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Abstract 

Three different synthesis methods producing nanometric grain sizes, coprecipitation 

with ammonium carbonate, oxalic acid, and by attrition milling have been studied to 

produce Ca3Co4O9 ceramics and compared with the classical solid state route. 

These three processes have produced high reactive precursors and all the organic 

material and CaCO3·have been decomposed in a single thermal treatment. 

Coprecipitation leads to pure Ca3Co4O9 phase, while attrition milling and classical 

solid state produce small amounts of Ca3Co2O6 secondary phase. Power factor 

values are similar for all three samples, being slightly lower for the ones produced 

by attrition milling. These values are much higher than the obtained in samples 

prepared by the classical solid state method, used as reference. The maximum 

power factor values determined at 800 ºC (∼ 0.43 mW/K2m) are slightly higher than 

the best reported values obtained in textured ones which also show much higher 

density values. 
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1. Introduction 

Thermoelectric (TE) power generation technology is regarded as one of the most 

promising methods to harvest energy from wasted and/or natural heat sources. In 

order to be used for practical applications, TE materials with high energy conversion 

efficiency are required for example, for electric power generation. Thermoelectric 

conversion is an effective technology that can be used to transform thermal to 

electrical energy. From this point of view, it can help to solve global warming by 

reducing CO2 emissions improving the efficiency in classical energy transformation 

systems and exploiting natural heat sources. The conversion efficiency of TE 

materials is usually quantified by the dimensionless figure of merit ZT, which is 

defined as TS2/ρκ (S2/ρ is power factor, PF), where S is Seebeck coefficient, ρ 

electrical resistivity, κ thermal conductivity, and T absolute temperature [1]. From 

this expression, it is clear that a high performance TE material must posses high 

Seebeck coefficient together with low electrical resistivity and thermal conductivity. 

Semiconducting and intermetallic materials have been widely used to manufacture 

TE modules but, on the other hand, they are usually composed of heavy and/or 

toxic elements. Moreover, they can melt, evaporate or oxidize at high temperatures 

under air and these factors limit their range of applications. The discovery of high 

thermoelectric performances in a ceramic material, NaxCoO2 [2], provided a solution 

for these problems. This material is composed of non toxic and cheaper elements 

than the classical ones. Furthermore, it can operate at high temperatures, under air, 

for long time without degradation. As a consequence, the search for new oxide 

materials with high thermoelectric performances has been intensively performed. 

These efforts allowed the discovery of some other layered cobaltites, such as 

[Ca2CoO3][CoO2]1.62 and [Bi0.87SrO2]2[CoO2]1.82 which were also extensively studied 
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due to their attractive thermoelectric properties [3-9]. Anyway, the TE properties 

nowadays reached must be increased before they can be used in practical 

applications [10]. 

The crystal structure of these CoO families is composed of two different layers, with 

an alternate stacking of a common conductive CdI2-type CoO2 layer with a two-

dimensional triangular lattice and a block layer, composed of insulating rock-salt-

type (RS) layers which lead to a very important crystalline and electrical anisotropy. 

Both sublattices (RS block and CdI2-type CoO2 layer) possess common a- and c-

axis lattice parameters and β angles but different b-axis length, causing a misfit 

along the b-direction [11,12]. This anisotropy explains the great efforts put on the 

study and development of different texturing techniques which can produce 

polycrystalline materials with their ab planes parallel to the electrical transport 

direction. Some of them have already shown their potential in increasing the 

performances of ceramic TE materials, as sinter-forging [13], template grain growth 

[12], spark plasma texturing (SPT) [14], or directional growth from the melt [15]. In 

addition, different cation substitutions have been widely used to modify the bulk TE 

properties [16-20]. 

