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ABSTRACT 

Life-history strategies have evolved in response to predictable patterns of environmental 

features. In practice, linking life-history strategies and changes in environmental 

conditions requires comparable space-time scales between both processes, a difficult 

match in most marine system studies. We propose a novel spatio-temporal and dynamic 

scale to explore marine productivity patterns likely driving reproductive timing in the 

inshore little penguin (Eudyptula minor), based on monthly data on ocean circulation in 

the Southern Ocean, Australia. In contrast to what occurred when considering any other 

fixed scales, little penguin’s highly variable laying date always occurred within the 

annual peak of ocean productivity that emerged from our newly defined dynamic scale. 

Additionally, local sea surface temperature seems to have triggered the onset of 

reproduction, acting as an environmental cue informing on marine productivity patterns 

at our dynamic scale. Chlorophyll-a patterns extracted 

from this scale revealed that environment factors in marine ecosystems affecting 

breeding decisions are related to a much wider region than foraging areas 

that are commonly used in current studies investigating the link between 

animals’ life history and their environment.We suggest that marine productivity patterns 

may be more predictable than previously thought when environmental and biological 

data are examined at appropriate scales.  
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INTRODUCTION 

The role of environmental variability in modulating organisms’ life-history strategies is 

still an outstanding issue in ecology [1]. Organisms’ annual cycles and their breeding 

milestones presumably evolved in response to predictable inter-annual patterns of 

environmental features driving food availability [2]. This is particularly crucial for 

species inhabiting at temperate zones, where the success of reproduction depends on 

their ability to adjust reproductive timing to a suitable period of the year with enough 

food availability [3] [4]. The timing of peak food availability varies between areas and 

years. As a consequence, the optimal timing of reproduction will also vary [5]. Fine-

tuning at matching reproductive timing to high productivity patterns requires, therefore, 

certain plasticity in animals’ phenology [6], along with a clear precursor signal 

informing on productivity patterns [2]. This cue needs also to be  in time for allowing 

the physiological and behavioural responses leading to reproduction [7].  

Investigations on environmental drivers of reproductive timing require appropriate 

space-time units for comparison between environmental proxies and phenological 

decisions [8, 9]. Whereas local environmental features could have been targeted by 

selective pressures for reproductive timing in low dispersive species (e.g. sedentary 

species [10]), large-scale environmental cues (e.g. global climate indices) should be the 

ones likely implemented as drivers of reproductive timing in high dispersive species 

(e.g. migratory species [11, 12]). However, in open marine environments, empirical 

support may be lacking when choosing a suitable scale of study that is able to predict 

matches between environmental and ecological processes. Indeed, physical processes 

largely controlling productivity patterns (e.g. currents, frontal zones, eddies) operates at 

scales of 10s to 100s km in the ocean [13, 14] , which are probably many times wider 

than the foraging areas of marine predators such as inshore seabirds [15, 16]. 
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Furthermore, biomass drifts away in space and time while energy flows from primary to 

higher trophic levels throughout marine food webs [17, 18]. Accordingly, the 

dynamisms of marine ecosystems, along with the time delay between productivity 

patterns and its real consequences in food availability may be influencing species’ life 

history strategies far beyond the limits of their foraging ranges, and well before the 

onset of reproduction. 

Due to the difficulty in obtaining direct measures of prey distribution and availability in 

marine ecosystems, most marine animal studies use proxies such as chlorophyll-a 

concentration (CHL) and sea surface temperature (SST) to unravel spatio-temporal 

patterns in marine productivity and physical features linked to prey availability [10, 19]. 

However, little is known about elapsed time responses between changes in 

environmental patterns and the related fluctuations in food availability. In most marine 

animal studies, correlations between environmental proxies and response variables (e.g. 

laying date) are explored at different time lags (i.e. CHL and SST one to n months 

before the onset of reproduction), and restricted to animals’ foraging grounds, thus 

potentially overlooking causal relationships between environmental drivers and 

breeding decisions. 

