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SUMMARY 

Keywords: RepA / RepA-WH1 prionoid / amyloid protofilaments / amyloid assembly / electron 

microscopy 

 

Most available structures of amyloids correspond to peptide fragments that self-

assemble in extended cross -sheets. However, structures in which a whole protein 

domain acts as building block of an amyloid fiber are scarce, in spite of their relevance 

to understand amyloidogenesis. Here we use electron microscopy (EM) and atomic 

force microscopy (AFM) to analyze the structure of amyloid filaments assembled by 

RepA-WH1, a winged-helix domain from a DNA replication initiator in bacterial 

plasmids. RepA-WH1 functions as a cytotoxic bacterial prionoid that recapitulates 

features of mammalian amyloid proteinopathies. RepA are dimers that monomerize at 

the origin to initiate replication, and we find that RepA-WH1 reproduces this transition 

to form amyloids. RepA-WH1 assembles double helical filaments by lateral association 

of a single-stranded precursor built by monomers. Double filaments then associate in 

mature fibers. The intracellular RepA-WH1 aggregates killing bacteria might reproduce 

the hierarchical assembly of human amyloidogenic proteins.  

 

Introduction  

Rep proteins constitute a family of DNA replication initiators found in Gram-negative 

bacterial plasmids (Giraldo and Fernandez-Tresguerres, 2004). Encoded in the 

Pseudomonas plasmid pPS10, RepA consists of two ‘winged-helix’ (WH) domains, 

WH1 and WH2 (Figure 1A). Although the structure of full-length RepA has not been 

solved, those of a dimer of the N-terminal WH1 domain of RepA (Giraldo et al., 2003) 
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and the full-length RepE54 monomer, a related replication initiation protein (Giraldo 

and Fernandez-Tresguerres, 2004; Komori et al., 1999), have been used to model RepA 

(Giraldo and Fernandez-Tresguerres, 2004). Similarly to other proteins in the Rep 

family, monomers of RepA initiate plasmid DNA replication whereas RepA dimers 

function as transcriptional repressors at the operator of the repA gene (Figure 1A) 

(Giraldo et al., 1998). RepA dimers are formed by the interaction between the N-

terminal WH1 domains, as revealed in the atomic structure of a dimer consisting of two 

WH1 domains (PDB ID 1HKQ) (Giraldo et al., 2003) (Figure 1B), whereas additional 

evidence indicates that the WH2 domain drives sequence-specific DNA binding 

(Giraldo et al., 1998). Current models propose that the dissociation of RepA dimers into 

monomers is promoted by binding to specific DNA sequences at the plasmid replication 

origin, eliciting a conformational change that affects the N-terminal WH1 dimerization 

domain (Diaz-Lopez et al., 2006; Diaz-Lopez et al., 2003; Giraldo et al., 2003). 

Moreover, complexes involving monomeric Rep proteins, the specific Rep-binding 

sites, and a ssDNA from the AT-rich region at the origin are critical for the initiation of 

plasmid replication (Wegrzyn et al., 2014). Upon completion of DNA replication, the 

two resulting plasmid copies remain associated through their replication origins by a 

bridge established by a core of RepA monomers, which are coupled through 

interactions mediated by their WH1 domains (Gasset-Rosa et al., 2008b). This 

mechanism (termed ‘handcuffing’) negatively regulates, through steric hindrance, the 

firing of premature new replication rounds (Chattoraj, 2000) (Figure 1A). 

 A truncated version of RepA that comprises the WH1 domain only has been 

shown to assemble as amyloid fibers upon binding to short, specific dsDNA sequences 

in vitro (Gasset-Rosa et al., 2008a; Giraldo, 2007) (Figure 1A-1B). The introduction of 
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a single point mutation (A31V) identified in searches for RepA variants with increased 

affinity for other proteins in the replication machinery, and which enables pPS10 to 

replicate in an expanded range of bacterial hosts (Giraldo and Fernandez-Tresguerres, 

2004), enhanced the efficiency of amyloid formation (Giraldo, 2007). This protein, 

RepA-WH1(A31V) (for simplicity, referred henceforth as RepA-WH1), which as the 

wild-type formed dimers in solution (Giraldo, 2007; and Figure S1), assembled 

amyloid fibers of 25 nm width, only in the presence of a dsDNA sequence matching the 

spacer between inverted repeats at the repA operator (Giraldo, 2007) (Figure 1A). 

RepA-WH1 fibers have been characterized using several methods, including circular 

dicroism (CD), X-ray fiber diffraction and differential spectral absorption upon binding 

of Congo Red (Giraldo, 2007). 

Protein amyloid aggregates are involved in the etiology of human 

neurodegenerative and systemic diseases, but they also function as epigenetic 

determinants of selectable phenotypes ( Toyama and Weissman, 2011; Chiti and 

Dobson, 2006). This opened an intense research to gain understanding on the structural 

basis of amyloid assembly, but this objective is challenged by their polymorphic nature, 

ranging from small soluble oligomers to large fibers (Eichner and Radford, 2011). 