On the other hand, the preparation techniques have shown that they can influence 

drastically the bulk final properties [21], but synthesis methods have not yet been 

enough explored. Commonly, bulk materials are prepared following the classical 

solid state reaction method, which involves repeated mixing, milling and thermal 

treatments. Nevertheless, incomplete reaction, and compositional inhomogeneities 

are typical trademarks of conventional solid state reaction. In this context, other 

synthesis methods can offer several advantages, as higher precursor homogeneity 

and lower particle sizes which should lead to lower reaction times and/or 
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temperatures and/or higher performance materials. These characteristics, together 

with a high performances material, are of the main importance for their massive 

fabrication to be applied in power generation. 

The aim of the present work is the study of different synthesis methods that yield 

small particle size and homogeneous precursors, to produce high-quality Ca3Co4O9 

bulk materials for practical applications. In this work it will be shown the comparison 

between three different synthesis methods which produce precursor powders with 

very high surface/volume relationship. These methods have already been used 

previously in other systems: coprecipitation with ammonium carbonate (as reported 

for LaGaO3 in [22]), coprecipitation with oxalic acid (as reported for BaSnO3 in [23]), 

and attrition milling (as reported for Bi2Sr2CaCu2Ox in [24]), using the solid state 

route as reference. A very important advantage of the two first methods is the 

intimate mixture of cations in the precipitate, which allows obtaining very pure final 

products. The final bulk properties will be determined, related with the 

microstructure, and compared with those obtained on classical solid state prepared 

samples. 

 

2. Experimental 

2.1. Synthesis 

The initial Ca3Co4O9 mixtures used in this work correspond to the appropriate 

amount of precursors to produce 5 g Ca3Co4O9 in the coprecipitation methods while 

in the attrition and solid state procedures 20 g have been obtained due to the milling 

devices sizes. These products were prepared by the different methods described in 

detail in the following paragraphs: 
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(i) Coprecipitation with ammonium carbonate [22]: CaCO3 (≥ 99%, Aldrich), and 

Co(NO3)2 • 6H2O (≥ 99%, Aldrich) were dissolved in a mixture of HNO3 (Fluka, PA) 

and distilled water. Once a clear solution was obtained, (NH4)2CO3 (Panreac, PRS-

CODEX) was added stepwise until a pH value of around 7.1 was obtained. This 

value has been determined experimentally as different pH values do not totally 

precipitate the different cations. The slurry was then kept at 75 ºC for 15 minutes 

with continuous stirring to age the precipitate. After this process, the resulting 

suspension was filtered to separate the solid product which was subsequently 

washed several times with distilled water. The light violet solid product was dried at 

∼ 150 ºC, calcined at 750 ºC for 12 h, manually milled, pressed at about 400 MPa in 

form of parallelepipeds (~ 3 mm x 3 mm x 14 mm) and sintered at 900 ºC for 24 h 

with a final furnace cooling. 

(ii) Coprecipitation with oxalic acid [23]: CaCO3 (≥ 99%, Aldrich), and Co(NO3)2 • 

6H2O (≥ 99%, Aldrich) were dissolved in a mixture of HNO3 (Fluka, PA) and distilled 

water. To the above clear solution, HOOCCOOH • 2H2O (Panreac, ≥ 99.5%) was 

added stepwise until a pH value of around 0.4 was obtained. This value has been 

determined experimentally as different pH values do not totally precipitate the 

different cations. The resulting suspension was kept 15 minutes at 75 ºC with 

continuous stirring. The slurry was then filtered and washed several times with 

distilled water to isolate a light pink solid. The product was dried at ∼ 150 ºC, 

calcined at 750 ºC for 12 h, manually milled, pressed at about 400 MPa in form of 

parallelepipeds (~ 3 mm x 3 mm x 14 mm) and sintered at 900 ºC for 24 h with a 

final furnace cooling. 

(iii) Attrition milling [24]: CaCO3 (≥ 99%, Aldrich), and Co3O4 (99.5%, Panreac) were 

mixed and attrition milled, using ZrO2 balls as milling media in water, for 6 h. The 
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resulting slurry was then sieved and the balls were washed several times with 

distilled water to separate the grinding media and the milled solid. The suspension 

was then totally dried under infrared radiation until a soft brownish powder was 

obtained. The fine powder was calcined at 750 ºC for 12 h, manually milled, 

pressed at about 400 MPa in form of parallelepipeds (~ 3 mm x 3 mm x 14 mm) and 

sintered at 900 ºC for 24 h with a final furnace cooling. 

