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Abstract
Environment determines the distribution of mosquito-borne diseases in that it influences the

vector-host-pathogen transmission cycle, including vector distribution, abundance and diver-

sity. In this study, we analyse the relationship between environmental variables estimated by

remote sensing and the spatial distribution (presence, abundance and diversity) of seven

mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofi-

lariasis) in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha

divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fish-

ponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel

traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and

Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000

metres) from corrected and normalized Landsat Images.We sampled 972,346 female mos-

quitoes, the most abundant species beingCulex theileri,Ochlerotatus caspius,Culex modes-
tus,Culex perexiguus,Culex pipiens, Anopheles atroparvus andOchlerotatus detritus. Our

results suggest that: (1) hydroperiod, inundation surface and NDVI are strongly related to the

spatial distribution of mosquitoes; (2) the spatial scales used to measure these variables

affected quantification of these relationships, the larger scale beingmore informative; (3)

these relationships are species-specific; (4) hydroperiod is negatively related to mosquito

presence and richness; (5)Culex abundance is positively related to hydroperiod; (6) NDVI is

positively related to mosquito diversity, presence and abundance, except in the case of the

two salt marsh species (Oc. caspius andOc. detritus); and (7) inundation surfaces positively

condition the abundance and richness of most species except the salt marsh mosquitoes.

Remote sensing data provided reliable information for monitoring mosquito populations. Land-

scape significantly affected mosquito distribution and abundance, and as a result may alter

disease risk. These results suggest that while environmental conditions affect the distribution

and abundance of mosquitoes, other factors such as human modification of landscapes may

give rise to significant changes in mosquito populations and consequently disease risk.
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Introduction
Mosquito-borne diseases are among the world’s major causes of illness and death, particularly
in tropical and subtropical countries, although they are also (re)emerging in temperate areas.
In recent years outbreaks of West Nile virus (WNV), Chikungunya, Dengue and Usutu virus
(USUV) have occurred in the USA and/or Europe [1,2,3,4].

Each pathogen can only be successfully transmitted by a limited range of mosquito species
and the distribution of these competent vector species determines the geographical distribution
of the pathogen [5]. Different mosquito species may play different roles in the genesis of an epi-
demic, especially in the case of multi-vector/multi-host pathogens, such as WNV [6]. Some
species may contribute to pathogen amplification during the enzootic cycle, while others may
make a greater contribution to the epizootic cycle [7]. In addition, a recent theoretical model
suggested that vector species richness may facilitate virus amplification [8]. Consequently,
understanding the factors that condition vector distribution, richness and abundance is an
important step in characterising the risk of transmission of vector borne diseases [9,10,11].

Mosquito spatial distribution is constrained by the distribution of aquatic environments
that support the development of larvae, and by the factors that determine adult mosquito habi-
tats (for example, vertebrate host distribution and vegetation). Remote Sensing is a powerful
tool for characterising these habitats at both large and fine spatial scales in that it provides reli-
able, cheap and periodic estimates of many environmental variables. Images generated by
Landsat thematic mapper (TM) with a spatial resolution of 30 m can be used to characterize
larval habitats locally at a low spatial scale [12]. However, it is not only the distribution of
water for mosquito habitats that is important but also vegetation type, and covertures [13,14].
NDVI (Normalized Difference Vegetation Index) is positively related to vegetation biomass
and is also affected by vegetation composition, and NDVI is related to WNV human cases and
Culex abundance [15,16,17]. Although the resolution of Landsat is greater than the size of
some of the mosquito breeding habitats (such as small ponds or water deposits), most breeding
sites in wetlands are captured by Landsat satellite images, which are less appropriate for urban
environments. These data can also be used to calculate hydroperiod and inundation surfaces
by comparing time series of satellite images [18]. NDVI estimates derived from Landsat Satel-
lite images have been successfully used to predict mosquito populations [16,19, 20, 21], espe-
cially in non-urban environments. However, to the best of our knowledge, Landsat satellite-
derived information on hydroperiod duration and inundation surfaces has not yet been used to
analyse mosquito presence, abundance or diversity.