Here we use continuous, high-temporal resolution data on ocean circulation, CHL and 

SST to examine the relationship between spatio-temporal patterns in marine 

productivity and published laying dates over 19 years (1993- 2011) of an inshore 

seabird, the little penguin (Eudyptula minor) breeding at Philip Island, Australia. Little 

penguins was selected as a suitable model species because of  its great plasticity in 

breeding schedule, with breeding onsets varying inter-annually, foraging in a highly 

dynamic and complex water circulation Bass Strait [20] and thus suggesting certain 

ability to adjust its breeding time to inter-annual changes in marine productivity 
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patterns. In this study, we used long-term (1993-2009) satellite-observable information 

on monthly ocean circulation to derive a novel dynamic spatial scale including water 

masses flowing to little penguin foraging ground and likely influencing its food 

availability and reproductive timing. Weekly information on CHL derived from the new 

dynamic scale (1998-2009) and local SST (1993-2011) were used as a surrogates of 

marine productivity [10] and environmental cues likely informing marine productivity 

patterns [11]. Working with this fine temporal resolution allowed us to obtain a 

chronological sequence of processes (environmental and biological) through all the 

study period, and explore for matching and temporal delays between seasonal patterns 

of environmental drivers and the onset of reproduction (Fig. 1). 

 

MATERIALS AND METHODS 

Study area and breeding data 

We studied the timing of little penguin breeding at Phillip Island (Bass Strait), southeast 

Australia (38°15’ S, 143°30’ E). Field methods are described in detail elsewhere [21-

23]. Only the mean laying dates of first clutches are used here. We used published 

laying date data of little penguins from 1993 to 2006 combined with further five years 

of data from the same breeding sites on Phillip Island, resulting in a 19-year dataset 

(1993-2011). 

Oceanographic area and environmental data 

Bass Strait is an on-shelf region of highly mixed water and relatively low productivity 

[17, 24] with a very complex and seasonal circulation [20]. The surrounding region 

hosts two main surface boundary currents influencing water properties of Bass Strait 

(Figure S1 in Supporting Information). The Leeuwin Current provides Bass Strait with 

nutrient-rich water from the west, mainly during winter and spring. The East Australian 
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Current (EAC) flows southwards, bringing eddies of warm nutrient-poor tropical water 

from the Pacific Ocean into eastern Bass Strait, with a more intense flow from April to 

September [17]. The interaction of these water masses is influenced by seasonal, 

particularly winter, wind patterns, which enhances nutrient-rich water intrusions from 

western entrances resulting in significant decreases in sea temperature at the Bass Strait 

[11]. 

We used chlorophyll-a (CHL, mg C m
-3

) as proxy to marine productivity and sea 

surface temperature (SST, ºC) as potential environmental cues driving little penguins’ 

onset of reproduction. CHL and SST were sourced online on a weekly basis from three 

different sources to cover the 1993-2011 temporal range when data were available: (a) 

AVHRR Pathfinder Version 5.2, spatial resolution of 0.041667º, obtained from the US 

National Oceanographic Data Center and GHRSST (http://pathfinder.nodc.noaa.gov) 

for SST data from 1993 to 2002 [25]; (b) SeaStar SeaWiFS, spatial resolution of 

0.08333º  for CHL data from 1998 to 2002 (http://oceancolor.gsfc.nasa.gov/); and (c) 

Aqua MODIS (http://oceancolor.gsfc.nasa.gov/), as level 3 Hierarchical Data Format 

(HDF) for CHL and SST products at a spatial resolution of 0.041667º (2002-2011). 

CHL and SST variables were processed and converted from HDF files to raster images 

using the Marine Geospatial Ecology Tools for ArcGIS10.1 [26]. We used SST data 

from 1993 to 2011 years and CHL from 1998 to 2009. 

Sea surface current data were used to incorporate ocean dynamics in our study. Data 

were retrieved from the Global Ocean Physics Reanalysis Models 1993-2009 

(www.myocean.eu, for the GMES services in the Marine Area project). Observation 

data were based on topography, altimetric sea level anomaly and sea surface 

temperature from track satellites (Topex Poseidon, Jason, Envisat and ERS), and in situ 

profiles of temperature and salinity. Models are provided in netCDF format at a 0.25º 

http://pathfinder.nodc.noaa.gov/
http://oceancolor.gsfc.nasa.gov/
http://www.myocean.eu/
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horizontal resolution and contain monthly average patterns of the main ocean currents 

as meridional and zonal components of horizontal water speed vectors. These variables 

were converted to monthly raster of water speed and direction with a Model Builder 

procedure in ArcGis 10.1 (ESRI, Redland, USA).  

