
1 

 

Synthesis and characterization of NaNiF33H2O: an unusual ordered 

variant of the ReO3 type 

 

Elena C. Gonzalo
1,‡

, María Luisa Sanjuán
2
, Markus Hoelzel

3
, M. Teresa 

Azcondo
1
, Ulises Amador

1
,
 
Isabel Sobrados

4
,
 
Jesús Sanz

4
, Flaviano García-

Alvarado
1
 and Alois Kuhn

1,* 

 

1 
Universidad CEU San Pablo. Facultad de Farmacia, Departamento de Química y 

Bioquímica, Urbanización  Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain. 

‡ Present address: CIC Energigune, Parque Tecnológico de Álava, 01510 Miñano, 

Spain 

2 
Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC), 

Facultad de Ciencias, 50009 Zaragoza, Spain 

3
 Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), D-85747 Garching, 

Germany 

4 
Instituto de Ciencia de Materiales de Madrid, CSIC, Spain 

 

 

 

 

 

 

 

 

 

Page 1 of 48

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC

https://core.ac.uk/display/36208325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

Abstract 

A new hydrated sodium nickel fluoride with nominal composition NaNiF33H2O was 

synthesized using an aqueous solution route. Its structure has been solved by means of 

ab initio methods from powder X-ray diffraction and neutron diffraction data.  

NaNiF33H2O crystallizes in the cubic crystal system, space group Pn-3 with a = 

7.91968(4) Å. The framework, derived from the ReO3 structure type, is built up by 

NaX6 and NiX6 (X=O,F) corner-shared octahedra, in which F and O atoms are 

randomly distributed on a single anion site. The 2a x 2a x 2a superstructure arises from 

the strict alternate 3D-link-up of NaX6 and NiX6 octahedra together with the 

simultaneous tilts of the octahedra from the cube axis ( = 31.1°), with a significant 

participation of hydrogen bonding. NaNiF33H2O corresponds to a fully cation ordered 

variant of the In(OH)3 structure, easily recognizable when formulated as NaNi(XH)6 

(X=O,F).  It constitutes one of the rare examples for the a
+
a

+
a

+
 tilting scheme with 1:1 

cation ordering in perovskite-related compounds. The Curie-like magnetic behavior well 

reflects the isolated paramagnetic Ni
2+

 centers without worth mentioning interactions. 

While X-ray and neutron diffraction data evidence Na/Ni order in combination to O/F 

disorder as a main feature of this fluoride, results from Raman and MAS-NMR 

spectroscopies support the existence of specific anion arrangements in isolated square 

windows identified in structural refinements. In particular, formation of water molecules 

derives from unfavorable FH bond formation. 
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Introduction 

AMF3 (A=Na, K, NH4) fluorides have been investigated since the 60`s. 
1,2

  Sodium 

fluoroperovskites NaMF3 are known for a number of divalent transition metals such as 

Mg, Mn, Fe, Co, Ni, Cu or Zn. These fluorides are usually synthesized by the ceramic 

route using stoichiometric mixtures of the binary fluorides NaF and MF2 which were 

typically heated at temperatures ranging from 700 and 900ºC in welded gold or 

platinum ampoules.
3-6

  NaNiF3 was first prepared by Babel et al. 
7
, followed by reports 

on other isostructural NaMF3 perovskites.
8
  They crystallize in the orthorhombic 

system, space group (SG) Pbnm. The ideal cubic perovskite structure is only found for 

K fluoroperovskites, while in Na fluoroperovskites the symmetry is lowered to 

orthorhombic because of tilting of the anion octahedra, displacement of the alkaline 

metal from the center of the cuboctahedron or distortion of the MF6 octahedron.
9
 

NaMF3 sodium metal fluorides are interesting as prospective electrode materials 

for lithium or sodium batteries. Recently Gocheva et al.
10

 reported on the 

electrochemical properties of NaMF3 (M=Fe, Mn, Ni) obtained by mechanochemical 

synthesis as positive electrodes for rechargeable sodium batteries. For NaFeF3 a 

modified synthesis procedure has allowed the discharge capacity of sodium batteries to 

be increased from 120 mAh g
1 

up to high 197 mAh g
1 11,12

, confirming the interest of 

transition metal fluorides as new electrode materials. In this connection we reported on 

the facile low cost synthesis of Na fluoroperovskites with formula NaMF3 (M = Mg, 

Mn, Fe, Co, Zn) by precipitation from aqueous solution at room temperature.
13

 

However, for M=Ni the precipitation reaction did not lead to the desired NaNiF3 

perovskite phase. In this paper we have further investigated the nature of the Na-Ni-F 

compound formed by precipitation reaction using the aqueous solution route. As we 

shall see, chemical analysis and TGA have allowed for determining accurately the 
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chemical formula of a new hydrated sodium nickel fluoride, and its crystal structure has 

been unveiled by powder X-ray and neutron diffraction. Complementary electron 

diffraction was used as appropriate tool for space group assignment. The structural 

features of this fluoride are further correlated to its spectroscopic properties obtained 

from IR and Raman studies completed with 
23

Na, 
19

F and 
1
H MAS-NMR spectroscopy. 

NaNiF33H2O transforms into an orthorhombic sodium nickel fluoride with perovskite 

structure, similar to NaNiF3 
7
, when heated to 200ºC.  

 

Experimental 

Synthesis of a Na-Ni-F compound with nominal composition “NaNiF3” was attempted 

by precipitation from aqueous solution accordingly to the following chemical equation 

previously reported for the synthesis of NaMF3 perovskites 
2,13

: 

 

3 NaF + NiCl2.6 H2O  →  “NaNiF3” + 2 NaCl + 6 H2O  (1) 

 

1.713g (7.2·10
3

 mol) of NiCl26H2O (Aldrich) were dissolved in 25ml distilled 

water. The stoichiometric amount of NaF (0.907g, 21.6·10
3

 mol, Aldrich) was added to 

the green solution afterwards. The final solution was stirred for 6 hours and heated at 

60ºC to partially evaporate solvent until a light green powder precipitated. The 

precipitate was washed with small portions of distilled water and dried at 60ºC.  