Although not directly involved in any human disease, RepA-WH1 is a good model 

system to study amyloid proteinopathies elicited by proteins starting from a properly 

folded, compact 3D fold, rather than from intrinsically disordered states or small 

peptides (Giraldo et al., 2011). There are noticeable similarities between the mammalian 

prion protein PrP and RepA-WH1, including that both have nucleic acids and lipids as 

effectors of amyloidosis (Silva et al., 2010; Wang et al., 2010; and our own unpublished 

findings on RepA-WH1). Interestingly, intracellular RepA-WH1 aggregates cause an 
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amyloid proteinopathy in E. coli that is propagated from mother to daughter cells, slows 

significantly cell division rates, and are able to seed the growth of amyloid fibers in 

vitro (Fernandez-Tresguerres et al., 2010), recapitulating many of the features of 

amyloidosis in yeast and mammalian cells, including the existence of strain-like 

conformational variants (Gasset-Rosa et al., 2014). 

The three-dimensional (3D) structures of the peptide cores of several amyloids 

have been solved using X-ray crystallography ( Liu et al., 2011: Ivanova et al., 2009) or 

solid state NMR (Fitzpatrick et al., 2013; Antzutkin et al., 2000), whereas the structures 

of large amyloid fibrillar assemblies are typically solved, at lower resolutions, through 

single particle electron microscopy (EM) and helical reconstruction methods (Arranz et 

al., 2012; Mizuno et al., 2011; Sachse et al., 2010). So far, most of the 3D-structures 

solved for amyloids correspond to assemblies of peptide fragments (Eisenberg and 

Jucker, 2012), such as Alzheimer’s A(1-40/42) (Fandrich et al., 2011) and the prion 

domain in HET-s(218-289) (Wasmer et al., 2008). However, fibers built on full-length 

protein molecules are also amenable to structural analyses, as for insulin (Ivanova et al., 

2009), 2-microglobulin (Liu et al., 2011) and SOD1 (Elam et al., 2003), or the PI3K-

SH3 (Jimenez et al., 1999) and HypF-N (Campioni et al., 2012) domains. In those cases 

in which the amyloidogenic proteins have stable 3D-folds, a relevant issue is whether 

the protein molecules acting as building blocks in the crossed- sheets undergo a radical 

unfolding or not, i.e., they partially and transiently expose just an amyloidogenic 

peptide sequence for assembly (Chiti and Dobson, 2009). Examples of the former are 

insulin (Ivanova et al., 2009) and 2-microglobulin (Liu et al., 2011), whereas SOD1 

(Elam et al., 2003) and HypF-N (Campioni et al., 2012) fit to the latter. 
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Here we have used RepA-WH1 to study a mechanism involved in the assembly 

of amyloid fibers by stable domains, using EM and Atomic Force Microscopy (AFM), 

and we find that RepA-WH1 dimers have to dissociate into monomers to assemble 

helical filaments. These filaments associate into double helical structures that further 

associate laterally into thicker fibers, whose variable degree of twisting results in 

structural polymorphism. RepA-WH1 domain is structurally unrelated to any protein 

involved in human disease but yet, once assembled as a prionoid, it elicits an amyloid 

proteinopathy in bacteria ( Gasset-Rosa et al., 2014; Fernandez-Tresguerres et al., 

2010). As reported here, the finding that RepA-WH1 recapitulates the hierarchical 

assembly of amyloids in human neurodegenerative and systemic diseases further 

qualifies this bacterial prionoid as a relevant model system to approach the structural 

basis of amyloid proteinopathies.  

 

Results 

RepA-WH1 amyloid fibers are assembled by association of filaments 

Earlier electron microscopy studies suggested that RepA-WH1 amyloid fibers 

assembled by the hyper-amyloidogenic mutant A31V could be obtained through 

allosteric binding of a dsDNA oligonucleotide effector (Giraldo, 2007) or by seeding 

with purified amyloid aggregates generated within E. coli (Fernandez-Tresguerres et al., 

2010) (Figure 1A). A recent report demonstrated that aggregates of Alzheimer’s A(1-

40/42) extracted from biological samples do template in vitro the growth of amyloid 

fibers with the very same conformation found in vivo (Lu et al., 2013). Thus, a similar 

seeding procedure was chosen to grow RepA-WH1 fibers for our structural analyses. 
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We first purified RepA-WH1, which behaved as a dimer in solution (Figure S1), as 

reported before (Giraldo, 2007; Giraldo et al., 2003), whereas seeds were obtained from 

purified RepA-WH1 aggregates generated in the cytoplasm of E. coli.  EM revealed that 

RepA-WH1 amyloid fibers grew from this globular, proteotoxic aggregates (Figure 1C, 

i), showing various widths and degrees of twisting (Figure 1C, ii). Mechanical shearing 

in a buffer with reduced ionic strength resulted in fraying of fiber ends (Figure 1C, iii), 

and ultimately, in dissociation of their constituent filaments (Figure 1C, iv), revealing 

that fibers were built from the association of several filament units. We were unable to 

successfully visualize these preparations after vitrification and observation under liquid 

nitrogen temperatures (cryo-EM) since the buffer used for assembly of the fibers and 

filaments was not compatible with cryo-EM. Also, we were unsuccessful in exchanging 

this buffer whilst maintaining filament integrity. Further work will be required to 

address these issues. 