Wetlands have abundant resident and migratory bird and mosquito populations overlap-
ping in space and time [20, 21] making them important ecosystems for the enzootic cycles of
WNV and USUV transmission. Doñana is one of the largest wetlands in Europe with large
areas of seasonal freshwater and brackish marshes as well as marshes under tidal influence.
This system provides a unique opportunity to study the distribution of mosquito populations
in relation to landscape composition. WNV is endemically circulating in birds and horses in
this area [22, 23, 24], and horse and human disease cases have been recently reported in the
neighbouring provinces [25]. Four Culex species in the area are potential WNV vectors: Culex
pipiens, Culex modestus, Culex perexiguus (univitattus) and Culex theileri [7]. Cx. perexiguus,
Cx.modestus and Cx. pipiens were the most important ornithophilic mosquito species for
WNV enzootic circulation in Doñana, Cx. perexiguus being an important species for transmis-
sion to horses, while Cx. pipiensmay play an important role in epizootic transmission to
humans [7]. The screening of mosquitoes captured in Doñana for flavivirus revealed a new
lineage of WNV in Cx. pipiens, WNV lineage 1 and Usutu virus in Cx. perexiguus [26, 27], a
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flavivirus of potential medical concern in Ochlerotatus caspius, and several insect flaviviruses
(CulexFV) [28].

In this paper, we analyse the relationship between landscape and environmental variables
estimated from satellite images and mosquito distribution, abundance and diversity.

Material and Methods

Study area
The regional Ministry of Agriculture, Fishing and Environment and Doñana Nature Area issue
the permission for field work in the Doñana area (National Park and Natural Park). The
Doñana Natural Space extends over more than 1,060 km2 and comprises two different areas:
the Doñana National Park (54,251 ha) and the Doñana Natural Park (53,709 ha) that sur-
rounds it. The National Park is strictly protected and has been declared a Biosphere Reserve,
Ramsar Site and UNESCOWorld Heritage Site. A major site for migrating birds, it is consid-
ered one of the most important reserves and outstanding protected areas in Europe, attracting
around 350,000 human visitors per year. The climate is Mediterranean sub-humid with rainy
winters and dry summers. In 2009/2010 the hydrological cycle began in September and reached
maximum inundation levels the following March. In late spring, evaporation becomes the
most important factor in the water balance and the marshes dry up during the summer. The
total sampling area covered 54,984 ha, divided into six ecological units or substrates (Fig 1).

1) Marshland (freshwater and salt marshes, 22,109 ha).The seasonal marsh floods when
heavy rains arrive between October and March and is generally dry between July and October.
Two different substrates were considered in the design: freshwater marshes (compose by Scir-
pus maritimus, Scirpus litoralis, Typha latifolia and Phragmites australis) and saltmarshes (with
Spartina densiflora, Salicornia ramossissima, Sarcocornia perennis, Artrhocnemum macrosta-
chyum), although they were analysed as asingle unit. Freshwater marshes are inundated by
rainfall while saltmarshes depend on rainfall and tide regimens. 2) Scrubland (11,582 Ha). For-
est and scrub over stabilized sands consisting of low woodland and interdunal valleys. 3) Sand

Fig 1. Map of the study area with an ortophotograph of the area. Ecological units are described in
Material and Methods. Urban areas correspond to the villages situated at the border of the study area. White
circles indicate the locations of the traps.

doi:10.1371/journal.pone.0128112.g001
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dunes (9,113 ha). This area is a dune ecosystem 25 km in length which includes the shoreline.
4) Fish ponds (5,473 ha). Mainly brackish fish ponds with a semi-permanent flooding regime,
and smaller areas of natural marshes. 5) Crops (5,207 ha). Dry-land crops surrounding the far
northern end of the remaining natural marshes. 6) Ricefields (36,600 ha). Rice cultivation
begins in May when the fields are flooded and ends around October when the rice is harvested.

Sampling design
Adult mosquito distribution and abundance were determined using a stratified random sam-
pling design, considered an efficient method for this purpose [29]. Each of the six ecological
units was divided into 1x1 km squares and 20% of the quadrates of each unit were randomly
selected. As some of these randomly selected quadrates (less than 2%) could not be easily
reached walking or by car we exchanged them by others, with easier access, in the same ecologi-
cal unit and chosen with the same randomization procedure. Each quadrate was located in the
field using a PDA device with GPS and ArcPad sofware. BG-Sentinel trap baited with BG-lure
and a container of dry ice (BG hereon) was placed in each of these quadrates, where possible in
similar microhabitats (open areas near vegetation), and put into operation one night a month
(fromMarch to November 2010), for a total sampling effort of 716 trap nights. BG and
CDC-CO2 traps have similar levels of efficacy for these mosquito species [30]. Trap number
and distribution was adapted to the inundation regimes to omit areas inaccessible due to exten-
sive flooding. A greater number of quadrates were sampled through the spring as the marsh
dried until September when the maximum numbers of quadrates were sampled. During April,
May and June, traps were transported by horse and placed on two transects across the flooded
marshes. Due to the environmental homogeneity of the ricefields and the difficulty of main-
taining the traps in these areas because of theft, fewer traps were located there. A total of 112
traps were sited, the numbers in each unit in proportion to their surface areas: 47 in marshland,
31 in scrubland, 15 in sand dunes, 10 in fish ponds, 6 in crops and 3 in ricefields.

