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Magnetic structure and magnetocalorics of GdPO4
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The magnetic ordering structure of GdPO4 is determined at T = 60 mK by the diffraction of hot neutrons with
wavelength λ = 0.4696 Å. It corresponds to a noncollinear antiferromagnetic arrangement of the Gd moments
with propagation vector k = (1/2,0,1/2). This arrangement is found to minimize the dipole-dipole interaction
and the crystal-field anisotropy energy, the magnetic superexchange being much smaller. The intensity of the
magnetic reflections decreases with increasing temperature and vanishes at T ≈ 0.8 K, in agreement with the
magnetic ordering temperature TN = 0.77 K, as reported in previous works based on heat capacity and magnetic
susceptibility measurements. The magnetocaloric parameters have been determined from heat capacity data at
constant applied fields up to 7 T, as well as from isothermal magnetization data. The magnetocaloric effect, for a
field change �B = 0 − 7 T, reaches −�ST = 375.8 mJ/cm3K−1 at T = 2.1 K, largely exceeding the maximum
values reported to date for Gd-based magnetic refrigerants.

DOI: 10.1103/PhysRevB.90.214423 PACS number(s): 61.05.fg, 75.30.Sg, 75.50.Ee

I. INTRODUCTION

Adiabatic demagnetization of a paramagnetic salt was the
first technology applied to obtain temperatures below 0.5 K
[1]. Today, temperatures of 2 mK can be attained routinely by
this procedure [2]. For this purpose compounds with a large
magnetic moment and extremely low ordering temperatures
are used, e.g., gadolinium gallium garnet [3] or cerium mag-
nesium nitrate, which contain a large fraction of inert atoms
to prevent magnetic ordering by the exchange or dipole-dipole
interactions. In the sixties, the newly developed technology
of 3He/4He dilution refrigeration, by which low temperatures
can be maintained continuously, gradually replaced adiabatic
demagnetization as the main method to reach temperatures
between 20 mK and 1 K. Nevertheless, adiabatic demagneti-
zation remained an option for refrigeration, especially in cases
where the use of fluids is not convenient (e.g., in gravity-
free spacecrafts). Moreover, since the rare and strategically
important 3He isotope is increasingly expensive, the adiabatic
demagnetization technique is becoming competitive again. In
the present context, the method is also used for cooling in
the liquid-helium temperature range above 1 K, for which
compounds with large magnetization under field, low mag-
netic anisotropy and low magnetic ordering temperatures are
desirable. The first and the third conditions are antagonistic to
each other since, by separating the magnetic atoms far enough
to decrease the dipole-dipole interaction, the magnetic density
decreases likewise. However, the dipolar interaction can still
be reduced to produce ordering well below 1 K by choosing
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compounds with special crystal structures. For instance, this
can be accomplished if the magnetic ions are at short distances
in a so-called “frustrated” arrangement, thus leaving the
small magnetic anisotropy and large magnetic density as the
only ingredients. A valid example is gadolinium formate,
Gd(HCOO)3, a magnetically dense metal-organic framework
material that has recently proved to be a good candidate,
reaching a record magnetocaloric effect (MCE) between ca.
1 K and 5 K [4], with a maximum magnetic entropy decrease
on isothermal magnetization −�ST = 216.3 mJ/cm3K−1 at
T = 1.8 K for an external field variation �B = 7 T.

Anhydrous gadolinium phosphate, GdPO4, appears to be
another good candidate, since the ionic bonding prevents
strong overlap of the Gd wave functions with its nearest
neighbors (hence promoting weak exchange interactions) and
the absence of an orbital moment implies a low magnetic
anisotropy. This leads to a magnetic ordering temperature
of only TN = 0.77 K [5]. The magnetic dipolar density at
saturation is Ms = 155 Am2kg−1 or ρμ0Ms = 1.2 T, similar
to that of permanent magnets. The magnetic entropy in
the paramagnetic state, Sm = R ln(8) = 17.3 Jmol−1K−1 =
68.6 Jkg−1K−1 = 416 Jcm−3K−1, suggests that its increase on
demagnetization might be very high. This compound has been
studied by heat capacity and magnetic susceptibility in the
form of nanoparticles and in bulk, both for powder samples
and single crystals [5,6]. Also Monte Carlo simulations
were made [6]. The experiments indicated a compensated
antiferromagnetic structure below TN , interpreted as resulting
from a competition between the dipolar, exchange, and
anisotropy energies. Because of the lack of sufficiently
detailed information, the data were analyzed in terms of a
simple uniaxial two-sublattice antiferromagnet [6]. However,
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TABLE I. Structural parameters resulting from the refinements at 298 K and 60 mK. The space group is P 21/n, with Z = 4 chemical units
per cell. Fractional coordinates are in units of a, b, and c. Standard deviations in the last digit units are given in parentheses. Rnucl,Rmag =∑

h,k,l |Fhkl(obs) − Fhkl(cal)|/|Fhkl(obs)| for the nuclear and magnetic reflections, respectively. Similarly but with F 2 for R(F 2). For more
details see Supplemental Material [18].