 RepA-WH1 amyloidogenesis and fiber assembly, triggered using dsDNA, had 

been characterized before by circular dichroism (CD) (Giraldo, 2007). In this study, we 

have explored the kinetics of fiber assembly by CD (Figure 1D), but this time using 

intracellular bacterial RepA-WH1 aggregates purified ex vivo as nucleation seeds, since 

this method was used in the generation of the fibers analyzed by EM (see above) and 

AFM (see below). The experiment revealed that the spectrum of RepA-WH1 

progressively acquired the typical profile of a protein enriched in -sheets (a broad 

ellipticity minimum at c.a. 215 nm), at the expense of the -helical minima (i.e., 208 

and 222 nm). This observation is particularly evident when RepA-WH1 was seeded 

with purified intracellular aggregates of the prionoid (Figure 1D, ii), relative to the 

spectra reflecting the spontaneous long-term aggregation of the protein (Figure 1D, i), 
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which typically renders amorphous aggregates (Giraldo, 2007). In addition, aggregation 

kinetics (i.e., the rate of increase in ellipticity signal) is speeded-up in the seeded 

sample. 

 RepA-WH1 fibers were also analyzed by AFM, which revealed a clear left-

handed helical structure. RepA-WH1 fibers displayed large heterogeneity in height and 

length. For each fiber we measured the height values for the peaks and valleys, 

confirming that fibers were very variable (Figure S2, Table S1). The most abundant 

population showed heights of 16 ± 2 nm and 13 ± 2 nm measured at the peak and valley 

positions, respectively (Figure 2A, profile 1). The mean pitch size inferred from these 

fibers was 64 ± 6 nm. A less abundant population of higher fibers (i.e., those with 

brighter contrast) was also observed (Figure S2, Table S1). These fibers displayed 

approximately twice the height of the smaller ones, ranging from 20 to 27 nm, with 

mean values of 25 ± 2 nm (peaks) and 21 ± 2 nm (valleys) (Figure 2A, profile 2). We 

observed a large variability of heights within each population, and even within a single 

fiber, suggesting that fibers are composed of smaller filamentous constituents. 

Polymorphism in the degree of twisting and pitch is a common feature in amyloid fibers 

(Diaz-Avalos et al., 2005). The constituent filaments in each fiber were observed after 

shearing, as revealed by EM (Figure 1C). Indeed, AFM images also showed several 

short filament-like structures arising from the end of some fibers (Figure 2B). These 

filaments were homogeneous in height with a mean value of 3.9 ± 0.3 nm (Figure 2B, 

profile 3). We could not assign any helicity to these filaments since they were often too 

short and at the limit of the resolution of the technique.  

 

RepA-WH1 forms single and double helical amyloid filaments 
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The constituent filaments forming the RepA-WH1 fibers were sufficiently thin to be 

studied through single particle and helical reconstruction methods in EM. These 

filaments were visible at the ends of the fibers but also dispersed across the micrographs 

as individual units (Figure 3A). We boxed 19,300 segments along the isolated filaments 

in the micrographs, each segment covering approximately 36 nm in length (Figure 3B). 

2,277 segments from those filaments at the end of the fibers were also extracted and 

both sets of images were analyzed independently. Images were then aligned and 

classified using single-particle image processing methods to group similar images, 

obtaining averages with improved signal to noise ratio (Figure 3B). These averages 

revealed several well-defined helical structures, which could be assigned to two main 

sub-types by visual inspection, which were later found to correspond to either single or 

double filaments (Figure 3B). Within each of these two groups, averages revealed 

several degrees of bending and stretching, an indication of conformational heterogeneity 

within the segments of each filament and/or between filaments. Importantly, we 

observed similar averages for the isolated filaments and those filaments observed at the 

ends of fibers, further supporting that fibers are assembled by the interaction of these 

simpler units. We thus concentrated our efforts in the free filaments, which were the 

most abundant species in our data set. Images of single filaments were only detected in 

isolation and never as part of the fiber ends, which, based on their 3D structure (see 

below), could indicate that these single filaments are intermediates in the pathway for 

the assembly of the double filaments and the fibers. 

We applied the iterative helical real space reconstruction (IHRSR) method to 

images of single and double filaments to resolve their structure (Egelman, 2007). 