Chemical analysis was carried out to accurately determine the chemical 

composition of the compound and to confirm the structural model refined using X-ray 

and neutron diffraction data. Na and Ni contents were determined by means of ICP-OES 

(Perkin-Elmer). F/Na and F/Ni atomic ratio and homogeneity of the sample was 

checked by electron probe microanalysis (EPMA) using a JEOL Superprobe JXA-8900 
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M instrument equipped with wavelength dispersive spectrometry (WDS). Samples were 

pressed into pellets to get a planar surface. Quantitative determination was performed 

on the basis of Na, Ni, O and F X-ray emission lines using NaF, NiF2 and NiO as 

reference compounds. The fluorine content was also quantified by F
 titration with 

fluorine selective electrode measurements on samples that were previously digested 

with HNO3. Thermal analysis was carried out with a TGA/DTA Netzsch STA 409 

apparatus. Samples were heated at 10 K min
-1

 up to 400ºC under flowing nitrogen. 

Powder X-ray diffraction patterns were recorded in the 10-100º 2θ range on a 

Bruker D8 high resolution X-ray powder diffractometer, operated at 40kV and 40mV 

and equipped with a position sensitive detector (PSD) MBraun PSD50-M, using 

monochromatic Cu-Kα radiation (λ=1.54056Å) obtained with a Ge primary 

monochromator. The structure was deduced from powder X-ray diffraction (PXRD) 

data by using the ab initio Expo2009 package.
14

  For neutron powder diffraction (NPD) 

data were collected at the neutron source FRM II - MLZ (Garching, Germany) on the 

high resolution SPODI diffractometer. A Ge(551) monochromator was used to select a 

wavelength of λ = 1.5481 Å. Cylindrical vanadium cans of 8 mm diameter were filled 

with 3g of powder sample. ND patterns were collected for 6h over the 5-160º 2 range 

with a step size of 0.05º at 300 K. 

The diffraction patterns were analyzed using the Rietveld technique as 

implemented in the Fullprof Suite Program.
15,16

  Peak shape was described by a pseudo-

Voigt function, and the background level was fitted with linear interpolation. The 

coherent neutron scattering lengths were:  H: −3.74 fm, O: +5.803 fm, F: +5.654 fm, 

Na: +3.63 fm, Ni: +10.3 fm.
17

 The negative scattering length factor of hydrogen 

improves the contrast of light O and F elements, making possible Fourier map 

differences addressed to localize H atoms. 
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Transmission electron microscopy (TEM) and electron diffraction (ED) 

experiments were performed with a JEOL 2000 FX microscope operating at 200 kV. 

Scanning electron microscopy (SEM) experiments were performed using a FEI XL30® 

apparatus equipped with an EDAX analyzer for energy dispersive spectroscopy (EDS). 

IR spectroscopic data were collected on a FTIR Perkin Elmer 599 in the 4000-

350 cm
1

 range with a resolution of 4cm
1

. KBr, previously dried, was used as 

reference. 150 mg of a mixture of KBr and the as-synthesized material were pressed 

into 13 mm pellets inside an Ar-filled glove-box (H2O content < 1ppm). Raman spectra 

were taken in a DILOR XY spectrometer, with a CCD detector cooled with liquid 

nitrogen, using the 514.5 nm line of an Ar
+
 laser as excitation source. 

NMR experiments were carried out in an AVANCE 400 (Bruker) spectrometer. 

1
H (I=1/2), 

23
Na (I=3/2) and 

19
F (I=1/2) MAS-NMR spectra were recorded at 400.13, 

105.84 and 376.50 MHz respectively, in presence of the external magnetic field B0 

=9.4T. Samples were spun at 5kHz for 
1
H, 10kHz for 

23
Na and 20kHz for 

19
F around an 

axis inclined at 54º44´ with respect to the magnetic field (magic-angle spinning 

technique). 
1
H , 

23
Na and 

19
F chemical shift values of NMR components were referred 

to TMS, NaCl and CFCl3 standards. 

Magnetic measurements were performed in a SQUID magnetometer (Quantum 

Design) MPMS-XL applying a field of 500 G. M/H measurements were performed 

using magnetic fields up to 5T in the 2-400K temperature range. 

 

Results 

Figure 1a shows the powder X-ray diffraction pattern of the green solid obtained 

after precipitation from aqueous solution following chemical equation (1). Its diffraction 
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profile is quite different from that exhibited by NaCoF3 obtained by precipitation from 

solution (Figure 1b) and NaNiF3 samples obtained by the ceramic route (Figure 1c).  

Both NaCoF3 and NaNiF3 are compatible with the perovskite structure and 

crystallize in the orthorhombic space group Pbnm. Refined lattice parameters were a = 

5.4244(5) Å, b = 5.6066(6) Å and c = 7.7925(8) Å for NaCoF3, and a = 5.3690(4) Å, b 

= 5.5290(2) Å and c = 7.6950(3) Å for NaNiF3. These values are in good agreement 

with those reported previously.
8
 Furthermore the X-ray diffraction pattern of NaCoF3 

obtained by precipitation from solution completely agrees with that obtained by the high 

temperature ceramic route (not shown), yielding the same lattice parameters. In 

consideration of the above presented X-ray diffraction patterns, the crystalline 

precipitation product nominally formulated as “NaNiF3” must then be structurally 

different from that of NaMF3 perovskites.  

 

Chemical and thermal analyses 

Wet chemical analysis of a sample showed the presence (in weight) of 12.9% 

sodium and 31.0% nickel, which correspond to an atomic Na:Ni ratio = 1.09:1. EDS 

spectra recorded in a transmission electron microscope showed signals corresponding to 

the elements Na, Ni, F and O. The quantification of the metal atoms yielded a Na:Ni 

=1:1 atomic ratio, in correspondence with results deduced by wet chemical analysis, 

although the actual Na content obtained from wet chemical analysis was slightly higher 

than that determined by EDS microanalysis performed on individual microcrystals. 

Results from X-ray diffraction revealed that the sample contains a small fraction of NaF 

as secondary phase (ca. 5% as determined by Rietveld refinement). Based on this result 

the sodium weight % obtained from wet chemical analysis was recalculated to a 12.0 % 

and an atomic Na:Ni ratio = 1:1. EPMA measurements showed the presence of a 1:1:3 
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atomic ratio for the elements Na, Ni and F, in correspondence with the formula NaNiF3. 

However the compositional contributions of the three analyzed elements with their 

relative weight % (12.0% sodium, 31.0% nickel, 29.2% fluorine) amount to 72.2% of 

total mass), providing a conclusive proof that other components are contributing to the 

total mass. The hypothesis of assigning the remaining weight % to the presence of water 

molecules seemed reasonable from observations made during EDS measurements; 

prolonged exposure of a sample to the electron beam was accompanied by a continuous 

decrease of the oxygen signal, which may be related to evaporation of water from the 

sample during measurement. This behavior accounts for the general difficulties 

encountered during the study of this material by means of TEM and ED.  