T Atom x y z < U 2 > (Å2)

298 K Gd 0.2818(3) 0.1553(3) 0.0970(3) 0.0063(10)
P 0.3028(6) 0.1608(6) 0.6130(7) 0.0077(12)

O1 0.2502(5) 0.0030(6) 0.4371(6) 0.0097(11)
O2 0.3833(6) 0.3359(5) 0.5025(6) 0.0103(11)
O3 0.4735(5) 0.1023(5) 0.8117(6) 0.0089(11)
O4 0.1218(6) 0.2105(5) 0.7122(6) 0.0089(12)

a,b,c(Å), β(◦) 6.6252(18) 6.8372(16) 6.3176(18) 104.017(12)
Rnucl = 0.06 wRnucl(F 2) = 0.11 Nobs, I > 5σ = 215 (unique)
60 mK Gd 0.2825(15) 0.154(5) 0.0995(19) 0

μ(Gd)/μB 6.57(12) 2.0(3) 3.3(2)
P 0.305(3) 0.173(9) 0.610(3) 0

O1 0.249(3) 0.000(8) 0.438(2) 0
O2 0.379(3) 0.326(12) 0.504(2) 0
O3 0.475(3) 0.114(10) 0.814(2) 0
O4 0.119(3) 0.206(11) 0.712(3) 0

a,b,c(Å), β(◦) 6.625(4) 6.82 6.317(3) 104.06(3)
Rnucl = 0.07 Rmag = 0.12 Rmag(F 2) = 0.21 Nobs,mag, I > 5σ = 105

the field-dependent susceptibility measurements on a single
crystal as well as the Monte Carlo simulations did indicate
the structure to be more complex. Accordingly, it was decided
to investigate the magnetic structure by neutron diffraction on
a single crystal, which formed the main motivation for the
present paper.

In addition, we report and discuss new data obtained for the
MCE of this material, i.e., the isothermal entropy increment
(�ST ) and adiabatic temperature increment (�TS) under given
magnetic field variations, in both cases deduced from heat
capacity measurements at constant fields (CB vs T ) up to 7 T,
and for the first one also from isothermal magnetization (MT

vs B) measurements up to 5 T.

II. NEUTRON DIFFRACTION IN GdPO4

A. Experimental

Single-crystal neutron diffraction was performed on the
instrument D9 at the high-flux reactor of the Institut Laue-
Langevin, using hot neutrons with a short wavelength λ =
0.4696(2) Å, obtained from a Cu(220) monochromator and
calibrated with a single crystal of Ge, by which the problem
of severe absorption of thermal neutrons by natural Gd can
be circumvented [7]. An indium filter was used to suppress
the λ/2 contamination. The coherent scattering length for this
wavelength has been interpolated from those given in Table I
of Ref. [8], giving b = (1.042 − 0.034i) × 10−12 cm. The
absorption cross section was deduced from the imaginary part
of the scattering length −b′′ as σa = 4πb′′/k = 2b′′λ = 319
barn [9]. The inverse of the neutron mean-free path is given
by �a = σaZ/Vcell = 0.47 mm−1, where Vcell = 276.39 Å3 is
the unit-cell volume and Z = 4 is the number of Gd atoms
per unit cell. For the other elements, the coherent scattering
lengths reported in the literature have been taken, i.e., bP =
5.130 × 10−12 cm, bO = 5.803 × 10−12 cm, similarly for the

Gd magnetic form factor [9]. For this experiment, D9 was
equipped with a small area detector of 64 × 64 mm2 consisting
of 1024 pixels at 40 cm from the sample [10], which allowed
determination of the centroids of all observed reflections and
optimal delineation of each peak from the background. The
crystal was a platelet normal to the (101) crystal direction,
0.5 mm thick with face dimensions 1 × 1.5 mm2.

A collection of 245 unique reflections was made at
298 K using the standard four-circle setup with an Eulerian
cradle to orient the sample, in order to check the reported
monazite-type structure solved by x-ray diffraction [11,12].
For the measurements below 1 K, the crystal was attached
to the mixing chamber of a 3He/4He dilution cryostat which
could only be rotated around the vertical axis. Normal-beam
Weissenberg geometry, where the crystal can be rotated around
the vertical laboratory axis with the detector rotating around
vertical and horizontal axes, was used for data collection in
this case. During the cooling process some strong reflections
were followed, but no evident changes were observed below
10 K. At 60 mK q scans revealed magnetic satellites only at
(h ± 1/2,k,l ± 1/2), thus giving the propagation vector for
the magnetic structure k = (1/2,0,1/2). 250 (71 observed)
“nuclear” reflections with integer indices (hkl) and 359 (105
observed) “magnetic” reflections with half-odd h and l indices
were scanned.