(iv) Classical solid state method [25]: CaCO3 (≥ 99%, Aldrich), and Co3O4 (99.5%, 

Panreac) were mixed and ball milled, using agate balls as milling media in acetone, 

for 0.5 h. The resulting slurry was then sieved and the balls were washed several 

times with acetone to separate the grinding media and the milled solid. The 

suspension was then totally dried under infrared radiation until a soft brownish 

powder was obtained. The powder was then calcined twice at 750 ºC and 800 ºC 

for 12 h, with an intermediate manual milling, pressed at about 400 MPa in form of 

parallelepipeds (~ 3 mm x 3 mm x 14 mm) and sintered at 900 ºC for 24 h with a 

final furnace cooling. 

Hereafter, samples produced by the coprecipitation method with ammonium 

carbonate will be named S1, with oxalic acid, S2, the ones by attrition milling, S3, 

and the classical solid state ones, S4. 

 

2.2. Characterization 

The precursors evolution has been performed in several steps by DTA-TGA (TA 

Instruments, SDT Q600) between room temperature and 900 ºC at a heating rate of 

10 ºC/min. FTIR (Bruker IFS 28 Spectrometer) has been used to identify the 

precipitate products, as well as the presence of CaCO3 after the different thermal 

treatments. Moreover, the powders microstructure and grain size evolution has 
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been studied in a Field Emission Scanning Electron Microscope (FESEM, Carl 

Zeiss Merlin). 

Phase identification in the sintered materials has been performed using powder X-

ray diffraction (XRD) utilizing a Rigaku D/max-B X-ray powder diffractometer (CuKα 

radiation) with 2θ ranging between 10 and 70 degrees. Apparent density 

measurements have been performed on several samples for each synthesis 

method, as pressed and after sintering, using 4.677 g/cm3 as theoretical density 

[26]. Microstructural observations were performed on fractured and polished 

samples in a FESEM fitted with an energy dispersive spectrometry (EDS) device 

used to determine the elemental composition of each phase. 

Oxygen content was determined in sintered materials by cerimetric titrations. In all 

cases, 100 ml HCl 1 N were kept under Ar flux during at least 1 h in order to 

evacuate the oxygen from the reaction vessel, avoiding the reactives oxidation. 

After this process, 50 mg of the powdered sample was added to the acidic solution 

to be dissolved, together with 100 mg FeCl2 and a drop of ferroin indicator. In these 

solutions, Co+4 and Co+3 are reduced to Co+2 while Fe+2 is oxidized to Fe+3. Fe+3 is 

then titrated with a 0.015 M Ce(SO4)2 solution as described in previous works [21]. 

Electrical resistivity and Seebeck coefficient were simultaneously determined for 

samples obtained by the different synthesis methods, in steady state mode, by the 

standard dc four-probe technique in a LSR-3 apparatus (Linseis GmbH) between 50 

and 800 ºC under He atmosphere. With the electrical resistivity and Seebeck 

coefficient values, PF has been calculated to determine the TE performances. 

 

3. Results and discussion 

3.1. Precursors characterization 
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FTIR characterization has been performed on the dry precursors for the S1, S2, S3 

and S4 samples and represented in Fig. 1. These study of the absorbance bands in 

the different spectra have shown the formation of Ca and Co(II) carbonates [27], 

with peaks at around 1470-1450 (strong), 1420-1400 (strong), and 880-860 

(medium) cm-1, in the S1 precursors promoted by the addition of (NH4)2CO3 to the 

nitrates solution. In the S2 precursors the addition of oxalic acid has produced the 

Ca and Co(II) oxalates [27], with peaks at about 1620-1600 (strong), 1370-1350 

(weak), 1330-1310 (medium), 840-820 (weak), and 790-770 (medium) cm-1, while in 

the S3 and S4 ones, as they consist in a mixture of Ca carbonate and Co oxide, 

only CaCo3 has been found [27], with its characteristic peaks found at around 1450-

1400 (strong), and 880-860 (medium) cm-1. 