The presence of water has been investigated by thermal analysis. Figure 2 shows 

the variation of weight % with temperature up to 400 ºC under flowing nitrogen. The 

important weight loss between 150 and 200ºC (27.0%) can be related to the loss of three 

hydration water molecules. In consideration of a ca. 5% NaF as secondary phase the 

recalculated weight loss was 28.2%, which is in good agreement with the 28.0% 

calculated value for three water molecules. The formula NaNiF33H2O is then 

confirmed by complementary analytical techniques. The effect of thermal dehydration 

on the structure has been studied by annealing NaNiF33H2O to 250ºC for 10h. The X-

ray pattern of the annealed sample was similar to that reported for orthorhombic 

NaNiF3, space group Pbnm, with the perovskite structure. A detailed study of the 

transformation of NaNiF33H2O to orthorhombic perovskite will be reported elsewhere. 

 

Structural study 

The structure of the title compound was fully solved by combining different 

complementary techniques. Powder X-ray diffraction (PXRD) and neutron powder 
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diffraction (NPD) data were treated using Expo2009 
14

 following the protocol 

implemented in this software. Electron diffraction was used to confirm the cell and 

symmetry determined by PXRD and NPD. Thus, first, the unit cell was determined 

from PXRD data using a new version of TREOR 
18

 included in this package software. 

Two possible unit cells were obtained as solutions, a cubic one with a7.90 Å and a 

tetragonal one with a5.60 Å and c7.90 Å. The dimensions of these two cells remind 

the double and diagonal ReO3-like cell, respectively. The double ReO3 supercell with 

cubic symmetry gave better figure of merit for indexing the PXRD pattern. 

Electron diffraction patterns were collected to confirm the symmetry and space 

group of the supercell. A detailed observation of electron diffraction patterns assuming 

a basic ReO3-type structure revealed the presence of extra spots (½ 0 ½) along the [010] 

zone axis and [-111] zone axes (which are 4- and 3-fold axes characteristic of cubic 

symmetry), suggesting a cubic superstructure with doubled a parameter (a8 Å). Figure 

3 shows selected area electron diffraction (SAED) images obtained for NaNiF33H2O, 

which were indexed on the basis of this cubic supercell along the [010] zone axis (Fig. 

3a). The lack of integral extinction conditions indicates that it has a primitive cubic 

space group. Using the aforementioned cell, the extinction symbol resulted to be Pn. 

Further patterns were collected along the [-110], [-120], [-111] zone axes (Figure 3b-d), 

which identified the remaining symmetry elements. The presence of extinction 

conditions for (0kl) k+l=2n; (00l) l=2n lead to two possible space groups, Pn-3 (nº 201) 

and Pn-3m (nº 224). Forbidden odd h reflections for h00 on [-110] and for 00l on [-111] 

patterns are caused by double diffraction. This was confirmed by tilting the crystal 

along the row containing the forbidden reflections, whose intensities varied 

significantly. 
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At this point we assessed that the 2a x 2a x 2a supercell (a being the simple 

ReO3 axis) is only compatible with Pn-3 symmetry, involving the a
+
a

+
a

+
 octahedra 

tilting scheme and 1:1 cation ordering on the octahedral sites.
19,20

  This symmetry was 

then used for intensity extraction and structure solution by direct methods. EXPO2009 

yielded the following three atoms: Ni, Na and F in Wyckoff positions 4b, 4c and 24h, 

respectively. At this stage all anions were supposed to be fluorine atoms, but from 

chemical and TG analyses the composition of the parent compound was known to 

contain an equiatomic amount of oxygen atoms, at least nominally as water molecules, 

according to the formula NaNiF33H2O. As oxygen and fluorine atoms cannot be 

distinguished by powder X-ray diffraction, we assumed a random distribution of both 

atom types on the same crystallographic 24h site. Using this model as starting point, the 

PXRD and NPD patterns were simultaneously fitted with the same weight. Neutron 

diffraction cannot either provide extra information about possible O/F ordering, owing 

to their very similar neutron scattering lengths (O: +5.803 fm, F: +5.654 fm). On the 

other hand, neutron powder diffraction is a useful technique to obtain accurate and 

precise information about weak X-ray scatterers, especially hydrogen. The negative 

scattering length factor of hydrogen (H: −3.74 fm) improves even the contrast of light O 

and F elements, making possible Fourier map differences addressed to localize H atoms.  

Details about experimental conditions and refined parameters are given in Table 

1, whereas the main structural parameters of the refined model are summarized in Table 

2 together with bond distances and angles in Table 3. The graphic result of the fitting of 

NPD data is depicted in Figure 4. The corresponding graphic result of the fitting of 

PXRD data is given as Supplementary Information Figure SI 1. The second phase 

included in the refinement corresponds to NaF, which is formed to a small extent (ca. 

5%) during the precipitation reaction from aqueous solution.  
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The structure of NaNiF33H2O is built from corner-sharing Ni(O/F)6 and 

Na(O/F)6 octahedra that alternate along the three main directions (Figure 5). Oxygen 

and fluorine atoms are randomly distributed in the nonmetal 24h position. NaNiF33H2O 

corresponds to a fully cation ordered variant of the Sc(OH)3 
21

 or In(OH)3 
22,23

 structure, 

what is better formulated as NaNi(XH)6 (X=O,F). In comparison to In(OH)3 the 

decrement of three positive charges produced by substituting two In
3+

 ions by one Na
+
 

and one Ni
2+

, is compensated by the substitution of 3 O
2

 by 3 F

. Each (O/F)H is 

coordinated with one Na
+
 and one Ni

2+
 to form zigzag-like infinite Na–(O/F)–Ni chains, 

with a Na-O/F-Ni angle of 129.4(1)º. This angle is similar to that detected in In(OH)3, 

134.6(1)º, where hydrogen bonding is determinant to produce the bending of M-X-M 

chains 
22,23

. 