Finally, two strong magnetic reflections (1.5,0,−1.5) and
(0.5,−1,−2.5) were scanned at different temperatures be-
tween 60 mK and 1 K to track the evolution of the intensity with
the temperature (Fig. 1). It vanishes near 0.80 K, consistent
with the peak at TN = 0.77 K, in heat capacity [5,6].

All data were corrected for background by the minimum
σ (I )/I algorithm [13] and the Lorentz correction appropriate
to the particular scan geometry applied [14]. Correction for
absorption and calculation of the mean path length for each
reflection were carried out by Gaussian integration [15] with
the program DATAP, using the calculated absorption cross
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FIG. 1. Variation of the intensity of the strong magnetic reflec-
tions (1.5,0,−1.5) and (0.5,−1,−2.5) with temperature. Lines are
guide to the eye.

section given above. Refinement of both the crystal and
magnetic structure was made using the Fullprof Suite [16]
in single-crystal mode.

B. Crystal structure at room temperature

The crystal structure at 298 K (data collection in the
conventional four-circle configuration) was refined using the
reported x-ray parameters as starting values [11,12]. No
significant differences were found in the atomic coordinates
with respect to those reported values. The most relevant (and
even then very small) difference concerns the position of the
O atoms. The P-O distances [1.530(1) Å on average] agree
with usual values for this molecular group 1.54(2) Å [17]. The
maximum departure of the O-P-O angle with respect to the
ideal tetrahedral angle is 5.6◦. The refinement parameters and
reliability factors are shown in Table I. In spite of the higher R

value than for the x-ray experiment, the obtained positions of
the O and P atoms should be considered as more reliable than
given in Refs. [11] and [12] (they claim R = 0.031 and 0.016,
respectively), due to the stronger relative scattering amplitudes
of these atoms for neutrons than for x rays, as compared
with that of Gd. The most important error in our neutron
diffraction experiment arises from the imprecise estimation
of the intensities of some severely absorbed reflections with
the incident or diffracted beam nearly parallel to the platelet.
For instance among the most absorbed reflections, the observed
(2̄02) is circa three times weaker than expected before applying
the absorption correction and circa 30% weaker after such
correction, this suggesting that the absorption can bias the
results. The structural parameters are summarized in Table I
and in the Supplemental Material [18].

C. Crystal and magnetic structures at 60 mK

As mentioned, a set of 71 unique reflections (hkl), with
k = 0,−1,−2 and integer h and l indices was collected.
The nuclear structure was refined starting with the positional
parameters at T = 298 K, fixing the thermal parameters to

TABLE II. Magnetic irreducible representations for the position
(x,y,z) in the space group P 21/n for k = (1/2,0,1/2). The atom 1 is
at (x,y,z) = (0.2825,0.154,0.0995). Atoms 2, 3 and 4 are obtained
by the symmetry operations 21 = 1/2 − x,1/2 + y,1/2 − z, 1 =
−x, − y − z and n = 1/2 + x,1/2 − y,1/2 + z, respectively. The
given combinations follow conventions similar to that of Bertaut [19]:
F = s1 + s2 + s3 + s4, G = s1 − s2 + s3 − s4, A = s1 + s2 − s3 − s4

and C = s1 − s2 − s3 + s4. All irreducible representations are single
dimensional. The sign of the transformation of the base vectors under
each symmetry operation is given.

1 21 1 n sx sy sz

	1 + + + + Gx Fy Gz

	2 + − + − Fx Gy Fz

	3 + − − + Ax Cy Az

	4 + + − − Cx Ay Cz

zero. This resulted in very similar positional parameters as
found at 298 K but with R = 0.070, indicating that the
anisotropic thermal parameters at 298 K compensate to some
extent for the disagreement between calculated and observed
values due to other causes, especially absorption. The cell
parameter b was not refined because the detector has a
narrowly limited degree of freedom out of the equatorial plane.
Consequently all reflections correspond to very small k values
(2nd Miller index), and the refinement of b is ill conditioned.
Instead, a value of b was assumed, precise enough to center
all scanned reflections. The main results of the refinement
are displayed in Table I. Details of the refinement of the
nuclear and magnetic structure refinements can be found in
the Supplemental Material [18].