Mosquito identification
Traps were left in place for 24 hours, and then adult mosquitoes were collected, transported in
dry ice to the laboratory and stored at -80°C. Insects were placed on a piece of white filter
paper on a Petri plate over a chill table under a stereomicroscope for identification. Species was
determined using taxonomic keys [31, 32]. Specimens belonging to the univittatus complex
were assigned to the Culex perexiguus species on the basis of male genitalia, following Harbach
(1999) [31, 32, 33]. When there were very large numbers of mosquitoes (over 500) we identi-
fied only 500 individuals while the rest of the sample was weighted and the proportion of iden-
tified individuals of each species extrapolated. Mosquito abundance was calculated as the mean
of the number of females captured per trap night. All female abundance data was georeferenced
and incorporated into a Geographic Information system (ArcGIS 10). We developed statistical
models for the seven most important species: potential West Nile vectors Culex perexiguus, Cx.
modestus, Cx. pipiens and Cx. theileri [7], the saltmarsh mosquitoes Ochlerotatus caspius and
Oc. detritus, and the malaria vector Anopheles atroparvus.

Remote sensing
Remote sensing variables were extracted from Landsat Images obtained from the USGS (U.S.
Geological Survey) Geographic Information Centre (http://glovis.usgs.gov/). Twelve images
were selected according to availability and cloud cover, spanning the full hydrologic year and
the mosquito season (30 August 2009, 17 October 2009, 2 November 2009, 4 December 2009, 6
February 2010, 3 April 2010, 5 May 2010, 6 June 2010, 30 June 2010, 1 August 2010, 10
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September 2010 and 5 November 2010). The Images were geometrically and radiometrically
corrected and radiometrically normalized by the GIS and Remote Sensing Lab of the Doñana
Biological Station (LAST-EBD) [18]. Hydroperiod, a variable that quantifies the number of
days that each pixel (900 m2) remained flooded [34], was estimated from all the available
images for the period 30 August 2009-September 2010 (Hydrological season). Inundation area
was calculated as the number of pixels that were flooded inside each buffer. Areas unsuitable
for mosquito larval development, such as salt ponds, the sea and the river, were removed from
the analysis. Normalized Difference Vegetation Index (NDVI) was calculated from the images
as a normalized ratio of the red and near-infrared bands. NDVI, which is commonly used to
determine vegetation covertures, is a measure of the relationship between these two wavelength
bands, from which photosynthetically active radiation can be calculated. Selection of a biologi-
cally appropriate buffer size has been shown to be important in identifying habitat predictors
of species distribution [35]. Therefore, we constructed buffers of 100, 250, 500, 1000 and 2000
m in radius around each trap and calculated the following variables: 1) Annual hydroperiod 2)
Annual NDVI 3) Monthly inundation surface and 5) Monthly NDVI. For these variables, the
mean and standard deviation at the 2000 m. buffer were: 75.7±54.2 for annual hydroperiod;
0.16±0.19 for annual NDVI, 5.88±0.98 for monthly inundation surface and 0.07±0.06 for
monthly NDVI. Using ARCGIS 10.1 software we extracted data for the various buffers using
the Spatial Analyst tool Zonal Statistics as a table for raster files, and the Geoprocessing Inter-
sect tool for vector files, and using a spherical variogram for the kriging method.

Statistical analysis
Environmental variables may have a strong influence on mosquito populations not only at the
time of adult capture but also, and mainly, at egg-laying and larval development which occur
1–4 weeks earlier [36]. For this reason, we examined the relationship between monthly mos-
quito data and environmental data from the current and previous months (Inundation surface
and NDVI of the previous month). All the statistical analyses and figures were carried out in R
version 2.14.2 (R Development Core Team 2005) using the mass, mgcv, lattice, pscl, ncf, rms,
mumin and vgam packages.

Annual mosquito presence, abundance, diversity and richness. Our aim is to elucidate
the relationships between environmental variables and several response variables: 1) Annual
presence of each mosquito species (except Cx. theileri, present in all trapping locations), 2)
Annual abundance of each mosquito species, and 3) Annual Shannon diversity index and
Annual species richness. The independent variables included in these analyses were: a) mean
annual hydroperiod, b) mean annual NDVI at five different buffers (100, 250, 500, 1000 and
2000 m.) and c) Landscape Unit. These relationships were analysed using: 1) a Generalized Lin-
ear Model (GLM) with logistic link and binomial distributed error [37] for annual mosquito
presence, 2) a GLM with logarithm link and negative binomial distributed error for annual
mosquito abundance, and 3) a GLM with identity link and normal distributed error for annual
Shannon diversity index and for 4) mosquito species richness.