Analyses 

Dynamic areas of influence 

To identify the origin of connected water masses and therefore flowing to the Bass 

Strait, we used a connectivity-modelling approach using circuit theory. Analyses were 

performed with Circuitscape software [27]. Circuitscape couples graph theory with 

electrical circuit theory and measures habitat connectivity by calculating the cumulative 

current that flows through each cell of a resistance map. This approach has been 

commonly used in terrestrial environments, whereas bio-physical models have been 

used to investigate organism’s connectivity in marine systems [17]. However, new 

frameworks have been recently developed for the study of connectivity matrices at the 

marine environment [see a graph-theorical approach in 28]. Circuit theory has improved 

notably the bases of the graph-theory by applying network theory to quantify 

connectivity in systems [29] that respond positively to the presence of alternative 

pathways, relating structure and functional connection of the network [30]. This novel 

approach allows addressing connectivity studies through long-time series and large data 

by reducing computational efforts. Connectivity measures incorporate both the 

minimum movement distance or cost and the availability of alternative pathways [27]. 

Therefore, lesser connectivity is assigned to areas with multiple pathways possibilities 

and the result is a continuous map of probabilities of routes (outputs in Volt units), 

rather than a single, least-cost path [31]. Circuit theory presents considerable robustness 

to changes in the scale of analysis, dealing with the choice of an appropriate cell size 
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and map extent that always involves representing a landscape as a raster grid. Ocean 

currents information over an area of 10000 x 4000 km surrounding the Bass Strait was 

used to construct a monthly resistance map as input for Circuitspace. The resistances 

values represents the relative effort required to traverse a pixel on a map [32]. For this 

purpose, we generated a direction raster representing azimuth directions between each 

raster cell and the Bass Strait. Then we estimated the absolute differences (Δ angles) 

between sea surface current azimuths and the angle obtained from the direction raster 

for each cell and month in the 1993-2009 period. Following Raymond et al 2014 [33], Δ 

angles were transformed in a measure of resistance by using the function y = 0.6184 x – 

0.0984 x
2
 (y=resistance, x= Δ angle, in radians; see the electronic supplementary 

materials, figure S2). Parameters were estimated from calculated angles to obtain a [0, 

1] interval of costs. This function assumes a resistance quadratic function, assigning 

minimum resistance values to angles pointing to the Bass Strait, and increasing 

gradually for opposite directions, while overcoming the prerequisite of resistor isotropy 

ascribed to circuit-theory. The final measure of resistance was obtained multiplying the 

results by water speed (Fig. 2). From each monthly output map we selected the higher 

connectivity areas to Bass Strait (those enclosed within the upper quartile -Q4-, 

hereafter called “areas of influence”. Monthly areas of influences were used as the 

dynamic scale to extract average values of CHL.  

Patterns of chlorophyll-a and sea surface temperature 

In order to test the suitability of the SST as environmental predictor of the CHL patterns 

in the areas of influence, we compared time series data of both environmental variables 

for the 1998-2009 period. Weekly CHL was extracted from each monthly area of 

influence. As a local environmental cue, weekly SST was extracted from the foraging 

area. CHL and SST were interpolated daily using a non-parametric locally smoothing 
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function (loess) to remove noise in the original signal of weekly data [34]. The 

smoothed data were decomposed into their trend, seasonality and irregular components 

by a time series additive model [35] to explore for their repeated patterns in annual 

peaks and troughs. The correlation between CHL and detrended SST time series as a 

function of daily time-lag, was analysed through a cross-correlation method [36]. 

Coefficient values range from 0, no correlation, to -1 or 1, denoting total correlation (-1, 

1), at different lagged time units. 

Dynamic vs. fixed scales 

To test for the suitability of the areas of influence as a scale indicative of phenological 

processes, we defined nine different, concentric areas ranging from a local (100 km 

width corresponding to the Little penguin’s foraging area [15]) to a regional scale (1000 

km width), at incrementing intervals of 100 km. Weekly mean values of CHL were 

extracted from fixed and monthly dynamic scale for the 1998-2009 period. We 

compared the differences in time (weeks in absolute value) between laying date and 

maximum annual peak of CHL (mean and SD) for each spatial scale. 