Some symmetry considerations were used to solve the
magnetic structure. There are four Gd atoms in the unit
cell. For k = (1/2,0,1/2) and for the space group P 21/n,
the irreducible magnetic representations (combinations of
the spins which transform into themselves under the space
operations) are given in Table II [19].

For k = (1/2,0,1/2), all magnetic reflections have half-odd
h and l indices, and an integer k index, which allows us
to deal with the magnetic and nuclear structures separately.
Moreover for the group P 21/n, some of the (h0l) reflections
are forbidden by the positional symmetry operations. The
magnetic structure factor for these special reflections is

Fh0l = αf (q)
∑

j

μ⊥ exp[2πi(hxj + lzj )], (1)

where α = 2.695 × 10−12 cm/μB is the magnetic scattering
length, μB the Bohr magneton, f (q) the form factor for Gd, μ⊥
the projection of the magnetic moment (in Bohr magnetons)
on the plane perpendicular to the scattering vector q, and the
sum runs over the four Gd atoms per unit cell. For a collinear
structure, Fh0l can be written as

Fh0l = αf (q)μ⊥ × {exp[2πi(hx + lz)]

× (e1 + e4 · exp[πi(h + l)])

+ exp[−2πi(hx + lz)](e3 + e2 · exp[πi(h + l)]}. (2)
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FIG. 2. (Color online) Plot of the observed vs calculated intensi-
ties for the (I > 5σ ) magnetic and nuclear reflections.

where (x,y,z) are the coordinates of the reference Gd atom,
as given in Table I and the parameters ej = +1 or −1, (j =
1, . . . ,4) define the magnetic mode F , G, A, or C, i.e., e1 =
e4 = 1,e2 = e3 = −1 for a C mode. For the F or C modes,
h + l must be even (similarly to the extinction produced by the
glide plane n in the usual nuclear reflections), and for the G

and A modes h + l must be odd. Fifteen reflections (h0l) with
h and l half odd were clearly observed with h + l even though
there were also five weaker reflections with I > 5σ and h + l

odd, namely (1/2,0,−7/2), (3/2,0,−5/2), (5/2,0,−7/2),
(7/2,0,−5/2), and (5/2,0,1/2). The existence of both types of
reflections implies a noncollinear structure. The occurrence of
F modes is difficult to understand on physical grounds since all
four moments would be parallel in one unit cell, but opposite
to the moments in the nearest cells. Then, the plausible
irreducible representations are 	4 : CxAyCz or 	3 : AxCyAz.

According to the observed (h0l) reflections, in a first stage,
we refined the moment direction assuming a collinear C

mode with the moments lying in the xz plane, fixing the y

component, μy = 0. The least-squares procedure converged,
giving the moment at an angle of nearly 30◦ to the x axis, which
corresponds to the irreducible representation 	4 : CxAyCz,
with μy = 0. Finally a refinement was made leaving μy free
(keeping just three free parameters defining the Gd moment,
i.e., the magnitude μ and the polar angles (θ,φ) defining
the orientation of moment at site 1, all other moments being
deduced by symmetry) and using the 105 magnetic reflections
with I > 5σ . Here θ is the angle between the moments and
the b axis, whereas φ is the angle between the projection
of the moment on the ac plane and the c axis. The fit led
to the moment parameters given in Table I, corresponding
to θ = 73◦ and φ = 29◦. Moreover, this model predicts all
scanned but unobserved reflections to be very weak, indeed.
Figure 2 summarizes graphically the quality of the refinement
of the magnetic structure, whereas Fig. 3 shows the nuclear
and magnetic structures with the crystal b axis upwards.

In Ref. [6] the moments were assumed to lie near the ab

plane, with c and b as the hardest and easiest directions,
respectively (model AxCyAz with μz = 0). However, this

a

b

c

FIG. 3. (Color online) Nuclear and magnetic structure at T =
60 mK. Red: O, blue: P, yellow: Gd. Green arrows: moments of
Gd.

possibility is not compatible with the observed intensities in
the neutron diffraction data. A refinement fixing the moment
to lie in the ab plane gives a rather poor R = 0.19, considering
all the 105 observed reflections with I > 5σ , with the
two most disagreeable being (−1.5,−1,0.5) (Icalc/Iobs = 3)
and (−0.5,−2,−1.5) (Icalc/Iobs = 0.38). In contrast, the
most disagreeable reflections for the model proposed here
CxAyCz (i.e., (0.5,−1,−2.5), Icalc/Iobs = 0.60, (2.5,−3,0.5),
Icalc/Iobs = 0.60) correspond to strong reflections which could
be affected by an imprecise correction of extinction. They have
the same discrepancy for the “easy b direction” model. Also
the modes FxGyFz and GxFyGz can be ruled out since many
strong calculated intensities are actually observed as weak and
vice versa.