Due to the high co-linearity between some of the explanatory variables (i.e. the same vari-
able calculated over different buffers or scales), models were fitted separately for each buffer
and to each dependent variable: species presence, species abundance, Shannon Diversity Index
and species richness. For each buffer, non-significant predictor variables were excluded step-
wise from the saturated model using the ‘drop1’ command that drops each explanatory variable
in turn and each time applies an analysis of deviance (Chi-squared distribution test). We
included linear and quadratic terms and checked the VIFs (Variance Inflation Factors) [38],
which were below 2 in all the models. We then selected the most informative buffer by AICc
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(corrected Akaike Information Criteria) using the ‘model.sel’ command (MuMin package). We
validated the best models by checking for deviance homogeneity, normality, independence,
influential observations, and overdispersion and spatial autocorrelation of the residuals. We
calculated the explained deviance as: (Null deviance-Residual deviance)/ Null deviance).

Monthly mosquito presence, total abundance, diversity and richness. We fitted models
to test the relationship between monthly presence of the seven commonest mosquito species
and the explanatory variables: a) Inundation surface of the current month, b) Inundation sur-
face of the previous month, c) NDVI of the current month, d) NDVI of the previous month, e)
Month, and f) Landscape Unit. Generalized Linear Mixed Models (GLMM) with a binomial
error distribution and binomial link were fitted including trap code as a random factor.
GLMMs were used to control for pseudo-replication as traps were repeatedly sampled. Similar
models were fitted using mosquito abundance and mosquito diversity (Shannon Index) as
dependent variables. For these variables the GLMMmodels were fitted using a negative-bino-
mial error distribution and logarithmic link. Separated models were constructed for each buffer
of each dependent variable, non-significant predictor variables were excluded using the ‘drop1’
command, and selection of the most informative buffer was based on AICc. Model validation
was performed as for annual data.

Results
A total of 972,346 female mosquitoes were captured in 718 trap nights. The most abundant
species, in descending order, were Cx. theileri (50.1%), Oc. caspius (37.4%), Cx.modestus
(10.7%), An. atroparvus (0.9%), Cx. perexiguus (0.7%), Cx. pipiens (0.7%) and Oc. detritus
(0.3%) (Table 1). Culiseta annulata, Cs. subochrea, Cs. longiareolata, An. algeriensis and Urano-
taenia unguiculata accounted for 155 individuals and were therefore not analysed at species
level. However, all the mosquito species were included in the estimation of mosquito diversity
and richness. Average female mosquito abundance peaks in June-July with notable heterogene-
ity among the different landscape units, and spatial and temporal differences between individ-
ual mosquito species (Fig 2 and Fig 3). Cx. theileri is a “spring-season”mosquito species, its
maximum abundance occurring during May, June and July, especially in marshland and to a
lesser extent in Scrubland, sand dunes and other areas. Cx. pipiens is abundant in April in
marshland and sand dunes; Cx. perexiguus is common during July and August in ricefields but
also in July in scrubland and sand dunes. Cx.modestus is abundant in marshland during June.
Oc. detritus is an early-season species, common fromMarch to May in sand dunes and fish-
ponds and near salt marshes, while Oc. caspius is abundant from June to November in all the
areas, the adults dispersing from their larval breeding sites in salt marshes. An. atroparvus is

Table 1. Number of female mosquitoes captured in each ecological unit.

Unit Culextheileri Culex
pipiens

Culex
perexiguus

Culex
modestus

Ochlerotatus
caspius

Ochlerotatus
detritus

Anopheles
troparvus

Total female
mosquitoes

Ricefields 6199 19 797 399 166 3 132 7715

Cultives 6003 17 201 56 5824 61 142 12304

Marshland 316632 1973 836 101744 181755 111 1339 604390

Scrubland 96535 2219 4010 275 54210 283 4903 162435

Sand
dunes

40886 2469 905 675 108531 1112 2914 157492

Fishponds 21360 27 148 893 13664 1349 32 37473

Total
general

487615 6724 6897 104042 364149 2919 9462 972346

doi:10.1371/journal.pone.0128112.t001
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Fig 2. Monthly number of captures of the different mosquito species fromMarch to November 2010 in the different ecological units studied.Cx.
theileri was more abundant in marshland, but also in other landscape units. Cx. perexiguuswas more abundant in ricefields, scrubland and other landscapes.
Cx.modestuswas more abundant in marshland and in June. Cx.pipiens was abundant in marshland, sand dunes and scrubland,Oc. caspiuswas abundant
in all landscapes, whileOc. detrituswas significantly more abundant in halophytic marshes of sand dunes and fish ponds.