Refinement experiments using images from several classes did not converge, suggesting 
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that the conformational differences between subgroups was sufficiently large to hamper 

alignment in 3D and convergence. Thus, we applied a variation of the IHRSR method 

adapted for highly heterogeneous complexes (Arranz et al., 2012), and which uses only 

the homogenous subset of images from each class average. Each subset was processed 

independently by applying helical symmetry as described before (Arranz et al., 2012), 

and curved filaments were discarded from this analysis (Figure S3). The two types of 

averages described corresponded to either a single (Figure 3C) or a double filament 

(Figure 3D). To validate these structures, we compared the power spectrum of average 

images and projections from the 3D structures, which were found to match (Figure S3) 

(Egelman, 2007). In addition, projections of the structures matched better with 

reference-free averages obtained for images of the same conformation, compared to the 

match with images of slightly different conformations (Figure S3). 

 

RepA-WH1 amyloids consist of assembled monomers 

RepA forms dimers in solution that convert into monomers upon activation (Giraldo et 

al., 2003), and RepA-WH1 is also a dimer (Figure S1). Thus an important question was 

to address whether monomeric or dimeric units of RepA-WH1 were the constituents of 

the filaments. For this purpose, both the single and the double filaments were 

segmented into their elemental units, using UCSF Chimera and allowing the maximum 

number of segments (Pettersen et al., 2004). This unbiased segmentation revealed the 

units that reconstitute the whole structure upon repetition using the helical symmetry 

(Figure S3). Further segmentation would have generated segments smaller than a 

RepA-WH1 monomer whereas larger segments would include two parts of the helix 

related by helical symmetry. However, in the dimer, two monomers of WH1 are not 
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related by helical symmetry but through a pseudo-two fold axis (Giraldo et al., 2003) 

(Figure 1B). 

When fitting between the crystal structure of RepA-WH1 into each segment as 

defined by EM was attempted (Figure 3C-E), we found that dimers could not fit the 

EM structures of single and double filaments since dimers were significantly larger than 

the segment. On the other hand, the structure of a monomer of RepA-WH1 fitted 

convincingly within the EM density (single filaments: cross-correlation = 0.89 for 

monomer; 0.84 for dimer; double filaments: cross-correlation = 0.95 for monomer; 0.89 

for dimer) (Figure 3E). Due to the resolution of our map and the globular shape of the 

monomer the precise orientation of RepA-WH1 within the EM structure could not be 

defined unambiguously. For the same reason, the hand used to represent the structure is 

arbitrary. To discard any effect of the segmentation, we also tried to fit the dimer into 

the complete filament by searching the match of a RepA-WH1 dimer within the 

unsegment structures. We did not find any high correlation solution further indicating 

that RepA-WH1 dimers are not the constituent element of the amyloid filament. As a 

whole, these experiments indicated that RepA-WH1 filaments were assembled after the 

association of monomers, most likely after some structural distortion increasing their -

sheet content (Giraldo 2007; Giraldo et al., 2003) (Figure 1D). 

Discussion 

With the exception of HET-s prion (Wasmer et al., 2008), we still lack a 3D-structure 

with atomic resolution of any other full-length protein in its amyloid fibrillary state. 

Here we show that RepA-WH1 assembles single filaments that associate to form double 

filaments, which are the building units for the amyloid fibers (Figure 4). Such 
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association would imply some kind of interlocked new interactions not present in the 

single filament. The comparison of the EM structure of these filaments with the atomic 

structures and models for RepA-WH1 dimers and monomers (Giraldo et al., 2003) 

indicated that dimers were not compatible with the basic structural unit in RepA-WH1 

filaments. Therefore, the most likely model would be that dimers must dissociate into 

monomers that accommodate some kind of distortion in their path towards amyloid 

cross- assembly (Figure 4). RepA-WH1 could be a suitable model system to 

understand protein amyloidogenesis when starting from a properly folded structure 

(Giraldo et al., 2011). 

The structure of RepA-WH1 amyloid filaments allows for some speculation 

about potential mechanisms of regulation of DNA replication initiation by RepA. Pre-

standing experimental evidence on the natural conformational activation of RepA 

established that, upon binding to specific dsDNA sequences at pPS10 replication origin, 

protein dimers dissociated into monomers (Diaz-Lopez et al., 2006; Diaz-Lopez et al., 

2003). Dimerization of RepA and RepA-WH1 occurs through the WH1 domain 

(Giraldo et al., 2003), and thus the dimer to monomer transition we observed during 

amyloidogenesis of RepA-WH1 may possibly replicate to some extent the structural 

changes occurring in RepA during initiation of DNA replication. Besides triggering 

DNA replication through the subsequent binding to host factors, RepA becomes then 

aggregation prone, in such a way that the replication origins from two plasmid 

molecules become ‘handcuffed’ by ‘gluing’ of RepA monomers, precisely through their 

amyloidogenic WH1 domain (Gasset-Rosa et al., 2008b) (Figure 1A). The RepA-WH1 

double filaments described here suggest a possible model for the association of RepA 

monomers, but this is unlikely identical to the functional structure of RepA aggregates 
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in handcuffing. There is only a subtle association between the two strands in a double 

filament, and handcuffing seems to be established on robust intermolecular interactions 