TGA measurements performed (under air) on the dry precursors for the S1, S2, S3 

and S4 samples are presented in Fig. 2. As it can be clearly seen in the graph, the 

decomposition behaviour for the three first precursors is different, while it is very 

similar for the S3 and S4 ones. For the S1 precursors, the weight loss in the whole 

temperature range is about 36 % and it is produced in two steps, the first one 

starting at about 200 ºC with (∼ 16 % loss), due to the CoCO3 decomposition, and 

the second one from around 600 ºC (∼ 14 %) due to the CaCO3 decomposition. The 

S2 precursors show the highest weight loss of all of them due to their high 

proportion of organic material (due to the precipitated oxalates), as it has been 

described in the FTIR section. The decomposition of the dry precipitate has been 

produced in four steps, the first one starts at about 120 ºC and it is probably due to 

water evaporation (∼ 16 %), the second one starts at around 260 ºC, associated to 

the Co oxalate decomposition to produce Co oxide, which is the sharpest and 

biggest one (∼ 24 %). The third step is produced at 450 ºC (∼ 7 %), transforming the 
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Ca oxalate in Ca carbonate, and finally, the fourth step starts at 600 ºC due to the 

CaCO3 decomposition. The S3 and S4 precursors show the simplest decomposition 

path, as there is only one weight loss step, starting at about 600 ºC, which is due to 

the CaCO3 decomposition. On the other hand, both samples show a slight 

difference on the CaCO3 decomposition starting temperature, slightly higher for the 

S4 samples due to their smaller surface area and lower reactivity, associated to the 

classical solid state method. Moreover, when observing the CaCO3 decomposition 

temperature for all samples, it can be easily seen that this step is produced at the 

same temperature for the S1, S2, and S3 precursors, clearly confirming that the 

larger surface area decrease the CaCO3 decomposition temperature. 

DTA plots obtained in the same precursors are displayed in Fig. 3 where two 

different behaviours can be observed. S1, S3, and S4 precursors show very similar 

curves with a clear endothermic peak centered at around 700 ºC and associated to 

the CaCO3 decomposition. On the other hand, there are small differences between 

them which can be found in the broad and very small endothermic peaks centered 

at ∼ 100 and ∼250 ºC, in the S1 precursors, which correspond to some water 

evaporation and to the CoCO3 decomposition, respectively. Moreover, the S4 

precursors shift the CaCO3 decomposition to higher temperatures than the other 

ones, confirming the observations in the TGA analysis. The S2 precursors behave 

in a very different manner due to the high amount of organic material present in 

form of oxalates. They show a relatively intense endothermic peak at around 190 ºC 

which can be associated to the evaporation of crystallization water. Moreover, two 

exothermic peaks, a very intense one at around 300 ºC and a smaller one at about 

490 ºC, confirming the oxalates decomposition in two steps observed in the TGA 
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(see Fig. 2), can be found. Finally, at ∼ 700 ºC an endothermic peak is associated to 

the CaCO3 decomposition, as it has been found for the S1 and S3 precursors. 

In order to characterize the precursor powders obtained in the different synthesis 

methods, after the thermal treatment at 750 ºC for 12 h, FTIR analysis has been 

performed in all the samples. The results are displayed in Fig. 4 where it can be 

clearly observed that S1, S2, and S3 precursors show the same spectra. Moreover, 

no absorption peaks of the most stable specie (CaCO3) found in the system can be 

observed in these precursors, clearly indicating that most of it has been 

decomposed in the thermal treatment. As a consequence, it can be deduced that all 

these precursors are mainly composed of a mixture of CaO and CoO solid 

solutions. On the other hand, S4 precursors show different behaviour, associated to 

the presence of some CaCO3 which has not been totally decomposed in this 

thermal treatment, confirming that the second thermal treatment at 800 ºC is 

necessary in S4 samples. 