III. HEAT CAPACITY AND MAGNETOCALORIC EFFECT

The heat capacity CB at constant field was measured by the
relaxation method in a PPMS device from Quantum Design,
equipped with the 3He option (Fig. 4, top panel). Our results
agree with data in the literature [5,6,20]. In these publications,
the data on GdPO4 for T � 15 K were found to coincide with
those of the nonmagnetic isomorph LaPO4 and were analyzed
in terms of a simple Debye model, giving the Debye tem-
perature θD = 227 K. Considering as relevant only the three
acoustic modes in the temperature region where the magnetic
contribution is negligible (Fig. 4), a fit of the experimental data
to the Debye law for the phonon contribution, Cph = AT 3 =
(12Rπ4/5)(T/θD)3 where R is the gas constant, yields the
value θD = 211 K for the Debye temperature, i.e., close to
the previous estimate [5,6]. By subtracting Cph from CB , the
magnetic contribution Cm to the heat capacity is obtained.
Thus, by taking the integral E = − ∫ ∞

0 CmdT , the energy
involved in the magnetic ordering process can be calculated.
This yields an experimental magnetic energy per particle of
E/kB = −2.2(1) K (see also Fig. 6). We postpone a further
analysis of the magnetic heat capacity to the discussion section
and will now concentrate on the magnetocaloric effect, whose
parameters can be deduced from it.
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FIG. 4. (Color online) Top: Heat capacity at applied magnetic
field CB (T ). Dashed line: Calculation of the phonon contribution.
Bottom: Entropy S(T ,B) deduced from heat capacity. Details in the
text. Dotted line: infinite temperature limit for the molar magnetic
entropy Sm/R(∞) = ln(2s + 1) for s = 7/2.

The total entropy S(T ,B) has been computed from the heat
capacity at constant field, CB(T ), as

S(T ,B) = S(T0,B) +
∫ T

T0

CB(T )dT

T
. (3)

The determination of the absolute entropies is usually made
taking T0 = 0, when S = 0, but the procedure is not always
applicable, notably in the present case where the CB data
cannot be properly extrapolated to T → 0 due to the existence
of the magnetic anomaly at TN = 0.77 K. Different procedures
were followed to determine S(T0,B) for the curves at different
fields, sketched in Fig. 4, bottom panel. For B = 3 T and
7 T, the experimental CB data could be extrapolated down
to T = 0 by a Schottky function (that matches very well the
experimental CB data up to 10 K), permitting to determine
the absolute entropy at any other temperature. For B = 0, the
magnetic heat capacity decreases as T −2 above TN , becoming
negligible at ca. 10 K, thus permitting to determine the phonon
contribution to the entropy as Sph � AT 3/3 on the basis of
the aforementioned Debye specific heat term. The magnetic
entropy was assumed to reach its maximum value of R ln(2s +
1) = R ln(8) for s = 7/2 at ca. T = 10 K. Finally, for the data
collected for 1 T, none of the above approximations is valid. We
estimated the magnetic entropy by a mean-field approximation
in the paramagnetic state, i.e., precisely at 14.93 K (hence, very
close to the R ln(8) limit). By so doing, the entropy extrapolates
correctly to T = 0. With the aid of the so-obtained entropy

FIG. 5. (Color online) Top: Isothermal entropy increment �ST

for magnetic field increment, from zero to a given value, as labelled,
computed from isothermal magnetization measurements and from
heat capacity. Vertical axis reports units in Jkg−1K−1 (left) and
volumetric mJ/cm3k−1 (right). Details about the absolute entropy
in the text. Bottom: Adiabatic temperature increments, from zero
field to a given value, as labeled, computed from heat capacity data.
The abscissa is the initial temperature.

curves for different fields, the quantities �ST = S(T ,B) −
S(T ,0) and �TS = T (S,B) − T (S,0) were computed, with
T (S,B) being the inverse function of S(T ,B) for a given B.
Figure 5 shows �ST and �TS as functions of the temperature
at zero field.