Phenological adjustment to environmental annual cycles 

In order to summarize the information for the entire study period, laying date (mean and 

SD, 1993-2011), CHL (1998-2009) and SST (1993-2011) were standardised and 

averaged daily. Mean and SD values were standardised relative to the time of the annual 

minimum values of SST. This procedure made possible to compare the time adjustment 

of both environmental and phenological processes during all the annual cycles of the 

study period, considering the start of the season instead of the start of the calendar year. 

All analysis were performed in R 3.0.2 [37].  

 

RESULTS 
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Dynamic areas derived from our connectivity analysis, the areas of influence from 1998 

to 2009, showed an influence zone ranging 500 km, with two separate regions at the 

eastern and western sides of Bass Strait (Fig. 3a). These regions are characterised by 

seasonal eddies that act as potential barriers in the resistance surfaces, and consequently, 

delimit the outer edges of the areas of influence (see Figure S3 in Supporting 

Information). As expected by the changes in direction and intensity of ocean currents 

during the year, these areas extend further depending on the season (Fig. S4 and Video 

S1). Areas of influence showed greater variability in their longitudinal (157º 46’ E and 

128º 53’ E) than in their latitudinal ranges (29º 59’ S and 49º 53’S). Monthly averages 

revealed certain seasonality in the influence of the east and west sides, reflected in 

latitudinal asymmetries on areas depending of the months (Fig. S4). Indeed, the eastern 

area of influence peaked during the austral autumn (April to October), whereas the 

western area of influence reached its maximum value from late winter, to spring and 

summer (October to February) (electronic supplementary material, figure S2 and video 

S1).  

CHL trends within defined areas of influence for the 1998-2009 period (Fig. 4) revealed 

that  maximum annual peaks typically occurred from  September to November, 

matching the onset of little penguin reproductive season (with the only exception of an 

anomalous year (2009), when the maximum annual peak occurred in March).  

During the 1993-2011 period, mean laying date of little penguins ranged from 18 

September to 17 November. CHL annual peaks obtained from dynamic and a set of 

fixed scales (Fig. 3a)  show a greater synchrony over time with monthly dynamic scales 

(Fig. 3b). Indeed, laying date occurred consistently within ca. three weeks around the 

annual peak of CHL within our areas of influence (Fig. 4). In contrast, patterns 

exhibited at all the rest of the static scales yielded four to five times greater interannual 
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variability between annual peak of CHL and penguin’s phenology. Delayed time 

between laying date and the CHL annual peak pointed to the newly defined dynamic 

scale as the scale with the most predictable power, i.e. the one that showed the greater 

synchrony over time with little penguins’ laying date (as revealed by the standard 

deviation of averaged, delayed time), and the one that couples the best with penguin 

phenology laying date (Fig. 3b).  

SST patterns within penguin’s foraging areas showed an annual cycle that oscillated 

with minimum values around August, ca. seven weeks before annual peak of CHL in 

our areas of influence (Fig. 4). Maximum correlation between local SST and CHL 

values from the areas of influence was achieved with an seven-week delay (correlation 

coefficient = - 0.37). The negative correlation implies that lower values of local SST 

resulted in rising CHL values in the areas of influence (Fig. 5).  

Seasonal cycles of SST commonly started in August, with the slow rising of SST and 

faster rising of CHL with a higher annual peak (Fig. 6). Interannual variability revealed 

SST as a physical variable with a fixed periodicity and a narrow range of variation 

among years. Laying date was seven weeks (± two weeks) on average after the trough 

of SST, associated to the CHL peak of the areas of influence.  

 

DISCUSSION 

Here, we developed a novel spatio-temporal and dynamic scale to explore marine 

productivity patterns likely driving reproductive timing in an inshore resident top 

predator, little penguin (Eudyptula minor). We provided strong evidence suggesting that 

little penguins, initially thought to breed in an unpredictable marine environmental [38] 

within a complex and seasonal nutrient regime [20],were able to fine-tune reproductive 
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timing to high marine productivity patterns derived from large marine areas that 

included water masses that are likely connected to penguins' foraging grounds.   

Based on marine current movements within a connectivity analysis framework, we 

determined new regional spatial areas much larger that penguins’ local foraging zone 

when breeding. We use these new areas, the areas of influence, to extract meaningful 

values of CHL to link with biological data of this top/meso predator (Fig.4). To validate 

our approach, we compared our areas of influence with several incremental fixed areas. 