doi:10.1371/journal.pone.0128112.g002

Fig 3. Spatial interpolation by kriging of annual mosquito abundances of: total female mosquitoes (a),Cx. theileri (b),Cx. pipiens (c),Cx.
perexiguus (d),Cx.modestus (e),Oc. caspius (f),Oc. detritus (g), and An. atroparvus (h) with an ortophotograph of the area.

doi:10.1371/journal.pone.0128112.g003
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common in June-July, especially in sand dunes and scrubland. Annual and monthly database
are avalaible as supporting information (S1 Data and S2 Data).

Annual data analysis
Hydroperiod was negatively related to the presence of all the species except Cx.modestus
(Table 2; Fig 4). NDVI had a positive relationship with Cx. perexiguus, Cx. pipiens and An.
atroparvus presence and a negative relationship with the presence of Cx.modestus and the two
salt marsh species (Oc. caspius and Oc. detritus) (Table 2; Fig 4). Interestingly, 2000 m was the
optimal buffer for most species, although for An. atroparvus and Cx.pipiens (250 m and 100 m.
respectively) The models on presence successfully controlled for spatial autocorrelation and
explained on average 40.4% of variance (Table 2).

Annual NDVI was positively related to the annual Shannon diversity Index (Fig 5; Table 3).
Interestingly, the model with the lowest AICc included the predictor variables calculated for
the smaller buffer (100 m) while the AICc increased when data from larger buffers were
included. On the other hand, annual hydroperiod (2000 m) was negatively related to mosquito
richness (Fig 5, Table 3). Cx. theileri, Cx.modestus and Cx. pipiens annual abundances had a
positive relationship with hydroperiod (Table 3, Fig 6), while Cx.modestus was more abundant
in areas with long hydroperiods with threshold values of 150–250 days (Fig 6). Cx. perexiguus
annual abundance had a positive relationship with NDVI (Fig 6), whereas Oc. caspius had a
negative relationship with NDVI (Table 3). Final models on abundance explained on average
40.2% of variance. Abundances of each mosquito species varied across the different Landscape
units (see Fig 2).

Monthly data analysis
Inundation area was positively related to the monthly presence of Cx.modestus, Cx. theileri,
An. atroparvus and Oc. detritus, and negatively related to the presence of Cx. perexiguus and

Table 2. Results of the Generalized Linear Model (binomial) of annual presence for six mosquito species (Cx. theileri is not analysed) vs hydroper-
iod and NDVI estimated at five buffers of different size. NDVI2 is the quadratic effect of NDVI.

Dependent variable Independent variable Estimate Std.error Z value p Explained Deviance

Culex perexiguus Intercept 3.001854 1.095491 2.740 0.00614 41.6%

Hydroperiod (2000 m.) -0.020864 0.008663 -2.408 0.01602

NDVI2 (2000 m.) 34.165384 15.016142 2.275 0.02289

Culex pipiens Intercept 2.03043 0.82707 2.455 0.01409 45.2%

Hydroperiod (2000 m.) -0.01907 0.00669 -2.850 0.00437

NDVI2 (100 m.) 24.89510 8.71846 2.855 0.00430

Culex modestus Intercept 2.7754 0.5385 5.154 <0.001 21.9%

NDVI2 (2000 m.) -5.6077 1.7095 -3.280 0.0010

Anopheles atroparvus Intercept 1.68936 0.61376 2.752 0.0059 36.4%

Hydroperiod (250 m.) -0.01684 0.00409 -4.117 <0.0001

NDVI (250 m.) 4.15721 1.83953 2.26 0.0238

Ochlerotatus caspius Intercept 10.26935 2.40986 4.261 <0.0001 55.3%

Hydroperiod (2000 m.) -0.06248 0.01611 -3.879 0.0001

NDVI (2000m.) -6.76464 3.13052 -2.161 0.0307

Ochlerotatus detritus Intercept 3.941303 0.896773 4.395 <0.0001 42.1%

Hydroperiod (2000 m.) -0.034884 0.007483 -4.662 <0.0001

NDVI (2000m.) -5.41918 1.914628 -2.83 0.0046

doi:10.1371/journal.pone.0128112.t002
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Oc. caspius. NDVI had a positive relationship with the monthly presence of all species except
Oc. caspius and Cx.modestus and the final models explained on average 31.1% of variance
(Table 4). Shannon diversity index was positively related to monthly NDVI at 1000 m.