(Gasset-Rosa et al., 2008b). But the strong interactions between consecutive monomers 

within the single-stranded filaments could be a better candidate for the structure of 

handcuffed RepA assemblies. We predict that the presence of the C-terminal WH2 

domain in full length RepA would limit the extension of amyloid interactions to the 

pairwise ‘transversal’ association of WH1 domains in the DNA-bound protein. On the 

contrary, in the absence of WH2, such as in the RepA-WH1 prionoid, sterically 

unrestricted amyloid polymerization would lead to the fibers characterized in this work 

(Figure 4). We speculate that the irreversible aggregation of full length RepA protein 

upon completion of DNA replication, leading to the inactivation of further replication 

rounds, may mimic an amyloid assembly. 

In summary, we show that the conformational activation of RepA, which is 

coupled to monomerization to become an efficient DNA replication initiator, and RepA-

WH1 amyloidogenesis, which results in cytotoxicity, are two distinct events intimately 

related with the properties of the WH1 domain. This domain can switch from dimer to 

monomer, and it can associate in the form of large assemblies. The structure of the 

fibers assembled by the synthetic bacterial prionoid RepA-WH1 reveals that 

amyloidogenesis in some globular proteins could require dimer-monomeric transitions, 

and this may be potentially relevant to human diseases in which the proteins involved 

have native association states beyond monomers.  

Experimental Procedures 

Preparation of RepA-WH1 fibers and filaments 
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RepA-WH1(A31V) protein was purified as described (Giraldo, 2007). Amyloid fibers 

were assembled in vitro with a slight modification of the established protocol 

(Fernández-Tresguerres et al., 2010; Giraldo, 2007): RepA-WH1(A31V) protein 

(25µM) was seeded with 1µg of RepA-WH1(A31V)-mRFP aggregates purified from E. 

coli cells in 100 µl aliquots containing 0.1 M Na2SO4, 40 mM HEPES pH 8.0, 5 mM 

MgSO4, 7% PEG 4000, 3% MPD. Samples were left standing still at 5 
o
C for 15 days. 

This resulted in fibers up to 25 nm Ø wide. To detach their component RepA-

WH1(A31V) filaments, fibers were diluted 1:3 to 1:10 in water and then sheared by 

pipetting five times through a P-10 tip before adsorption on copper grids (for EM) or 

mica sheets (for AFM). 

CD spectroscopy 

200-μl samples were made by diluting RepA-WH1(A31V) protein stock to 15 μM in 

0.1 M Na2SO4 and 40 mM Tris·HCl pH 8, either with or without 1 g of RepA-

WH1(A31V)-mRFP aggregates purified from E. coli cells undergoing amyloidosis 

(Fernández-Tresguerres et al., 2010). Compared with the fibrillation assays (see above), 

crowding agents (PEG4000/MPD) were omitted from the reactions to gain clearer 

spectra, albeit at the expense of slower kinetics. Samples were incubated at 4°C and CD 

spectra were serially acquired every seven days with a Jasco-720 spectropolarimeter 

using 0.1 cm path-length quartz cuvettes (Hellma). The cell holder was kept at 20°C 

with a Peltier module and CD spectra were acquired between 260 and 195 nm (20 

nm/min scan speed). Ten spectra were averaged for each sample, and the buffer 

spectrum was subtracted as a blank. Raw data (in mdeg) were converted to mean 

residue molar ellipticity [θ] (degcm
2
dmol

-1
).  
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Atomic Force Microscopy (AFM)  

Freshly cleaved mica sheets (SPI supplies) were pre-treated with 20 μl of polyl-l-lysine 

0.01% solution (sigma) for a few seconds, washed with Milli-Q water and dried with 

nitrogen gas. Then, the fiber sample, diluted 1:3 in water, was placed onto the pretreated 

mica. After adsorption for 1 min, the sample was gently washed with Milli-Q water and 

blown dry in a soft stream of nitrogen gas. Samples were imaged in air at room 

temperature and low humidity using tapping mode with amplitudes of 5 nm and scan 

rates of 1 lines·s
-1

 using an AFM from Nanotec (Nanotec Electrónica, Madrid, Spain). 

We employed AFM tips PointProbePlus (PPP-NCH, Nanosensors, Switzerland) with a 

nominal tip radius below 10 nm. Image processing consisted in a plane subtraction and 

flattening. Height and lateral calibrations of the AFM were performed using commercial 

grids with square pitches of 4 µm length and 25 nm of step height, and in addition, 

DNA molecules were used as an internal control. From each fiber, three characteristic 

measurements were taken from the height profile for the peaks and valleys, 

respectively. We analysed 20 and 5 fibers for the most and less abundant populations, 

respectively. Only fibers with a visible helicity were measured, as shown in the Figure 

2A. Broken fibers without a clear helicity pattern were discarded (aprox. 30%). Then, 

all data was represented in the height histogram and the mean value and the standard 

deviation obtained for each population was calculated (Figure S2, Table S1). 