The Ni-O/F bond distance of 2.029(2) Å is clearly shorter than the Na-O/F 

distance of 2.348(2) Å, in agreement with ionic sizes of hexacoordinated Ni
2+

 and Na
+
 

(0.69 Å and 1.02 Å, respectively).
24

 The nickel to anion and sodium to anion bond 

distances are intermediate between the corresponding metal-oxygen and metal-fluorine 

distances, owing to the (O/F) mixed anion substructure. In NaNi(XH)6 (X=O,F)  the Ni-

O/F bond distance of 2.029(2) Å is slightly shorter than the Ni-O bond distance found in 

NiO (2.089 Å) or -Ni(OH)2 (2.093-2.136 Å) 
25

, whereas this value is slightly larger 

than the Ni-F bond distances determined in KNiF3 (2.006 Å) 
2
 or  K2NiF4 (1.974-2.004 

Å) 
26

. Likewise the Na-O/F bond distance of 2.348(2) Å is shorter than the Na-O bond 

distance observed in -NaOH (2.350-2.426 Å) 
27

 or NaCoO2 (2.375 Å) 
28

, while the Na-

O/F distance is systematically longer than the Na-F distance determined in NaF (2.316 

Å) 
29

 or in the high temperature form of Na3AlF6 (2.305 Å) 
30

. 
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Magnetic characterization 

The variation of the magnetic susceptibility of NaNi(XH)6 (X=O,F) versus 

temperature is shown in Figure 6. Fit of experimental data to  

𝜒𝑚 =  
𝐶

𝑇 − 𝜃
 

yielded a Curie constant C=1.20 and a Weiss constant θ=0.10K. The compound 

NaNiF33H2O shows then a Curie-like behaviour. No deviation of 1/m vs. T (inset to 

Fig. 6) from linearity is observed in the whole temperature range. The experimental 

magnetic moment μexp = 3.0 μB corresponds to two unpaired electrons for an 

octahedrally co-ordinated d
8
 Ni

2+ 
cation, in good agreement with the expected magnetic 

moment (μs.o = 2.82 μB). 

The negligible θ value confirms the lack of any significant interaction between 

paramagnetic centres. This is easily understood when recalling that the Ni(O/F)6 

octahedra are isolated from each other by Na(O/F)6 octahedra due to the particular 

alternating …Na - Ni - Na…cation ordering along the three directions of this ReO3-type 

structure. The observed magnetic behaviour then supports the presence of isolated 

paramagnetic Ni(O/F)6 units. This behaviour is quite opposite to the antiferromagnetic 

ordering displayed by NaNiF3 perovskite 
7
, where exchange interaction of Ni through p 

orbitals of fluorine through corner-shared NiF6 octahedra does occur. 

 

Discussion 

The ReO3-type supercell in NaNi(XH)6 (X=O,F) with doubling of the cubic a 

parameter arises from a combined effect of 1:1 cation ordering on the Re site and 

octahedral tilting. Ordering in the B-site of the perovskite structure is very well known 

for cations differing in charge (by at least two units) or having very different size. In the 

present case, the driving force for ordering seems to be more likely different size effect 
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than charge, taking into consideration that Na
+
 (102 pm) is 48% bigger than Ni

2+
 (69 

pm) (both in 6-fold coordination) 
24

. A complete symmetry relationship among ReO3 

derivatives based on group-subgroup relations was reported by Bock 
31

. For clarity the 

relationship between the ReO3 structure type and the corresponding derived supercells 

owing to the present case of a
+
a

+
a

+
 octahedral tilting without and with 1:1 cation 

ordering is portrayed in Figure 7. According to the works of Glazer 
9
 and Woodward 

19
 

a
+
a

+
a

+
 in-phase octahedral tilting of the basic primitive ReO3 structure (a

0
a

0
a

0
, Pm-3m) 

leads to a 2a x 2a x 2a supercell, space group Im-3, realized in HNbO3 
32

, the high 

pressure form of ReO3 
33

, Sc(OH)3 
21

 and In(OH)3 
22,23

. NaNiF33H2O is one of the rare 

examples for a
+
a

+
a

+
 octahedral tilting combined with 1:1 cation ordering in the ReO3 

structure, resulting in a 2a x 2a x 2a cell with space group Pn-3. Only CaSn(OH)6 

(burtite) and six other isotypic hydroxides have been reported so far to crystallize with 

the same structure 
34-36

. However, NaNiF33H2O compound is the first example for this 

cation ordered structure type with concurrent anion disorder. 

The tight Na-X-Ni bond angle detected in NaNi(XH)6, 129.4º, is related with a 

considerable tilting angle of 31º. In the notation of Glazer small rotations of regular 

octahedra with uniform M-X-M (M=metal, X=non-metal) angles, , correspond to 

rotations about <111>. In order to address the question whether the observed tilting 

distortion is related to the geometry (different cation size) or further enhanced by 

hydrogen bonding, we have collected M-X-M bond angles  and deduced the rotation 

angle  about <111> for a series of ReO3 related compounds. Tilting angles  have 

been calculated using the formula given by Keeffe and Hyde 
37

 : 

9

)1cos2(21
cos

2
1 
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In our analysis we have only considered a
+
a

+
a

+
 tiltings for regular octahedra with a 

uniform bond angle, which correspond strictly to rotations about <111> (besides the 

a

a

a

 tilting). Results are given in Table 4. ReO3 

38
 itself undergoes a

+
a

+
a

+
 tilting of 

octahedra under pressure.
33

 For a
+
a

+
a

+
 tilting the octahedra rotation is such that four 

octahedron corners close up, resulting in nearly square X4 units (X=anion). Larger 

rotation angles have been reported to arise from additional X-X bonding. The quite 

considerable octahedra rotation in skutterudite CoAs3 (=33º) has been connected with 

the formation of square As4
4

 units.
39

 Analogous square (OH)4
4

 units, with hydrogen 

bonding along the square edges, are obtained in oxy-hydroxide NbO2(OH) 
32

 and 

hydroxides Sc(OH)3 
21

 and In(OH)3 
23

. Not surprisingly, the stronger hydrogen bonding 

in Sc(OH)3 and In(OH)3 produces bigger tilting angles (=24.0 and 27.9º, respectively). 

The 1:1 cation substitution in ReO3 leads to NaSbF6 (a
0
a

0
a

0
).

40
  The a

+
a

+
a

+
 tilting of the 

NaSbF6 structure is realized in burtite CaSn(OH)6 
34,35

 and the isostructural hydroxides 

MSn(OH)6 (M=Mn, Zn) 
34-36

 with   27º, similar to M(OH)3. We can preclude 

different cation size as origin for the observed octahedra titlting; NaSbF6 is not tilted, 

however the hydroxides with comparable cation radii 
24

 (Na
+
: 1.02 Å; Ca

2+
 1.00 Å ; 

Sb
5+

: 0.60 Å; Sn4+: 0.69 Å) are tilted, as consequence of hydrogen bonding in the 

hydroxides. Based on the ionic radii 
24

 for Na
+
: 1.02 Å and Ni

2+
: 0.69 Å, the larger 

rotation angle = 31º leads us to assume stronger hydrogen bonding in NaNi(XH)6. On 

the other hand, the high-pressure form of NbO2F (=18-22º) 
41,42

 and several 

trifluorides such as FeF3 
43

 at normal pressure are examples for the a

a

a

 tilted 

hettotype. Interestingly, though considerable octahedra titlting is well known for 

trifluorides such as PdF3 
44

 (=30º), enhanced octahedral rotation due to hydrogen 

bonding has not been observed for the a

a

a

 hettotype. This may be related to the 
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corrugated rhombus-like arrangement of anion corners resulting from this type of 

rotation that likely hinders formation of hydrogen bonds.     