In order to confirm that most of the carbonates have been decomposed in the 

thermal treatment at 700 ºC, TGA analysis has been performed in all the precursors 

and the results are plotted in Fig. 5. In the graph, it is clear that the maximum 

weight loss corresponds to the S4 precursors (lower than 2.5 wt.%) while for the 

other precursors it is only around 1wt.%. These results are consistent with the 

presence of some CaCO3 phase in the S4 samples, determined by FTIR. 

FESEM images of the S1, S2, S3, and S4 precursor powders were recorded in 

order to observe their grain sizes and shapes, as the classical solid state samples 

possess much higher particle sizes. In Fig. 6, the representative images of the S1, 

S2, S3, and S4 calcined powders are shown. In the micrographs, it can be 

observed that S1 precursors are composed of approximately spherical aggregates 
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of about 500 nm which are, in turn, formed by smaller grains (typically < 100 nm, 

see Fig. 6a). On the other hand, S2 precursors are formed by very large grains (> 1 

µm) with plate-like shape (see Fig. 6b). The shape and size of these grains can be 

explained by the high reactivity of the precipitated powders, which is increased with 

the energy produced by the selfcombustion of organic material present in these 

samples, as it was already discussed in the TGA and DTA analyses of the dry 

products. This high energy released promotes the rapid CaCO3 decomposition, 

together with an increased reaction between CaO and CoO solid solutions to 

partially produce intermediate products. The S3 precursors are composed of a 

mixture of different sized grains, some ≤ 100 nm (#1 in Fig. 6c) while the others are 

≥ 250 nm (#2 in Fig. 6c). These two different sizes are due to the different 

behaviour of CaCO3 and CoO powders in the attrition milling process which lead to 

a different size reduction for each initial powder. Finally, S4 powders posses much 

bigger grain sizes (see Fig. 6d) than the observed for the other precursors due to 

the preparation method which is not greatly decreasing the initial grain sizes of 

commercial CaCO3 and CoO. 

 

3.2. Sintered materials characterization 

Powder XRD plots for samples obtained for the different synthesis methods are 

represented (from 10 to 40 degrees for clarity) in Fig. 7. From the data represented 

in the figure it is very clear that all the samples show very similar patterns where the 

most intense peaks correspond to the crystallograhic planes of the Ca3Co4O9 phase 

[28], indexed in the plot. On the other hand, only small differences between the 

samples obtained by coprecipitation and the attrition and solid state ones have 

been found, and they are related to the presence of the peaks marked with a * in 
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Fig. 7d (associated to the Ca3Co2O6 phase [28]) which are only in the S3 and S4 

samples. This is a clear indication that, in the synthesis conditions used for the 

preparation of these samples, the use of the coprecipitation methods avoids the 

undesired Ca3Co2O6 phase formation. This effect is probably due to the intimate 

mixture of the different cations in the initial powders produced by coprecipitation 

while in samples S3 and S4 this mixture is not produced. In any case, the Ca3Co4O9 

phase is the major one, independently of the synthesis route. On the other hand, 

cell parameters and volumes have been calculated using fullprof software using a 

C2/m space group and displayed in Table I. As it can be easily observed in the 

table, only slight differences can be found in the cell parameters, leading to nearly 

unchanged cell volumes in all cases. As a consequence, no structural changes are 

produced by the different synthesis methods. 