Electron microscopy 

10 µL samples were adsorbed on glow-discharged 400-mesh copper grids (Ted Pella, 

Inc.), washed three times and, contrasted with 2% uranyl acetate for 2 min. Specimens 

were then examined in a JEOL JEM-1230 transmission electron microscope, operating 

at 100 kV. For those samples used in image processing 5 µl of a 1:3 dilution of RepA-
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WH1 (25 µM) at incubation-day 15 were applied to glow-discharge carbon-coated grids 

for 2 minutes, and stained with 2% (w/v) uranyl formate. Micrographs were recorded 

under low dose conditions using a TemCam-F416 detector and EM-TOOLS from Tietz 

Video and Image Processing Systems (TVIPS). Images were collected at a final 

magnification of 41586×.  

Image processing 

CTF correction was performed using BSOFT (Heymann and Belnap, 2007). 19333 

images selected using EMAN (Ludtke, 2010) were classified using XMIPP (Scheres et 

al., 2008; Sorzano et al., 2004). 3D refinement was performed using the iterative helical 

real space reconstruction (IHRSR) method (Egelman, 2007), modified to deal with the 

heterogeneity of the filaments as described before (Arranz et al., 2012). Classes 

containing curved filaments were discarded and the rest of the images were re-

classified. 3D refinement was performed only for selected averages with a number of 

images ranging from 200 to 350, and each homogenous subgroup was refined 

independently. For each of these subgroups an initial 3D-reconstruction was performed 

with EMAN using a cylinder with the appropriate diameter as a reference (Ludtke, 

2010). Cylinders used as template for refinement were obtained using 

makeinitialmodel.py in EMAN (Ludtke, 2010). No-symmetry was applied at this stage 

during refinement and preliminary helical parameters were determined using the 3D 

structures obtained. These values were used as initial parameters during the Iterative 

Helical Real Space Reconstruction (IHRSR) (Egelman, 2007). Refinement of several 

subgroups of images for double filaments yields similar structures but with small 

differences in the convergence parameters. A representative class for single and double 

filaments was then selected for further refinement until convergence. Estimated 
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parameters for these subgroups were: rise, 12.5 Å and delta-phi, 81 degrees, for single 

filaments; rise, 23.5 Å and delta-phi, 68.5 degree, for double filaments. Resolution was 

estimated using the resolution_ssnr in Xmipp (Sorzano et al., 2004) as 29 and 28 Å, for 

single and double filaments respectively. Fitting of RepA-WH1 was performed using 

UCSF Chimera (Pettersen et al., 2004) after segmentation of single and double 

filaments. Fitting was carried out on both hands, obtaining similar correlation 

coefficients, and thus hand selected for representation is arbitrary. For the fitting we 

used models based on the crystal structure of the RepA-WH1 dimer (PDB ID 1HKQ) 

(Giraldo et al., 2003) and on the structure of the WH domain of RepE54 (PDB ID 

1REP) (Giraldo and Fernandez-Tresguerres, 2004).  

To validate the structures we compared the power spectrum of reference-free averages 

of the images used for the reconstructions of single and double filaments with the power 

spectrum of projections from the 3D structures. For this, averages and projections were 

padded to 2048 x 2048 pixels using the xmipp_transform_window command in Xmipp 

(Scheres et al., 2008; Sorzano et al., 2004), and a mask with a raised cosine was applied 

prior to FFT visualization. In addition, projections from the structures were compared 

with reference-free averages using the refine command in EMAN (Ludtke, 2010). All 

possible projections were compared with the averages and a quality factor defined by 

EMAN scores the quality of the match, with higher values indicating a better match 

(Ludtke, 2010). 
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Figure legends 

Figure 1. Structure of RepA-WH1 dimers and amyloid fibers 

(A) Cartoon summarizing the functions of RepA in initiation of plasmid DNA 

replication and Rep-WH1 in the assembly of amyloid fibers.  

 (B) Structure of the RepA-WH1 dimer (PDB ID 1HKQ) (Giraldo et al., 2003). The 

sequence of RepA prone to acquire a -structure is highlighted. Residue A31 is 

rendered space-filled.  

(C) Negatively stained electron micrographs highlighting the hierarchical assembly of 

RepA-WH1. (i) Amyloid fibers growing from seeds made of purified globular RepA-

WH1-mCherry aggregates generated in E. coli cytoplasm (Fernandez-Tresguerres et al., 

2010). A black arrow indicates a fiber growing from a seed. (ii) RepA-WH1 fibers are 

polymorphic, both in terms of thickness and in their degree of twisting. (iii) Mechanical 

shearing in a buffer with reduced ionic strength results in fraying of fiber ends. Several 

filaments at the end of a fiber are highlighted within a box. (iv) Shearing ultimately 
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leads to dissociation of constituent filaments (one indicated, black arrow). Image 

enlarged respect to i-iii. 