Fig 4. Results of the GLM binomial analysis of the influence of Hydroperiod and NDVI on annual mosquito presences in the five different buffers.

doi:10.1371/journal.pone.0128112.g004
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(F = 2.083, df = 1,433, p = 0.04) (Fig 7). Total mosquito abundance was positively related to
inundation area at 2000 m. (F = 1.991, df = 1,433, p = 0.05) (Fig 7).

Discussion
In order to grasp the complexities of mosquito-borne disease risk we need to understand the
environmental factors underlying the distribution, abundance and composition of mosquito
vector species that ultimately determine the distribution of vector-borne pathogens and make
an important contribution to explaining the risk of pathogen transmission [39]. Given that
measuring mosquito abundances in the field is labour-intensive and expensive [40], remote
sensing data (satellite images) offer a cost-effective source of environmental data that can be
related to vector distribution and abundance, these being effective models for predicting

Fig 5. Relationships among annual hydroperiod, NDVI and Shannon diversity index andmean annual mosquito species richness.

doi:10.1371/journal.pone.0128112.g005
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mosquito abundance [41]. In this study we investigated the relationships between landscape
variables derived from satellite images and mosquito presence, abundance and diversity in a
Mediterranean wetland. For most of the species, these models explained a considerable amount
of variance compared with other models [41], so we were able to conclude that remote sensing
is a powerful tool for estimating landscape variables that are related to mosquito distribution in
natural wetlands.

Hydroperiod (water permanence) was negatively related to the annual presence of mosquito
species (Cx. pipiens, Cx. perexiguus, An. atroparvus, Oc. caspius and Oc. detritus) and to mos-
quito species richness. In fact, we found ephemeral ponds to be the wetland habitats with great-
est mosquito presence and richness, in agreement with other studies [42]. However, this study
is the first, to our knowledge, to demonstrate that low hydroperiod measured from Landsat
images can be a proxy for mosquito presence and richness. In addition, hydroperiod was posi-
tively related to the annual mosquito abundance of Cx. theileri, Cx. pipiens and Cx.modestus,
the latter species identified in areas with long hydroperiods (over 150–200 days/year). Inunda-
tion area (water surface) was positively related to monthly mosquito presence and mosquito
richness, except for the two salt marsh mosquitoes (Oc. caspius and Oc. detritus).

Both estimators, flooded area (inundation area) and flood duration (hydroperiod) deter-
mine desiccation and predation, and therefore affect mosquito communities in temporary
ponds. To complete their larval aquatic cycle, mosquitoes must emerge before the pond dries.
Ephemeral ponds (with low hydroperiods) have a high risk of desiccation but a lower probabil-
ity of having mosquito predators, such as fish and aquatic insects (Heteroptera, Odonata, Cole-
optera) [42]. Mosquitoes may be able to assess the risk of desiccation from inundation surface
enabling them to evaluate the risk of predation and avoid ovipositing in permanent ponds
(high hydroperiods) which have more abundant and diverse predators [43, 44]. Mosquito
abundance may be high in areas where pools last long enough for mosquitoes to develop and
emerge as adults, but not long enough for predators to colonize those habitats. In these
semi-permanent ponds desiccation can produce pond fragmentation, optimal habitats for
mosquitoes with low presence of predators and flooding lasting long enough for mosquitoes to
complete their life cycle.

Table 3. Results of the Generalized Linear Model (normal) of diversity andmosquito species richness in relation to Hydroperiod and NDVI esti-
mated at five buffers of different size; and results of the Generalized Linear Model (negative binomial) of annual female abundance for five mos-
quito species in relation to Hydroperiod and NDVI.

Dependent variable Independent variable Estimate Std.error Z value p Explained Deviance