SEM micrographs of representative transversal fractures for the different synthesis 

methods are displayed in Fig. 8. In these images it can be clearly observed that all 

the sintered samples show similar microstructures. They seem to be composed of 

randomly oriented plate-like grains with similar sizes for the S1, S2, and S3 

methods, while they are much bigger for the S4 one, as can be observed in Table II 

where the mean grain sizes, together with their error, are displayed. On the other 

hand, careful observation of these micrographs shows that samples S1 and S2 

possess higher grain size homogeneity than S3, and S4 ones, where grains larger 

than 2 µm coexist with very small ones (< 100 nm, see Figs. 8c and d). This effect 

is probably due to the same factors discussed in the XRD paragraph, better cations 

mixture in the coprecipitation methods, leading to a relatively lower reactivity in 

samples S3 and S4 as a consequence of a larger distance between the different 

cations. In any case, the grain sizes observed for the S1, S2, and S3 methods are 



 14

much lower than the obtained through other solution or classical solid state routes 

[21]. Other feature that can be observed in the figure is the relatively large amount 

of porosity existing between the grains. In order to determine if this is a 

consequence of the samples preparation procedure or it is an inherent 

characteristic when sintered at the relatively low Ca3Co4O9 stability temperatures, 

apparent density measurements have been performed on the ceramics obtained 

after sintering. Several samples from each synthesis method have been used in 

order to obtain accurate density values. The obtained values have been 3.45±0.04, 

3.42±0.04, 3.47±0.03, and 3.44±0.01 g/cm3 for samples S1, S2, S3, and S4, 

respectively. These values correspond to densities between 73-74 % of the 

theoretical one for the Ca3Co4O9 phase, indicating that the different porosity ratio 

observed in Fig. 8 is probably due to the low temperature used for the materials 

sintering and it is not really correlated with the bulk material. Moreover, measured 

densities for the sintered samples are higher than those reported in the literature for 

solid state sintered specimens (53-60 % of the theoretical one [29,30]) but lower 

than the obtained on samples processed by hot-pressing processes (92-96 % of the 

theoretical one [30,31]) which are characterized by their high density. 

In order to confirm the observed random grain orientation in the different samples, 

out-of-plane XRD plots were performed on the surfaces. The obtained results are 

shown in Figure 9, where the representative patterns of the different synthesis 

methods are displayed. As it can be observed in the figure, main peaks correspond 

to the (00l) planes accompanied by small peaks associated to different grain 

orientations. This effect can be associated to the grains shape (plate-like one) 

which can order in the pressing procedure leading to a higher grain orientation in 

the surface than in the inner part. In any case, as it can be deduced for the graph, 
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the phenomenon is produced in all the samples and, as a consequence, its effect 

will be very similar in all samples. 

Fig. 10 displays the variation of the Seebeck coefficient as a function of temperature 

for the three studied methods. All samples exhibit positive values in the whole 

studied temperature range, confirming a dominating hole conduction mechanism. 

The obtained values are approximately the same for S1, S2, and S3 samples and to 

the typical ones reported in the literature (∼ 125 µV/K) at room temperature [32,33]. 

On the other hand, S4 samples show a slightly different behaviour, they possess 

higher Seebeck values from room temperature to ∼ 400 ºC and lower at higher 

temperatures, compared to S1, S2, and S3 samples. The highest value at 800 ºC (∼ 

235 µV/K) for S1, S2, and S3 samples is considerably higher than the obtained in 

S4 ones (∼ 205 µV/K), in spark plasma sintered samples (170-175 µV/K) at about 

625 ºC [34], or laser floating zone (∼ 205 µV/K) at 800 ºC [35]. 

The absolute oxygen content was determined on sintered samples using cerimetry 

titrations. For each sample four determinations were performed with each method, 

showing a reproducibility of around ± 0.008 in all cases. The obtained mean Co 

valence values are very similar for all samples and are around 3.130 ± 0.008, being 

slightly lower for the S4 ones (displayed in Table III), in agreement with the higher 

room temperature Seebeck coefficient found in these samples [36]. On the other 

hand, these values should lead to room temperature Seebeck coefficients of about 

300 µV/K when using Koshibae’s expression [36]: 

⎟
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where S is the Seebeck coefficient, kB Boltzmann constant, e the absolute value of 

electron charge, and x the fraction of Co4+. From this expression, it is clear that the 

raise in Co4+ content, decreases the Seebeck coefficient values. 