The MCE has been estimated also from isothermal magneti-
zation MT (B) data, collected using a MPMS-XL magnetome-
ter from Quantum Design. The isothermal entropy increment
�ST under a given field variation was computed by integration
of the well-known Maxwell relation:(

∂S

∂B

)
T

=
(

∂M

∂T

)
B

⇒

�ST ≡ S(T ,B) − S(T ,0) =
∫ B

0

(
∂M

∂T

)
B

dB. (4)

For the sake of brevity, we omit M(T ,B) data and plot
the �ST deduced from them in Fig. 5. The �ST data derived
from magnetization agree very well with those obtained from
heat capacity and show a very large MCE, even higher
than the benchmark gadolinium gallium garnet [21] and the
record-holding gadolinium formate, which does not exceed
−�ST = 216.3 mJ/cm3K−1 for 7 T [4]. The large MCE can
be explained by the combination of a large magnetic density,
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weak magnetic interactions, small magnetic anisotropy, and
modest lattice contribution to the heat capacity. This last item
is an extra interesting feature of this material with regard to
refrigeration as a small lattice heat capacity implies that the
increase in the spin entropy following the demagnetization
procedure is used almost entirely to absorb the heat from
the sample that is to be cooled. The determination of �TS

from heat capacity requires careful evaluation of the absolute
entropy for different fields. In the present case, the results are
consistent with those obtained for �ST , which are ≈1.7 times
as large in volumetric units as those for Gd(HCOO)3 [4]. This
can be mainly attributed to the significantly larger density of
Gd+3 spins in the phosphate. The mass density of Gd(HCOO)3

is ρ = 3.86 gcm−3, while that of GdPO4 is ρ = 6.06 gcm−3.
In GdPO4, all this results in the isothermal entropy increment
reaching −�ST = 62.0 Jkg−1K−1 = 375.8 mJ/cm3K−1 and
the adiabatic temperature increment reaching �TS = 24.6 K,
for T = 2.1 K and a 7 T applied-field change (Fig. 5).

IV. DISCUSSION

We will now discuss the information collected thus far
on the magnetic interactions and anisotropy parameters of
GdPO4. The spin Hamiltonian for the s = 7/2 Gd3+ spins
can be written as

H = ḡμBB · s + HCF + Hdip + Hex, (5)

that is the sum of the Zeeman interaction and the crystal-field
(CF), dipolar, and superexchange interactions, respectively.
The dipolar term can be readily computed for any spin
configuration as a summation of moment-moment interaction
terms up to a desired distance, when the r−3 dependence along
with the antiferromagnetic configuration (for zero field) make
the remainder negligible.

Rappaz et al. [22] determined the crystal-field terms
by EPR. The four Gd3+ ions in the unit cell are divided
into two pairs transforming into one another by the crystal
symmetry operations, viz., the two ions of each pair being
mutually related by inversion symmetry. Although the local
site symmetry of the ninefold oxygen coordination of the Gd
ions is very low, the EPR spectra could be quite successfully
analyzed assuming orthorhombic 2/m or C2h site symmetry
(with three orthogonal principal axes). Accordingly, the EPR
spectra were analyzed in terms of a crystal-field Hamiltonian
HCF = ∑

n,m Bm
n Om

n , taking into account terms up to order
n,m = 6. Here, the Om

n terms are the well-known Stevens’
operator equivalents, and the Bm

n terms are the associated
crystal-field parameters [23]. For numerical convenience [24],
Bm

n are often replaced by bm
n , related as bm

2 = 3Bm
2 , bm

4 =
60Bm

4 and bm
6 = 1260Bm

6 . Five out of the nine Bm
n parameters

were determined in the EPR experiments. Hereafter, we adopt
the values reported for the EuPO4 : Gd3+ single crystal. It
should be remembered that Eu is next to Gd in the periodic
table, so no significant differences in the EPR signal are to
be expected. Besides, the observed variation over the entire
series of rare-earth elements analyzed is very small. In what
follows, we replace the orthorhombic symmetric crystal-field
Hamiltonian, written in terms of Stevens’ operators, by a spin
Hamiltonian (HSH) more commonly used in magnetic studies.
Keeping only terms quadratic in the spin operators sz and sx,y

FIG. 6. (Color online) Free energy per particle considering
anisotropy and dipolar interactions for the CxAyCz magnetic mode
as a function of the azimuthal angle φ for different θ values defining
the orientation of the moment at Gd1. The experimentally found
magnetic energy is indicated.

(as justified by the fact that the measured 4th and 6th order
terms are negligible) we may write the spin Hamiltonian in
terms of the familiar parameters D and E as

HSH = Ds2
z′ + E

(
s2
x ′ − s2

y ′
)
, (6)

where D = 3B0
2 − [30X − 25]B0

4 + [105X2 − 525X +
294]B0

6 and E = B2
2 − [X + 5]B2

4 , for X ≡ s(s + 1). Using
the values given in Table II of Rappaz et al. [22], we obtain
D/kB = +0.12 K and E/kB = +0.014 K.