The octahedral tilts in NaNi(XH)6 produce two short interanionic distances 

(2.559 and 2.789 Å, see Figure 5) between adjacent O/F atoms belonging to two linked 

Ni(O/F)6 - Na(O/F)6 octahedra. A similar situation has been reported in Sc(OH)3 
21

 and 

In(OH)3 
22

 which may be considered isotypic when disregarding the additional cation 

ordering in NaNi(XH)6 (X=O,F). In the NaNiF33H2O structure the difference on the Na 

and Ni charge could justify the location of Na in F-rich environments and Ni cations in 

O-rich environments. However, all anions are bonded to 1Na
+
 and 1Ni

2+
 cations, 

making that this asymmetric arrangement cannot be adopted.  

Two hydrogen positions have been located during the refinement of neutron data 

by Fourier difference maps. The hydrogen sites are disordered and found close to the 

mixed (O/F) anion site to give sets of short (1.05 Å; covalent bonding) and large (1.50 

and 1.75 Å; H bonding) distances. Figure 8b shows the hydrogen atom distribution in 

the NaNi(XH)6 (X=O,F) structure. For comparison the analogous distribution observed 

in In(OH)3 is displayed (Fig. 8a). However these disordered H positions are too close to 

each other to be simultaneously occupied (that would produce impossible short 

distances from 0.50 to 0.70 Å). Half occupancy for both H sites has been adopted in 

structural refinements. The only atomic arrangement consistent with the composition is 

that each pair of neighboring anions is bridged by a proton, making a short bond to one 

and a long bond to the other. This arrangement would be only consistent with the 

formulation NaNiF3(H2O)3, if the O and F anions are ordered, producing always short 

OH and long FH bonds. However, assuming that the anion lattice is disordered, the 

compound has to be formulated as NaNi(XH)6 (X=O,F). 
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 As result from considerable octahedra tilting in NaNi(XH)6, isolated square 

(XH)4
4

 units of disordered O/F anions X are formed, with hydrogen bonding along the 

square edges. These extend perpendicular to each other along the three main directions 

(Fig. 8c).  The average anion distances in the square motifs, 2.559(3) and 2.789(3) Å, 

are significantly different and can be interpreted as being related to the strength of 

hydrogen bonds. The strength of hydrogen bonding has been related to the O-HO 

angle and the corresponding intermolecular OO distance 
45,46

. In the present case, both 

hydrogen bonds seem to be fairly strong, although stronger hydrogen bonding related to 

H1 is deduced. The O/F-H1O/F angle is closer to 180º (173.7º) and the corresponding 

O/FO/F bond distance shorter (2.559 Å). Being both O/F-H covalent bond distances 

nearly the same (1.05 Å), the O/FH2 acceptor bond length increases (1.75 Å) and is 

then weaker with respect to O/FH1 (1.50 Å). 

 

NMR Spectroscopy 

Spectroscopic measurements have been undertaken with the purpose of 

validating the conclusions derived from ND, namely the random occupancy of F and O 

anions in a single site and proton distribution in different anion environments. For that, 

the NMR study of the 
19

F, 
23

Na and 
1
H signals corresponding to NaNi(XH)6 (X=O,F) 

has been performed with the high resolution Magic Angle Spinning (MAS-NMR) 

technique. The MAS technique is particularly adapted to improve the spectral 

resolution, due to the partial cancelation of diamagnetic F-Na, F-F and F-H and 

paramagnetic F-Ni and H-Ni dipolar interactions with 3.0 μB of Ni
2+ 

(d
8
) cations, which 

broaden NMR signals.  

The 
23

Na MAS-NMR spectrum of NaNiF33H2O compound depicted in Figure 9 

shows the presence of two different signals at 8 and 308 ppm. The narrow signal at 8 
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ppm can be ascribed to the presence of a small amount of NaF 
47

, which was formed 

during the sample preparation, already detected by XRD technique. In this case, Na 

environment is symmetric and no quadrupolar patterns were detected.  

The broad signal at 308 ppm contains the central (1/2,-1/2) and satellite (3/2, 

1/2) transitions, modulated by the spinning sidebands produced by the sample rotation 

(20 kHz). This band has been ascribed to the octahedral coordination of sodium.
48

 The 

analysis of the spinning sideband pattern using first order quadrupolar interactions 

shows that the recorded spectrum is reproduced by assuming a quadrupolar CQ constant 

of 0.47 MHz and an asymmetric η parameter of 0.6. The detection of satellite 

quadrupolar transitions suggests the existence of an asymmetric distribution of F and O 

ions around Na cations. A disordered distribution of anions could explain local 

asymmetries detected in the Na signal.  

The 
19

F MAS-NMR spectrum of NaNi(XH)6 (X=O,F) depicted in Figure 10 

shows the presence of three different signals at -123, -151 and -221 ppm (denoted by 

horizontal arrows), that are accompanied by their corresponding rotational bands (stars, 

circles and diamonds, respectively). The analysis of the complex -221 ppm signal 

suggests the presence of two components that we attribute to F-rich environments in 

NaF and NaNi(XH)6  compounds.
47

  

Taking into account that all anions are surrounded by one sodium and one nickel 

atom in NaNi(XH)6, chemical shifts of signals should be ascribed to differences on 

anion environment. Based on the structural arrangement of octahedra - each F should 

have ten next nearer F/OH anions as neighbors -, the number of detected environments 

should be very high. However, the number of detected bands is considerably lower than 

expected, indicating that octahedral distortions and tiltings detected in structural 

refinements reduce the number of anion environments. 
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If we analyze the structure of NaNi(XH)6 (X=O,F), we observe the presence of 

separated anion square associations (Figure 8) where each corner may be occupied by F 

or O with equal probability. The probability of occurrence of squares with a given 

number of F and O anions can be worked out by means of the binomial formula, 

according to which the multiplicity of 4F and 4O squares should be 6.25%, that of 

2F+2O squares is 37.5% and that of 3F+1O and 1F+3O is of 25%. Based on these 

multiplicities and the possible arrangements of F and O within them, we have ascribed 

the three signals at -123, -151and -221 ppm to O-F-O, O-F-F and F-F-F environments in 

square associations. Taking into account probabilities deduced for these different 

environments, the presence of O-O-O and F-F-F environments results improbable. The 

quantitative analysis of the three detected signals, 20, 70 and 10%, suggests the 

presence of a disordered distribution of anions in square associations. An alternating 

O
2

 and F

 ordered distribution should produce a single component in the F signal that 

was not observed. 