(D) CD spectra time-course of unseeded (i) and seeded (ii) RepA-WH1 aggregation. In 

ii, the inset shows the evolution of the ratio between the ellipticity values at 220 and 

208 nm as an estimate of the preferential increase in -sheet in the sample seeded with 

the intracellular, cytotoxic aggregates of the RepA-WH1 prionoid (continuous line) 

compared with the unseeded control sample (dashed line). 

 (see also Figure S1) 

 

 

Figure 2. AFM analysis of RepA-WH1 fibers 

(A) Typical AFM image of RepA-WH1 fibers. Two populations according to their 

heights were distinguished and their height profiles displayed on the right panel (taken 

in the direction of the arrow). 

(B) AFM image of RepA-WH1 fibers disrupted by pipette shearing. Smaller filaments 

appear at the end of the fibers with mean heights of 3.9 ± 0.3 nm (see profile on the 

right panel). The color scale from dark to bright is 0 – 30 nm for all AFM images.  

(See also Figure S2 and Table S1) 

 

Figure 3. 3D structure of RepA-WH1 filaments. 

(A) Negative-staining electron microscopy of RepA-WH1 fibers and filaments. An 

electron microscopy field of fibers on incubation at day 15 shows a large frayed-fiber 
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(white arrow) and filaments of different length (black arrows). Scale-bar represents 100 

nm.  

 (B) Top panel: gallery of images of RepA-WH1 filaments. Bottom panel: 2D-average 

images of RepA-WH1 filaments obtained after reference-free 2D classification and 

alignment. Scale bar = 50 Å. 

(C, D) 3D structure of RepA-WH1 filaments. Left and right panels show the structures 

of single filaments (C, blue color) and double filaments (D, pink color) respectively. In 

each case, the structure is also shown as a transparent density where a model of 

monomeric RepA-WH1 (Giraldo and Fernandez-Tresguerres, 2004) has been fitted. 

(E) Zoom image highlighting the density corresponding to a segment of the helix (left 

panel) in comparison to the density occupied by the atomic model of RepA-WH1 

monomers (middle panel) or dimers (right panel) fitted into the EM map. 

(See also Figure S3) 

 

Figure 4. A schematic model for the hierarchical assembly of RepA-WH1 amyloids. 

Amyloidogenesis starts with the conformational change allosterically elicited by 

double-stranded DNA ligands on the stable soluble dimers (dWH1) to become 

metastable monomers (mWH1*) or, alternatively, with the conformational templating 

by pre-existing amyloid nuclei seeds. Monomers then assemble into single helical 

amyloid filaments, which are subsequently coiled as double helical filaments. Several of 

them associate side-by-side, and amyloid fibers are further twisted to variable degrees. 
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Figure1
Click here to download high resolution image

http://www.editorialmanager.com/structure/download.aspx?id=228124&guid=6bc93a18-a677-4015-ae3f-07abe1d60d80&scheme=1


Figure2
Click here to download high resolution image

http://www.editorialmanager.com/structure/download.aspx?id=228125&guid=aa49ff4d-36d0-4c95-9ab0-fa47463e616d&scheme=1


Figure3
Click here to download high resolution image

http://www.editorialmanager.com/structure/download.aspx?id=228126&guid=ec8b6995-99e5-4563-a542-08881a552536&scheme=1


Figure4



SUPPLEMENTAL FIGURES AND LEGENDS 

 

Supplemental Figure S1 (related to Figure 1). Purified RepA-WH1(A31V) is a dimer 

in solution, as revealed using analytical ultracentrifugation. 

(A) Sedimentation equilibrium. Experiment was run at 14 µM protein concentration and 

at 12,000 rpm in a Beckman-Coulter XL-A analytical ultracentrifuge using the AN60Ti 

Supplemental Text & Figures
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rotor (12 mm optical length) at 20 ºC. Base line was acquired at 40,000 rpm. 

Continuous line represents the best fit of data to a dimer species at the sedimentation 

equilibrium, whereas dashed line represents the expected curve for a monomer. 

(B) Sedimentation velocity. The experiment was performed on a protein sample at 5 

µM. Run was carried out at 50,000 rpm in a Beckman-Coulter XL-I analytical 

ultracentrifuge in the same experimental conditions described in A. The distribution of 

sedimentation coefficients, as determined by the program SEDFIT 

(http://www.analyticalultracentrifugation.com/default.htm), fits to a nearly unique 

dimeric species (2. 77 S). 
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Supplemental Figure S2. AFM measurements of the fibers (related to Figure 2). 