The calculated value from Koshibae’s expression is much higher than the 

experimental values found in this work while the mean Co valences determined in 

these samples agree with previously reported results on this material [37], indicating 

that only a low spin system model is not totally adequate to describe the global 

thermoelectric behaviour of this kind of materials. 

The temperature (T) dependence of the electrical resistivity, as a function of the 

synthetic method, is shown in Fig. 11. As it can be easily seen, all the samples 

show very similar behaviour in all the measured temperature range, the ρ(T) curve 

shows semiconducting-like behaviour (dρ/dT < 0) under 400 ºC, in agreement with 

previously reported data in this system where the charge transport process is a hole 

hopping from Co4+ to Co3+ [38]. At higher temperatures, the behaviour changes to a 

metallic-like (dρ/dT > 0) one. On the other hand, S1, S2, and S3 samples possess 

much lower electrical resistivity than the S4 ones (∼ 35%), slightly lower than the 

measured in samples prepared by solution methods (around 16 mΩ.cm) [21], or 

textured by a directional growth from the melt using the laser floating zone 

technique (about 15 mΩ.cm) [35], but still higher than the measured in SPT textured 

materials on the ab plane (∼ 8 mΩ.cm) [30]. Furthermore, the electrical resistivity 

values determined in this work for samples S1, S2, and S3 can be found more 

impressive when taking into account that the best results reported in the literature 

have been obtained in samples with higher densities (> 90 % of the theoretical 

density) than the ones produced in this work (∼ 73-74 % of the theoretical one). The 

low electrical resistivity values obtained in these samples can be associated to the 
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formation of strong and clean grain boundaries due to the high reactivity of the 

different particles. This is in agreement with previous studies which showed that the 

electrical resistivity is more influenced by the number and strength of grain 

boundaries than for the amount of secondary phases in the structure [39]. 

From the electrical resistivity and Seebeck coefficient values, PF variation with 

temperature has been calculated for all the samples and represented in Fig. 12. 

From this graph, it is clear that S1, S2, and S3 samples possess very similar PF 

values, except in the high temperature range, where S3 show a slightly lower PF 

than the obtained in the other two. On the other hand, S4 ones possess much lower 

PF in all the measured temperature range. The maximum PF value at 800 ºC (~ 

0.43 mW/K2.m) obtained for samples S1 and S2 is about 10 and 110 % higher than 

the measured in S3 and S4 samples, respectively. Moreover, it is around those 

measured on textured materials produced by spark plasma texturing (SPT) 

technique (~ 0.40 mW/K2.m at 550 ºC) [14], or laser floating zone technique [35]. 

Furthermore, this high PF value is again more impressive when considering the 

relative density of the samples, between 73-74 % of the theoretical one, while for 

the spark plasma or laser floating zone prepared samples, the densities easily 

exceed 90 %. 

These high PF values obtained with relatively economic and scalable preparation 

techniques make these sintered materials promising candidates for practical 

applications in high temperature thermoelectric devices. 

 

4. Conclusions 

A comparison of several synthetic routes for obtaining the Ca3Co4O9 phase, 

coprecipitation with ammonium carbonate or oxalic acid, attrition milling, and 



 18

classical solid state method, has been made. All coprecipitation and attrition milling 

methods have produced very reactive precursors, reflected in the whole CaCO3 

decomposition after only a thermal treatment at 750 ºC for 12 h. The attrition milling 

and the classical solid state methods result in nearly single Ca3Co4O9 phase with 

very small amounts of Ca3Co2O6 one while the coprecipitation methods evaluated in 

this study produce pure Ca3Co4O9 phase. The thermoelectric performances have 

shown to be dependent of the precursors homogeneity and initial grain sizes, 

leading to PF values for the attrition and coprecipitation methods of around two 

times higher than the obtained for the classical solid state method ones. Moreover, 

in spite of the relatively low density of the samples prepared in this work, their 

highest PF values at 800 ºC are slightly higher than the best values obtained on 

high-density textured Ca3Co4O9 materials reported in the literature. 
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Table I. Cell parameters and volumes obtained with fullprof for the different 

synthesis methods 

 