As result, the CHL peak from areas of influence matched with laying date between three 

and six times better than any other fixed areas (Fig. 3b). We demonstrated that time of 

laying was enclosed within annual peak of CHL over 11 years of study, when using 

areas of influence  based on dynamic ocean circulation rather than in any fixed spatial 

scales (Fig. 3b). Thus, ocean dynamics in the newly determined areas of influence were 

very robust in determining the actual scale at which seabirds interact with their 

environment, while fixed areas, a common approach used to derive environmental data 

in marine animal studies, failed to detect these interactions.  

Furthermore, increase in SST within foraging areas was a clear precursor signal 

indicating marine CHL peaks emerging at areas of influence, thus pointing to its role as 

the environmental cue triggering reproduction in little penguins (Fig. 3b). Using mean 

values derived from the areas of influence, the onset of penguin breeding (laying date) 

was ca. seven weeks after rising of the local sea surface temperature and felt within the 

annual peak of marine CHL (Fig. 6). Thus, SST within penguin foraging range showed 

marked, repeatable, variable in time but yet predictable annual cycles regardless of the 

calendar year over the 19 years of this study. 

Monthly areas of influence are probably those areas whose waters will take part in 

transport into Bass Strait and potentially influencing productivity that would eventually 
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reach little penguin foraging zones (Fig. S4).  Areas of influence were composed of two 

main source areas at the western and eastern sides of Bass Strait. Seasonal eddies and 

water currents steadily flowing out of Bass Strait lead to a seasonal variability in the 

limits of probability surfaces (Figure S3, Video S1). The extent and influence of 

currents and water masses vary seasonally and inter-annually in Bass Strait [11]. In 

accordance with previous oceanographic works at this region, our areas of influence 

highlighted eastward influence during autumn and winter, whereas areas of influences 

grow westward during summer [17, 39]. This spatio-temporal variability is integrated in 

our dynamic scale by constructing areas of influence on a monthly basis. CHL of areas 

of influence inform about the future productivity at local areas and the possibility of 

prey arriving during the process from primary to secondary production. Further, the 

observed time-lagged correlation between local SST values and patterns in CHL at 

derived, dynamic scales (ca. seven weeks, Fig. 5) pointed to SST as the precursor signal 

to trigger penguin breeding in anticipation to the peaks of marine productivity ahead 

(Fig. 6). This period between SST trough and peak CHL would be required by penguins 

to accomplish their breeding preparation such as physiological [e.g. gonadal 

preparation, 40] and behavioural [e.g. mate selection, 41] processes leading to 

reproduction to match the laying period with the annual peak of marine productivity. 

The relatively constant elapsed time in different breeding processes among individuals 

found in previous works [21]  suggested that inter-annual variability in the onset on 

reproduction seems not to be influenced by physiological aspects (e.g. sperm storage, 

delayed ovulation) but by individuals’ choice of the right moment to start the 

reproduction in response to favourable environmental conditions. Our new approach 

could lead to new insights into animal decisions driven by changes in the complex 

marine environment.  
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Most ecological questions require knowledge on the environmental drivers of 

organisms' life cycles. Each species experiences the environment on a unique range of 

scales, according with their own experience and their ability to cope with environmental 

variability [8, 42]. Here, we provide strong evidence suggesting that the effects of 

dynamism (spatial and temporal) in the environment cannot be neglected when 

investigating the link between animals and their environment. Our findings suggest that 

environmental factors in marine ecosystems affecting breeding decisions are related to a 

much wider region than the ones used in current studies investigating the link between 

animals’ life history and their environment. In turn, while most seabirds are thought to 

live in an unpredictable environment, our results suggested that marine productivity 

patterns may be more predictable than previously thought when looking at the 

appropriate scale. Our approach could offer new insights in processes causing altered 

conditions under which species have evolved, such as climatic change or 

overexploitation of fisheries. Environmental cues could in these cases offer a mismatch 

signal decoupled of historical environmental patterns, with detrimental effects on 

species survival [6]. 
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FIGURE LEGENDS 

Fig. 1: Flow-chart illustrating the applied methodology. From ocean currents 

reanalysis model data, we derived monthly water cost movement to Bass Strait, using 

water speed and direction. Areas of influence comprise waters flowing to Bass Strait, 

varying monthly (see Material and methods). From this dynamic spatial scale we then 

obtained mean values for CHL. Temporal patterns of SST were extracted locally, from 

little penguins’ foraging area. 
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Fig. 2: Resistance function applied to obtain the resistance habitat input in the 