The presence of diamagnetic H-H, H-F and paramagnetic H-Ni interactions 

enlarge considerably 
1
H MAS-NMR spectra of NaNi(XH)6. In order to improve spectral 

resolution, experiments were conducted at two spinning rates in two different probes. 

Best results were obtained in a 7 mm diameter probe, where a higher amount of sample 

was used. In this case, the smaller electrical probe background favors the detection of 

three components at 2, 5 and 7 ppm (Figure 11). In this spectrum, dipolar interactions 

produce an important amount of spinning side bands separated by the spinning rate, 

5000 c/s. The 
1
H MAS-NMR signal recorded in the 4 mm probe at 14000 c/s rotor 

speed displays again 2, 5 and 7 ppm components, but with a lower amount of spinning 

sidebands.  
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Taking into account the location of protons between two nearest O/F anions of 

contiguous octahedra, the three detected bands can be tentatively ascribed to protons 

within O…O, O…F and F…F associations. In general, OH bonds are stronger than FH 

bonds, so that if a proton is covalently bonded to oxygen the hydrogen bond with the 

acceptor atom will be weaker compared with the case in which the covalent bond is 

with a fluorine anion. Based on this fact, the most intense 2 ppm band has been ascribed 

to protons in O…O and those at 5 and 7 ppm to O…F and F...F environments (Figure 

11). The relative intensities of the three bands indicate that the probability of the three 

environments differs considerably from calculations based on the random proton 

distribution in the three considered associations. This suggests that other aspects such as 

the asymmetric distribution of protons with respect to O
2

 and F

 anions or local 

motions could affect the analysis of intensities. In particular, the preferential association 

of protons with oxygen could favor the formation of H2O molecules (band at 5 ppm) in 

contiguous O
2 

- F
 

pairs. However, the intensity of this band is small.  

 

IR and Raman spectroscopy 

Raman spectra recorded in a NaNiF3⋅3H2O single crystal are depicted in Figure 

12. Taking into account the atomic occupancies in the Pn-3 unit cell and assuming a 

random distribution of F and O in the anion sites, 15 Raman active modes (3Ag+ 3Eg + 

9 Fg) are expected, which arise exclusively from O/F anions. Na and Ni do not 

participate in Raman active modes because they are located at sites with inversion 

symmetry. Protons are not considered in this calculation. 

Though apparently the number of observed modes agrees with the expectations, 

this coincidence is misleading. The prediction of 15 Raman active modes is based on 

the assumption of a single (or average) type of anion. However, because of the charge 
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difference, the vibrations arising from F
−
 and O

2−
 are not expected to mix as in a one-

mode behaviour. A multiplication of the number of modes is rather expected. The 

number of modes observed is incompatible with a well-ordered, periodic structure, but it 

can neither be explained by a completely disordered one, which would yield much 

broader and ill-defined bands. We therefore propose that the ordered aspect of Raman 

spectra arises from local configurations with short-range F/O ordering, similar to reports 

on other systems 
49,50

.  

Figure 13a shows the IR spectrum of NaNi(XH)6 (X=O,F) in the 350-4000 cm
1

 

range. We divide the spectrum into two regions, above and below 2000 cm
1

, pertaining 

to stretching and bending-like vibrations of systems involving protons. The stretching 

region shows two intense though structured bands, peaked at about 3300 and 3000 cm
1

, 

and a doublet centred at 2300 cm
1

. The weak band at 3630 cm
1

 is assigned to a “free” 

hydroxyl group from a residual Ni(OH)2 phase (OH = 3637 cm
1

).
51

 

The broad aspect and the intensity of the bands in the stretching region suggest 

the occurrence of significant hydrogen bonds. This is not surprising in view of the short 

intermolecular distances d1≈ 2.56 and d2≈ 2.79 Å between anions of adjacent 

octahedra, where protons are located (see Figure 8). To make the discussion clearer, we 

use the notation D-H…A for each configuration of hydrogen-bonded D and A anions, 

where D and A stand for proton donor or acceptor. In NaNi(XH)6 H stands for either H1 

or H2 depending on whether the D-A distance is d1 or d2, respectively. 

Oxide ions act either as donors or as acceptors in a great variety of H bonds; 

however the behaviour of fluoride ions depends on which is the other element involved 

in the bond. To our knowledge, fluorine never acts as donor in hydrogen bonds 

involving O. With these ideas in mind, we start the analysis with protons covalently 

bonded to oxygen atoms in O-H...O configurations.
52,53

 Using the expression O-H = 
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3592-304x10
9
exp(-d/0.1321) given in 

52
 we obtain O-H,1 = 2426 cm

1
 and O-H,2 = 3388 

cm
1

 for d1= 2.56 Å (O-H1...O) and d2= 2.9 Å (O-H2...O), respectively, in good 

agreement with experimental results, specifically with bands centred at 3300 and 2300 

cm
1

.  

In O-H...F configurations an increase of O-H is expected, since the OH-bond 

becomes stronger than in O-H...O associations. A difference of about 100 cm
1

 is found 

between the O-D stretching frequencies in O-D...F and O-D...O bonds.
54

  Assuming that 

the frequencies will increase proportionally for proton vibration, a hardening of about 

140 cm
1

 can be expected for O-H...F with respect to O-H...O. These differences fit 

reasonably well within the multiple component aspect of the band at 3300 cm
1

, now 

assigned to both  O-H2...F  and O-H2...O , and nicely explain the splitting of the 2230-

2390 bands, which are then assigned to both O-H1...F and  O-H1...O bonds. 

Finally we consider the cases with fluorine as a donor, F-H...A. As explained 

above, a proton located between F and O is expected to shift toward the oxygen, thus 

contributing to the band above 3200 cm
1

. If both anions are F, the strength of the H-

bonds depends critically on the F...F distance.
55

  In our case, both d1 and d2 are much 

higher than the short distances involved in symmetric F-H-F bonds 
56,57

, so that protons 

will probably remain close to one of the fluorine ions, resulting in a relatively high 

stretching frequency that we identify with the band appearing at about 3000 cm
1

. We 

then attribute this band to F-H1...F and F-H2...F configurations. 