Shannon diversity index Intercept 0.49805 0.04446 11.203 22.5%

NDVI (100 m.) 0.63493 0.16223 3.914 0.000159

Species Richness Intercept 3.6184 0.133408 27.124 <0.0001 39.1%

Hydroperiod (2000 m.) -0.006174 0.001435 -4.301 <0.0001

Culex theileri Intercept 5.219867 0.179935 29.010 <0.0001 47.6%

Hydroperiod (2000 m.) 0.017979 0.001929 9.321 <0.0001

Culex modestus Intercept 0.862030 0.272589 3.162 0.0015 63.4%

Hydroperiod (250 m.) 0.033984 0.002371 14.333 <0.0001

Culex perexiguus Intercept 1.7362 0.1778 9.766 <0.0001 20.9%

NDVI (2000m.) 2.9063 0.6491 4.477 <0.0001

Culex pipiens Intercept 1.904844 0.206294 9.234 <0.0001 43.6%

Hydroperiod (250 m.) 0.010010 0.002186 4.578

Ochlerotatus caspius Intercept 6.5793 0.1900 34.634 <0.0001 25.6%

NDVI (2000m.) -1.8079 0.7406 -2.441 0.0146

doi:10.1371/journal.pone.0128112.t003
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We detected species-specific differences in these patterns of habitat requirement. The high
abundance threshold of Cx.modestus corresponded to hydroperiods over 150–200 days that
were associated to a mosquito bloom in permanent marshlands in June. Two mosquito species
were negatively related to inundation surfaces because they depend on water supply from tides
(Oc. caspius) or prefer highly ephemeral ponds (Cx. perexiguus). In Doñana, there has been a
trend to shorter annual hydroperiods in recent years due to aquifer over exploitation [34]. This
may have complex effects on mosquito spatial distribution, and may increase the number of
ephemeral ponds and the presence and richness of mosquitoes. We feel it very important to
point out that in other areas where anthropic influence is greater than in these natural wet-
lands, the emergence of mosquito species may not (in general) match hydroperiod or rainfall
patterns because their habitats include bodies of water flooded by human activity, such as peri-
domestic containers or agricultural channels.

NDVI is a landscape index of photosynthetic activity, primary productivity [12, 15, 45] and
vegetation cover. Vegetation is important as resting habitat for both for adult mosquitoes and
for their host vertebrates (such as birds). NDVI had a positive relationship with annual and
monthly mosquito diversity (Shannon diversity Index), annual presence (Cx. pipiens and An.
atroparvus), annual abundance (Cx.perexiguus and Cx. pipiens) and monthly presence (Cx.

Fig 6. Relationships among annual hydroperiod, NDVI,Cx.theileri,Cx. pipiens,Cx.modestus,Cx.perexiguus andOc.caspius annual abundances.

doi:10.1371/journal.pone.0128112.g006
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perexiguus, Cx. pipiens, Cx. theileri and An. atroparvus). However, NDVI was negatively related
to the annual and monthly presence and abundance of the two saltmarsh species (Oc. caspius
and Oc. detritus) because their optimal larval habitats are halophytic vegetation with Spartina
and Salicornia, characterised by low NDVI values. In addition, Cx.modestus is again an

Table 4. Results of the Generalized Linear Model (binomial) of monthly mosquito presence for sevenmosquito species vs Inundation surface and
NDVI estimated at five buffers of different size.

Dependent variable Independent variable Estimate Std.error Z value p Explained deviance

Culex perexiguus Intercept 0.18763 0.23157 0.810 21.7%

Inundation area (500 m.) -0.22123 0.04381 -5.050 <0.0001

NDVI (500 m.) 7.63240 1.51660 5.033 <0.0001

Culex pipiens Intercept -0.9572 0.1603 -5.970 <0.0001 21.1%

NDVI (2000 m.) 6.6381 1.5025 4.418 <0.0001

Culex modestus Intercept -2.8366 1.0358 -2.739 0.00617 14.4%

Inundation area month before (2000 m.) 0.3981 0.1588 2.507 0.01217

NDVI month before (2000 m.) -5.0727 1.4096 -3.599 0.00032

Culex theileri Intercept -4.4830 0.9582 -4.678 <0.0001 49.7%

Inundation area month before (2000 m.) 0.8981 0.1491 6.022 <0.0001

NDVI (2000 m.) 6.9586 2.0493 3.396 0.000685

Anopheles atroparvus Intercept -2.4113 0.7257 -3.323 0.000891 43.6%

Inundation surface (2000 m.) 0.2298 0.1136 2.023 0.043065

NDVI month before (2000 m.) 12.2210 1.6075 7.603 <0.0001

Ochlerotatus caspius Intercept 5.2698 0.8833 5.966 <0.0001 30.5%

NDVI (2000 m.) -12.1802 1.7969 -6.778 <0.0001

Inundation area (2000 m.) -0.5996 0.1350 -4.441 <0.0001

Ochlerotatus detritus Intercept -4.9594 0.9768 -5.077 <0.0001 36.7%

doi:10.1371/journal.pone.0128112.t004

Fig 7. Relationships between Shannon diversity Index andmonthly NDVI, and betweenmonthly
mosquito abundance and inundation area.

doi:10.1371/journal.pone.0128112.g007
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exception, due to the mosquito bloom in permanent marshlands in June. As this species is
related to permanent water, the presence and abundance of Cx.modestus was related to NDVI
values over 0.2 and high inundation surfaces. These seasonal mosquito patterns are related to
climatic factors [36].