(A) From each fiber, three characteristic measurements were taken from the height 

profile for the peaks and valleys, respectively. The fibers selected were those in which 

the helicity was visible as shown in the Figure 2A or in this following example (colour 

scale of the image from dark to white is 0-20 nm). Broken fibers without a clear helicity 

pattern were discarded (aprox. 30%).  

(B) All the data was represented in a height histogram and the mean value and the 

standard deviation obtained for each population calculated. 

(C) Height and lateral calibrations of the AFM measurements were performed with 

commercial grids as described in the Experimental Procedures section. In addition, we 

used DNA molecules as standard particles for calibration of the height and X and Y 

directions. As an example, the figure shows height profiles across a DNA molecule 

(colour scale in the Figure from dark to white is 0-2 nm). 
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Supplemental Figure S3. Structural analysis of single and double filaments by EM 

(related to Figure 3). 

(A) Helical processing flowchart. Top panel: 3D reconstructions obtained with EMAN 

(left and middle volume) for the preliminary determination of helical parameters. The 

volume to the right corresponds to the single filament structure shown in Figure 3 at a 

lower threshold. Bottom panel: 2D projections for each 3D structure. 

(B) Example of convergence curves of angles (top panel) and helical rise (lower panel) 

obtained in the refinement during the Iterative Helical Real Space Reconstruction 

protocol.  

(C) Output of the segmentation of single and double filaments using UCSF Chimera 

(Pettersen et al., 2004). Each segment is represented with a different color.  

 (D) Comparison between the power spectrum of average images and projections from 

the 3D structures of single and double filaments.  

 (E) Projections of a single and double filament were compared with a collection of 

average images of both types of filaments that were never used for refinement 

(refinement used only filament images and not their averages). This comparison was 

performed using the refine command in EMAN and a quality factor defined by EMAN 

scored the quality of the match, with higher values indicating a better match (Ludtke, 

2010). We observed that projections of the final 3D structures matched better with 

reference-free averages obtained from those images corresponding to the sub-class used 

in the reconstruction (top row in the panel for single and double filaments), compared to 
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the scores obtained with other similar averages but corresponding to slightly different 

conformations. 

 

SUPPLEMENTAL TABLE 

Table S1.  Height variability observed in both populations of fibers. We analysed 20 

and 5 fibers for the most and less abundant population of fibers, respectively.  

 

# Fiber Peak 1 Peak 2 Peak 3 Valley 1 Valley 2 Valley 3 

1 15.1 15.6 15.4 12.8 13.8 13.3 

2 14.5 14.6 14.9 12.8 13.3 13.4 

3 14.7 18.6 16.7 12.6 13.9 12.9 

4 16.8 18 17.5 15.2 15.2 15.1 

5 15.4 15 13.8 13.5 13.1 12.3 

6 15 16.3 17.1 13.2 12.4 13.7 

7 14.6 14.6 13.8 13.1 13.2 12.6 

8 18.5 17.9 16.6 15.3 13.4 12 

9 18.4 17.8 15.8 12.8 12.2 12.7 

10 14.1 14.3 14.7 11.8 12.3 12.3 

11 15.8 15.9 15.6 14.1 13.6 14 

12 13.7 14.6 14.2 12.4 12.8 12.3 

13 13.3 13.8 13.6 11.2 12 12.1 

14 14.9 16.2 16.4 13.3 14.2 13.2 

15 14.7 15.3 15.7 13.8 12.7 12.6 
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16 13.7 13.2 14 12.2 11.9 10.6 

17 16.5 18.5 19 15.7 16.6 15.3 

18 15.3 15.9 15.5 12.2 13.3 13.5 

19 14.3 14.8 14.7 12.2 12.7 11.7 

20 16.9 15.8 17.3 13.8 14.1 13.9 

 

For the less abundant population of fibers 

# Fiber Peak 1 Peak 2 Peak 3 Valley 1 Valley 2 Valley 3 

1 23.6 24.7 23.6 21.4 19.9 21.6 

2 25.7 26.5 23.5 20.8 21.1 20.2 

3 25.9 25.9 27 20.4 22.9 20.7 

4 23.2 24.6 23.5 22.6 21.2 20.8 

5 24.9 25.1 25.5 20.5 20.3 19.9 

 

 

Height variability observed in both populations of fibers. We analysed 20 and 5 fibers 

for the most and less abundant population of fibers, respectively.  
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Supplemental Figure S1. We used analytical ultracentrifugation to demonstrate that 

purified RepA-WH1(A31V) is a dimer in solution (This is related to Figure 1). 

Supplemental Figure S2. The figure shows all AFM measurements of fibers (This is 

related to Figure 2). 

Supplemental Figure S3. Supporting information about the structural analysis of single 

and double filaments by EM (This is related to Figure 3). 

 

Supplemental Table S1.  This table shows values of height variability observed in both 

populations of fibers, as measured by AFM (This is related to Figure 2). 
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