 In the bond-bending region we find a strong band at 1578 cm
1

 and other bands 

at lower frequencies. The region around 1600 cm
1

 readily suggests the presence of 

water-like entities. As we have said, in asymmetric F...O configurations the proton will 

shift toward the oxygen, but this oxygen may be already bonded to another proton at 
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approximate right angles from the first bond. Thus, the presence of fluoride ions near 

oxygen atoms favours water-like configurations of H1-O-H2 type. 

Nevertheless, the frequency of 1578 cm
1

 is lower than typical values observed 

for the water bending mode in solids, which is usually between 1600 and 1640 cm
1

. 

According to the ab-initio calculations of M. Falk 
58

 a decrease of the angular force 

constant may occur for very asymmetric H-O-H...F bent configurations, with 

equilibrium parameters not far from ours. The band at 1578 cm
1

 presents a shoulder at 

1660 cm
1

. As mentioned, the shift of the bending mode to higher wave numbers can be 

ascribed to the occurrence of hydrogen bonds.
59

 

Due to the charge difference between fluorine and oxygen anions, the force 

constants involving M-F

 and M-O

2
 bonds (where M= Na or Ni) are expected to be 

quite different, then, vibrations arising from F

 and O

2
 are not expected to mix as in a 

one-mode behaviour. The bands in the 700-1000 cm
1

 interval (976, 850 and 702 cm
1

) 

are assigned to the deformation of the M-O-H (M= Na, Ni) bonds as well as to the 

rocking of the O-H species. Absorptions between 500 and 350 cm
−1

 are attributed to the 

stretching of Ni-O/F bonds. We identify the (Ni-F) and (Ni-O) modes with the bands 

appearing at 407 cm
1

 and 363 cm
1

, respectively. Since we have concluded that protons 

are more strongly bonded to O than to F, their effect on the Ni-F bond is expected to be 

weaker. The assignment of the band at 407 cm
1

 to (Ni-F) is supported by the finding 

of a mode at 450 cm
−1 

in hydrated MNiF3H2O, where (Ni-O) modes are absent 

because the lattice water is not coordinated to nickel.
60

 

The NaNi(XH)6 sample annealed at 250ºC (Figure 13b) exhibits a clearly 

different and much simpler IR spectrum. TG experiments revealed that thermal 

treatment at this temperature produced the loss of three water molecules. Accordingly, 

all vibrational modes ascribed to proton species are absent in the dehydrated sample. 
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The (Ni-F) stretching mode (450 cm
−1

) agrees with that reported for NaNiF3.
5,7

  The 

weak band detected at 3636 cm
−1

 is again attributed to a residual amount of Ni(OH)2. 

 

Conclusions 

A new sodium nickel fluoride hydrate with composition NaNiF33H2O has been 

prepared by a precipitation route from aqueous solution that differs from NaMF3 

perovskites obtained with M= Mn, Co or Zn. In NaNiF33H2O, a ReO3-type cubic 2a x 

2a x 2a supercell (a being the simple ReO3 axis) was detected, in which octahedral Na 

and Ni are ordered in alternate contiguous 2b and 2c octahedral sites, but O and F 

anions are randomly distributed in 24h sites (SG Pn-3). This finding agrees with results 

reported in most transition metal oxyfluorides, that exhibit a random distribution in 

anion sites.
49,50

 The structural model deduced for NaNiF33H2O is similar to that of 

In(OH)3, suggesting that protons are bonded to one mixed O/F anion. The similarity 

becomes clearer if we write the formula as NaNi(XH)6 (X=O,F).  

To investigate O/F distribution at a local scale, IR/Raman and NMR 

spectroscopy have been used.The interpretation of spectroscopic results is based on the 

assumption that the basic structural units concerning anion and proton bonding are the 

anion squares connecting adjacent octahedra. Then, the different components of F-NMR 

spectra are assigned to F-F-F, O-F-F and O-F-O associations at the corners of these 

squares. The comparison between the relative intensities and the statistically calculated 

probability of occurrence of the different anion arrangements yields that an alternating, 

ordered disposition of F and O anions is highly disfavoured, thus supporting the 

hypothesis of a disordered anion distribution. 

Regarding vibrational spectroscopy, the preferential association of protons to 

oxygen atoms when these are located near F ions was confirmed. This peculiarity, not 
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found in compounds with a single type of anion such as In(OH)3, results in a non-

negligible probability of occurrence of two proton, water-like associations. Water-like 

entities are also detected in 
1
H MAS-NMR spectra.  However, the small intensity of the 

band at 5 ppm attributed to water suggests that NaNiF33H2O formulation is not 

favoured.  
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Table 1. Experimental conditions and refined parameters of the co-refined X-ray and 

neutron diffraction data of NaNiF3  3H2O in Pn-3. 

 

Chemical formula  

 
NaNiF3  3 H2O 

Diffraction type X-ray powder Neutron powder 

Temperature T = 298 K 

Diffractometer Bruker D8 SPODI at MLZ 

Radiation  = 1.54056 Å (Cu-Kα1)  = 1.54811 Å 

2 angular range 10-100º 18-150º 

Step, time per step 0.014643, 12s 0.05, monitor=250000 

Crystal system Cubic 

Space group Pn-3 (# 201) 

Lattice parameter a = 7.92133(6) Å 

Number of reflections 47 177 

Refined structural parameters 6 10 

Refined profile parameters 8 8 

Number of atoms 3 5 

Reliability factors Rp = 0.087 

Rwp = 0.116 

RBragg = 0.052 

Rexp = 0.067 

χ
2 

= 2.99 

Rp = 0.087 

Rwp = 0.086 

RBragg = 0.042 

Rexp = 0.048 

χ
2 

= 3.32 

 

 

Table 2. Atomic positions, isotropic thermal displacement and occupancies determined 

by simultaneous fitting of PXRD and NPD data for NaNiF33H2O (S.G. Pn-3) 

 

Atom Site x y z Occ. U*100 

Na 4c 0.5 0.5 0.5 1.0 0.92(3) 

Ni 4b 0 0 0 1.0 1.1(1) 

O/F 24h 0.0900(1) 0.5753(2) 0.2722(1) 1.0 1.2(1) 

H1 24h 0.75 0.7224(5) 0.0676(5) 0.5 1.4(2) 

H2 24h 0.7058(4) 0.25 0.0766(5) 0.5 1.4(2) 

Bond valence sums:    Na(4c) = 1.18 ; Ni(4b) = 2.02 
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Table 3. Bond distances (Å) and angles (º) with standard deviations in NaNiF33H2O 

determined from X-ray and neutron data. 