Circuitscape analysis. Polar plot with resistance values (non-dimensional) for 

waterflow as a function of water direction and speed. In relation to water direction, 

estimates (ranging from 0 to 1) were obtained as a slope dependent function for x 

values, where x values represent the absolute angle difference (ranging from 0 to 2π 

radians) between current azimuths and direction of each pixel to the sink, i.e. the Bass 

Strait (see the electronic supplementary material, figure S2). Final resistance was 

obtained by multiplying these estimates by water speed, thus resulting in higher 

resistant values for those spatial locations where faster currents (ca. 3.6 m/s) flowed in 

the opposite direction (π radians) to the Bass Strait. 
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Fig. 3: Penguins phenology was closely coupled to productivity patterns at 

dynamic scale.  (a) Suitability of dynamic scales was compared to fixed spatial scales 

at incrementing intervals of 100 km from penguins foraging area delimited by Cullen et 

al. [15] to regional area (1000 km). Mean areas of influence for the 1993-2009 period is 

shown in graduated colours displaying conductivity (in volts). (b) Inter-annual variation 

(± s.d.) in the differences in time (weeks in absolute value) between laying date and 

maximum annual peak of chlorophyll-a across dynamic and fixed spatial scales between 

1998 and 2009. Match time is highlighted in the dynamic scale (mean: 2.42, s.d.: 2.45 

weeks). 
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Fig. 4: Patterns of Chlorophyll-a and sea surface temperature. Annual patterns of 

CHL (green line) and SST (blue line) from 1998 to 2009. Grey dashed lines mark little 

penguins annual mean laying date. Time series were daily interpolated and smoothed to 

remove noise in the original signal of weekly data.  

 

Fig. 5: Local signal (sea surface temperature) predicts productivity patterns at 

dynamic scale. Cross-correlation analysis between local sea surface temperature and 

chlorophyll-a extracted from areas of influence, as a function of daily lag. The 

maximum correlation indicates that the sea surface temperature leads the productivity 

by seven weeks. 
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Fig. 6: Environmental cycles and little penguin reproduction. Intra-annual trend 

(mean ± s.d.) for environmental variables (CHL in green and SST in blue) relative to 

annual minimum values of SST, and subsequently daily averaged. Environmental 

features were transformed to a non-dimensional variable (variability) ranging from 0 to 

1 and indicating the percentage of variation with respect to the intra-annual variation 

range. Little penguin’s laying date (mean and s.d. in grey lines) occurs ca seven weeks 

after rising SST values, and is always enclosed within annual peak of CHL at the 

dynamic scale. 
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SUPPORTING INFORMATION 

Figure S1: Study site. Study site and most relevant ocean currents surrounding South 

Australia. 

 

Figure S2: Resistance function assume a quadratic function, ranging from 0 to 1, 

resulting in a downward parabola. Parameters have been estimated from all range of x 

values [0-2π radians]. The function is isotropic and slope-dependent for x values 

(absolute difference angles between current mean azimuths and direction of each pixel 

to the source, Bass Strait), estimating lower values for the directions pointing to the 

source, and greater values for the opposite directions. Polar plot shows the resistance 

values variation in all ranges of angles (0-360º) and current speeds (lower to higher 

speeds from inner to outer part of the circle). 
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Figure S3: Steps and outputs of the process to derive monthly areas of influence, using 

two contrasting months as example: February 2000 on the left side and September 2000 

on the right side). Ocean current data (A, B). Water speed is graded in colour. Cost 

raster derived from ocean currents (C, D). Areas of influence (E, F): connectivity maps 

should be interpreted as a probability of ways to arrive to the sink. Upper quartile was 

used to delineate final areas. Arrows show water speed from original current models. 

The higher the arrow, the higher the water speed. Colour scheme on the bottom of the 

figure. 
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Figure S4: Monthly maps showing the mean of the areas of influence for the 1998-

2009 time period. Influence areas show a breakpoint between eastern and western side 

of Bass Strait. Eastward influence areas show greater surface during autumn and winter, 

diminishing during summer, when areas of influence grow westward.

 

 