As will be shown below, superexchange interactions in
this compound are very weak and thus expected to play a
very minor role. Neglecting superexchange and using the
approximation given in Eq. (6) with anisotropy parameters
(D and E) deduced from the EPR study, we have computed
the crystal-field anisotropy energy ECF and the dipolar energy
Edip of a distribution of magnetic moments with μ = 6.88μB

(as deduced here), mutually coupled by the dipole-dipole
interaction for the four magnetic modes with k = (1/2,0,1/2)
and for all possible orientations of the moment at the
reference atom 1, with coordinates given explicitly in Table I.
The orientations for the other atoms are determined by the
symmetry operations given in Table II. Figure 6 shows the
so-obtained results for the energy per particle E = ECF + Edip,
where the dipolar term is calculated as [25]

Edip = 1

2N

μ0

4π

N∑
i=1

∑
j �=i

(
μi · μj

r3
ij

− 3(μi · rij )(μj · rij )

r5
ij

)
,

(7)

for each magnetic moment μi at ri with every other magnetic
moment μj at rj , and rij = ri − rj . As can be seen, the mini-
mum energy value Emin/kB = −2.28 K (for which ECF/kB =
−0.62 K and Edip/kB = −1.66 K) is found to occur indeed
for the configuration CxAyCz, at values for the polar angles
θ = 84◦ and φ = 51◦ that correspond to components along the

214423-6



MAGNETIC STRUCTURE AND MAGNETOCALORICS OF . . . PHYSICAL REVIEW B 90, 214423 (2014)

crystal axes (μx,μy,μz) = (5.65,0.72,5.48)μB , not far from
the values observed above and listed in Table I and to the
value of the total magnetic energy per particle obtained from
the heat capacity experiments, i.e., Em/kB = −2.2(1) K. The
observed and calculated structures agree in the wave vector
k, the magnetic mode, and fairly well in the direction of the
moments, μy being the smallest component in both cases.

Several conclusions can now be drawn. First, the positive
sign of D (and b0

2) distinguishes the monoclinic rare-earth
orthophosphate hosts from those having the tetragonal zircon
structure, for which values for b0

2 are found of similar
magnitude but of negative sign [26]. The x ′, y ′, and z′
axes correspond to the three principal axes of the local site
pseudosymmetry. Thus, the positive Ds2

z′ term establishes the
local x ′y ′ plane as the easy plane for the Gd3+ magnetic
moment, in which the y ′ axis is singled out as the most
preferred by the positive E term. As noted by Rappaz et al. [22]
and seen in Table II, the symmetry operations that transform
one site into another are: (1) a 180◦ screw rotation with respect
to the b axis, (2) a glide reflection on the ac plane, (3) inversion,
and it is evident that the local x ′,y ′,z′ system of axes of the
sites should transform accordingly. The directions of the local
y ′ and z′ axes were found to lie on a cone making an angle
θ = 67◦ with the b axis (see Fig. 16 in Ref. [22]), whereas the
projections of the local y ′ axes on the ac plane correspond to
an azimuthal angle φy ′ = 41◦ (±180◦). Comparing this with
the results of the neutron study, one may conclude therefore
that the observed directions of the four antiferromagnetic
sublattices are favored to large extent by the local crystal-field
anisotropy, although ECF is significantly smaller than Edip.

This is explained as follows. Although the minimum dipolar
energy Edip/kB = −1.67 K is large and occurs for θ = 90◦
(corresponding to collinear moments aligned perpendicular
to the b axis), Edip increases only by about 0.1 K up
to −1.55 K for the spin configuration corresponding to a
minimum for the magnetic anisotropy (i.e., θ = 67◦ and
φ = 41◦). The difference between these two values of Edip

is therefore much smaller than the corresponding difference in
the anisotropy energy, i.e., 0.62 K. Consequently, although in
a first approximation a collinear structure with the moments
in the ac plane could be expected on the basis of the
dipolar interaction solely, the presence of the anisotropy term
produces a noncollinear configuration of lower energy. The
net result is the experimentally determined four-sublattice
structure with θ = 73◦ and φ = 29◦, close indeed to the values
θ = 67◦ and φ = 41◦ favored by the local crystal-field site
symmetries.

Second, since D is relatively large, the crystal-field splitting
of the magnetic energy levels is relevant. Indeed, neglecting
E at first approximation, the energy levels would be given by
Ei = gμBsz + D(s2

z − 21/4). Note that the positive sign of
D implies that the |±1/2〉 doublet lies lowest in energy. The
highest-lying |±7/2〉 doublet is then (in zero applied field) at
12D/kB ≈ 1.5 K above the ground state, implying that it is
appreciably depopulated in the temperature range above the
ordering temperature TN = 0.77 K. As a consequence, when
analyzing the magnetic heat capacity tail observed above TN in
terms of the T −2 dependence expected in the high-temperature
limit, only the data in the temperature range T � 3 K should be
taken into account. As is well known, above TN , the magnetic

heat capacity depends on temperature as Cm/R ∝ T −2. The
expression for the coefficient of the limiting high-temperature
T −2 term is given by the sum of the anisotropy, exchange and
dipolar contributions as [24,27,28]

CmT 2/R = [D2 + 3E2]s(s + 1)(2s − 1)(2s + 3)/45k2
B

+μ2
eff

[〈
B2

i,ex

〉 + 〈
B2

i,dip

〉]/
6k2

B.