 

Distances (Å)  Angles (º)  

Na-O/F 2.348(2) x 6 O/F-Na-O/F 88.2(1) 

O/F-O/F (octahedron edge) 3.267(2) x 6  91.8(1) 

 3.372(2) x 6 Na-O/F-H1 97.6(2) 

  Na-O/F-H2 93.8(2) 

Ni-O/F 2.029(2) x 6 O/F-Ni-O/F 87.0(1) 

   93.0(1) 

O/F-O/F (octahedron edge) 2.794(2) x 6 Ni-O/F-H1 118.4(2) 

 2.944(2) x 6 Ni-O/F-H2 113.7(2) 

Na-Ni 3.9598(1) Na-O/F-Ni 129.4(1) 

O/F-O/F (square units) 2.559(3) x 2   

 2.789(3) x 2   

O/F-H1 1.065(5) O/FH1-O/F 173.7(4) 

O/F-H2 1.054(4) O/FH2-O/F 170.0(3) 

O/FH1 1.497(5) H1-O/F-H2 97.3(3) 

O/FH2 1.746(4)   
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Table 4.  ReO3-hettotypes and deduced tilting angles  about <111> 

 

 

Compound Lattice parameter a / Å S.G. M-X-M angle  / º Tilting angle <111> / º ref 

ReO3 3.7054(1) Pm-3m 180.0 - 38 

hp-ReO3  7.4456(2) – 7.1618(7) Im-3 166.0 - 146.4 8.6 - 20.6 33 
a
 

NbO2(OH) 7.645(2) Im-3 148.4 19.4 32 

Sc(OH)3 7.882(5) Im-3 140.9 24.0 21 

In(OH)3 7.9743(6) Im-3 134.6 27.9 23 

CoAs3 

(skutterudite) 

8.2055(3) Im-3 123.5 33.0 39 

NaSbF6 8.184(5) Fm-3m 180.0 - 40 

CaSn(OH)6  

(burtite) 

8.15 Pn-3 135.7 27.2 34,35
 b
 

MSn(OH)6 

M=Mn, Zn 

7.8744(5), 7.80(1) Pn-3 136.7 26.6 34-36 

NaNiF33H2O 

= NaNi(XH)6  

7.91968(4) Pn-3 129.4 31.1 
c 

NbO2F 3.899(2) Pm-3m 180.0 - 41 

hp-NbO2F  5.519-4.823  

=60.002-63.219º  

R-3c 155.8 - 140.9 14.8 – 24.0 42
 d,e

 

FeF3  5.362(1) 

=57.94(2) 

R-3c 152.1 17.1 43
 d
 

 
a
 =166.0º at 1270 MPa; =146.4º at 8010 MPa. 

b
 at 4K 

c
 from this work 

d
 titlting scheme is a


a

a

 

e
 =155.8º at 1380 MPa; =140.9º at 10500 MPa 
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Figure Captions 

 

Figure 1: Powder X-ray diffraction profiles corresponding to nominal NaNiF3 obtained 

by precipitation (a), together with that of NaCoF3 obtained by precipitation (b) and 

NaNiF3 using the ceramic route (c). Diffraction patterns of NaCoF3 (b) and NaNiF3 (c) 

are compatible with those of the perovskite structure, space group Pbnm.  

 

Figure 2: Variation of weight of NaNiF33 H2O compound with temperature under 

flowing nitrogen. The three hydration water molecules are lost in the 150-200º C range. 

 

Figure 3: Selected area electron diffraction (SAED) images obtained for NaNiF33H2O 

compound, indexed with a cubic parameter of a8Ǻ along several zone axes: [010] (a). 

[-110] (b), [-120] (c) and [-111] (d). The corresponding calculated patterns are given 

below. 

 

Figure 4: NPD pattern of NaNiF3 3H2O modelled with a cubic (Pn-3) 2a x 2a x 2a 

supercell. The solid (black) line corresponds to the model fitted to the data (red circles) 

and the (blue) line beneath corresponds to the difference between them. Vertical (green) 

bars indicate the allowed Bragg reflections. In refinements a small amount of the 

secondary NaF phase was considered (lower vertical bars). 

 

Figure 5: Structure of NaNiF33H2O. Na(O/F)6 (large yellow octahedra), Ni(O/F)6 

(small blue octahedra), F/O atoms (red big spheres) and H atoms (white small spheres).  
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Figure 6: Magnetic molar susceptibility of NaNiF3·3H2O as function of temperature. 

The inset shows the temperature dependence of the inverse magnetic susceptibility. The 

(red) solid line illustrates the fit to Curie’s law. 

 

Figure 7: Relationship between the primitive cubic ReO3 and the 2a x 2a x 2a cubic 

supercells produced by a
+
a

+
a

+
 octahedral tilting without and with 1:1 cation ordering, 

respectively (after 
9,19

). 

 

Figure 8: Projection down the [001] direction of four corner-sharing Na(O/F)6 and 

Ni(O/F)6 octahedra in NaNi(XH)6 (X=O,F) (b) together with the positions of hydrogen 

atoms. The corresponding projection is displayed for In(OH)3 for comparison (a). 

Arrangement of the H bonding corrugated square motifs in the unit cell (c). 

 

Figure 9: 
23

Na MAS-NMR spectrum of NaNi(XH)6. The broad signal at 308 ppm with 

the corresponding spinning sidebands have been ascribed to Na in octahedra of this 

phase. The narrow sharp signal at 8 ppm corresponds to NaF as minor secondary phase. 

 

Figure 10: 
19

F MAS-NMR spectrum of NaNi(XH)6. (Blue) arrows point the three 

different bands centred at -123, -151 and -221 ppm. (*), () and (◊) symbols denote 

spinning side bands of these three components.  

 

Figure 11: 
1
H MAS-NMR spectrum of NaNi(XH)6. The increment of the spinning rate 

allowed a better estimation of intensity of components. 
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Figure 12: Raman spectra of a NaNi(XH)6 single crystal with incoming and outgoing 

electric fields either parallel (||) or perpendicular () to each other.  

 

Figure 13: FT-IR spectrum of NaNi(XH)6 (a) and after annealing at 250ºC (b). 
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O: the ordered cation link-up contrasts with anion disorder 

in a ReO
3
-type superstructure ruled by significant hydrogen bonding. 
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