Sample a b c β Volume 

Coprecipitation [(NH4)2CO3] 4.8361(6) 4.5520(9) 10.8020(1) 98.46(1) 235.20(5)

Coprecipitation [HOOCCOOH] 4.8344(6) 4.5522(8) 10.8051(9) 98.44(1) 235.21(6)

Attrition milling 4.8133(5) 4.5425(8) 10.8159(9) 98.43(2) 235.38(7)

Classical solid state 4.8327(6) 4.5549(9) 10.8110(1) 98.17(1) 235.60(5)
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Table II. Mean grain sizes, together with their errors, for sintered samples prepared 

by the different methods 

 

Sample Mean grain size (µm) Error 

Coprecipitation [(NH4)2CO3] 1.48 0.12 

Coprecipitation [HOOCCOOH] 1.30 0.16 

Attrition milling 1.07 0.05 

Classical solid state 3.16 0.22 
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Table III. Mean Co valences, together with their errors, for the samples prepared by 

the different methods 

 

Sample Mean Co valence Error 

Coprecipitation [(NH4)2CO3] 3.128 0.008 

Coprecipitation [HOOCCOOH] 3.129 0.008 

Attrition milling 3.133 0.008 

Classical solid state 3.112 0.006 
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Figure captions 

 

Figure 1. FTIR spectra of the dry products obtained by the (- -) S1; (- -) S2; (-▲-) 

S3; and (- -) S4 methods. 

 

Figure 2. TGA plots vs. temperature of the dry products obtained by the (- -) S1; (-

-) S2; (-▲-) S3; and (- -) S4 methods. 

 

Figure 3. DTA plots vs. temperature of the dry products obtained by the (- -) S1; (-

-) S2; (-▲-) S3; and (- -) S4 methods. 

 

Figure 4. FTIR spectra of the different precursors after the thermal treatment at 750 

ºC for 12 h. (- -) S1; (- -) S2; (-▲-) S3; and (- -) S4 methods. 

 

Figure 5. TGA plots vs. temperature of the calcined powders obtained by the (- -) 

S1; (- -) S2; (-▲-) S3; and (- -) S4 methods. 

 

Figure 6. FESEM micrographs obtained in the calcined powders obtained by S1 

(a); S2 (b); S3 (c); and S4 (d) methods. #1 indicates the small particles (≤ 100 nm); 

#2 shows the big ones (≥ 250 nm). 

 

Figure 7. XRD plots of the Ca3Co4O9 sintered specimens obtained for the different 

synthetic methods. a) S1; b) S2; c) S3, and d) S4. Crystallographic planes indicate 

the peaks for the Ca3Co4O9 phase and the * shows those belonging to the 

Ca3Co2O6 one. 
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Figure 8. Scanning electron micrographs obtained on transversal fractured 

Ca3Co4O9 samples prepared by the different synthesis methods: (a) S1; (b) S2; (c) 

S3; and (d) S4. 

 

Figure 9. Out-of-plane XRD plots obtained in samples prepared by different 

synthesis methods: (a) S1; (b) S3; and (c) S4. 

 

Figure 10. Temperature dependence of the Seebeck coefficient for Ca3Co4O9, as a 

function of the synthesis method. (- -) S1; (- -) S2; (-▲-) S3; and (- -) S4. 

 

Figure 11. Temperature dependence of the electrical resistivity for Ca3Co4O9, as a 

function of the synthesis method. (- -) S1; (- -) S2; (-▲-) S3; and (- -) S4. 

 

Figure 12. Temperature dependence of the power factor for Ca3Co4O9, as a 

function of the synthesis method. (- -) S1; (- -) S2; (-▲-) S3; and (- -) S4. 
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 38

Figure 10 

 



 39

Figure 11 

 



 40

Figure 12 

 