This study also sought to determine whether the monitoring of landscape variables to pre-
dict the risk of mosquito abundance, presence and diversity was best done at a micro-scale or a
meso-scale, and this emerges from the buffer analysis. The best model was in general the 2000
metre buffer, this being the scale that gives most landscape information. The optimal scale is
therefore not necessarily related to the flight range of the mosquito species or the fine resolu-
tion of the data, but rather to characteristics of the landscape variables. A large scale provides
better models probably because better reflect relevant patterns of landscape variation impor-
tant for mosquito reproduction and feeding (i.e. related to host, vegetation, predators or desic-
cation patterns). The pattern that large scales are more predictive patterns has already been
detected by other authors [17, 35, 46]. The practical implications of these results are that the
scale of the analysis should not be so fine as to under-represent the spatial variability of the fac-
tors driving mosquito distribution and abundance.

The influence of landscape variables on disease transmission risk for mosquito-borne path-
ogens has not been fully explicated, but there is clearly a link between landscape, mosquito
populations, and mosquito-borne disease occurrence [5]. It has been suggested that greater
wetland area and increasing hydrogeographic area are associated with decreasing WNV cases
[19,47], and that drought conditions favour the presence of WNV in mosquitoes [48,49]. This
drought-WNV relationship may be due to drought influencing the concentrations of birds and
mosquitoes near water sources or affecting the vector competence of mosquitoes. Our results
provide an alternative explanation, given the relation we found between high mosquito pres-
ence and richness and areas with short hydroperiods. However, these relationships are com-
plex, as revealed by our finding that high inundation surfaces condition high mosquito
abundances of most Culex species when monthly data are considered, indicating that the differ-
ences are not only spatially but also temporally conditioned and clearly depend on the ecology
of each vector species.

Our results show that higher NDVI values may condition higher Culex presences and abun-
dances, which may in turn influence WNV disease risk. Our data show that the abundance-
NDVI relationship is species-specific and cannot be generalised, and therefore priority must be
given to specific vector species according to their vector competence. In the USA, urban land
cover and WNV have been found to be related [17], and Bowden et al (2011) [9] detected dif-
ferent patterns in north-eastern and western USA. They concluded that the effect of landscape
on human disease risk is primarily mediated by its effect on the vector community and the dif-
ferent mosquito species vectors. This landscape-mosquito community effect may be mediated
by complex interactions between hydroperiod, inundation surface and NDVI across different
Landscape Units. This effect of landscape on mosquito abundance must be taken into account
when planning conservation management in Doñana and other important wetlands. Land-
scape changes (for example, increasing halophytic marshes) likely have significant effects on
mosquito communities. An important result of this study is that different species of mosquitoes
have completely different habitat requirements resulting in completely different distributions.
As can be observed in Fig 2, areas with higher abundances of each mosquito species seldom
overlap. The practical implication is clear: taking these habitat preferences into account when
designing mosquito control strategies in order to reduce the risk of transmission of specific dis-
eases may greatly increase the efficacy of management actions while reducing economic and
environmental costs. Consequently, when dealing with disease outbreaks, the objectives should
be not only to control the number of mosquitoes but identify the mosquito species target and
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to reduce in particular populations of mosquito species that play a greater role in amplification
and transmission of the pathogen in question to humans or other species of interest.

To sum up, we found strong evidence that mosquito vector abundance, presence and diver-
sity are related to landscape variables. Water and vegetation distribution across the landscape
may be of particular importance in the distribution of mosquitoes and the interaction with
host distribution. We detected some common patterns among mosquito species, but each has
its own bionomic properties (flight range, interspecific larval competition, larval habitat prefer-
ences, host preferences, etc.) conditioning specific relationships with landscape indicators. We
found evidence that, usually, larger buffers captured better environmental variability related to
mosquito abundance and distribution patterns.

This extensive study involved the capture of large numbers of mosquitoes in more than one
hundred sites. However, further studies are needed to improve on certain limitations in this
work, such as including survey sin urban and periurban landscapes, extending the sampling
period over several years or developing extensive larval surveys. Only global approaches can
help us understand the complex inter-relationships between pathogens, vectors, hosts and
environment that determine the transmission cycles of mosquito-borne diseases. In particular,
understanding the link between landscape and vector populations is central in the design of
mosquito control measures to prevent disease outbreaks, and in understanding where and
when the risk of mosquito-borne disease is highest.
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