X  X X  X 

Haematite (Fe2O3) X X  X X  X 

Silica (SiO2) X X  X X  X 

Carbonates         

Calcite (CaCO3) X   X   X 

Hydrotalcite 

(Mg6Al 2(CO3)(OH)16·4(H2O) 
X       

Phosphates  

Apatite (Ca5(PO4)3(F,Cl,OH)) X   X    

Silicates  

Inosilicates        

Piroxenes        

Diopside (MgCaSi2O6) X X O X X O X 

Augite ((Ca,Mg,Fe)2(Si,Al)2O6) X X O X X O X 

Nesosilicates        

Olivine        

Forsterite ((Fe,Mg)2SiO4) X X O X X O X 

Tectosilicates        

Feldspars and plagioclase  X   X  X 

Anorthoclase ((Na,K)AlSi3O8)   O X  O  

Anorthite (CaAl2Si2O8)   O   O  

Albite(NaAlSi3O8)   O X  O  

Oligoclase and Andesine 
((Na,Ca)(Si,Al)4O8) 

X  O X  O  
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Labradorite ((Ca,Na)(Si,Al)4O8) X  O   O  

Zeolites       X 

Phillipsite 
((Ca,K,Na)6(Si10Al 6)O3212H2O) 

   X    
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HIGHLIGHTS:  

 

Tenerife eruptions as analogue for ancient Mars  
 
Micro-Raman characterization of mineral phases  
 
Zeolite mineral phase identified in the Arenas Negras volcano 
 