Here μ2
eff = g2μ2

Bs(s + 1), whereas 〈B2
i,ex〉 and 〈B2

i,dip〉 stand
for the mean-square averages of the internal fields on a refer-
ence ion in the paramagnetic region due to, respectively, the ex-
change and the dipolar interaction. The exchange term is given
by g2μ2

B〈B2
i,ex〉 = 1

3 s(s + 1)
∑

i>j [J 2
xx + J 2

yy + J 2
zz], the dipo-

lar term is calculated as [25] 〈B2
i,dip〉 = 2(μ0/4π )2μ2

eff

∑
i r

−6
ij ,

the summation being over all the other magnetic ions. As
it turns out, the exchange contribution has to be very small
compared to the anisotropy and dipolar contributions. After
performing the necessary summations, we find the dipolar
term to amount to 0.92 K2. With the aforementioned values
for D and E, the crystal-field part is calculated as 0.31 K2,
hence their sum amounts to CmT 2/R = 1.23 K2, whereas the
experimentally found coefficient of the T −2 term is 1.1 K2.
Accordingly, the exchange term appears to be very small,
probably negligible.

The same conclusion can in fact also be drawn from an
analysis of the total magnetic energy, Em = Eex + ECF + Edip,
involved in the magnetic ordering process, as can be obtained
from the integration of the magnetic heat capacity curve,∫

CmdT , measured in zero field. As reported earlier [6], we
obtain Em/kB = 2.2(1) K experimentally. The minimum free
energy configuration on the basis of the dipolar and anisotropy
energies obtained above and shown in Fig. 6 corresponds to
2.28 K and thus accounts largely for the experimental total
magnetic energy. Taken together, we may state that within
the errors involved this leaves a maximum possible exchange
contribution of the order of z|J |S2 ≈ 0.1 K, implying a |J |/kB

of ≈2 mK only. It is noted that the behavior of the heat capacity
of GdPO4 resembles in several respects the results obtained
for GdCl3 · 6H2O and Gd2(SO4)2 [27], for which exchange
contributions could also be disregarded. The value |J |/kB �
2 mK found here is respectively 20 and 40 times less than the
known values for the related compounds GdAsO4 and GdVO4,
where the ordering is predominantly driven by the exchange
interactions [6]. In all probability this should be ascribed to
differences in the geometries and interatomic distances in the
Gd-O-Gd superexchange paths in the monazite compound
compared to the tetragonal zircon structure. A quantitative
theoretical treatment of this problem is however outside the
scope of the present paper.

Although exchange interactions are thus apparently negli-
gible, it is of interest still to show that the symmetry involved
in the long-range magnetically ordered structure of GdPO4

would actually minimize their influence when present. This
is most easily shown within the mean-field approximation to
the exchange term in the Hamiltonian (5). Let us denote the
Gd atom listed in Table I as Gd0. The six nearest neighbors
Gd1 , . . . , Gd6 are at nearly equal distances, ranging from
4.00 Å to 4.24 Å. We define now the moment at site i

as μi = −2 μBsi . In the structure observed, these moments
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TABLE III. Spins s1, . . . ,s6 of the six nearest neighbors, Gd1, . . . ,Gd6, with respect to the Gd atom listed in Table I, here renamed as Gd0.
In the first column, “label” stands for the label used in Table II. Third, fourth, and fifth columns give the coordinates of the site and spin for
the CxAyCz configuration, respectively. The sixth column lists the distance and exchange constant. The last four columns list the rotation and
translation applied in order to obtain the nearest neighbors from Gd0. The spin should be inverted when tx + tz = odd , due to the propagation
vector k = (1/2,0,1/2).

Label in Table II Atom x,sx y,sy z,sz d(Å), Ji Symm. tx ty tz

(1) Gd0 0.282 0.155 0.097 0 1 0 0 0
s0 sx sy sz

(2) Gd1 0.218 −0.345 0.403 4.00 21 0 −1 0
s1 −sx sy −sz J1

(2) Gd2 0.218 0.655 0.403 4.00 21 0 −1 0
s2 −sx sy −sz J1

(3) Gd3 −0.282 −0.155 −0.097 4.24 1̄ 0 0 0
s3 −sx −sy −sz J2

(3) Gd4 −0.718 −0.155 −0.097 4.00 1̄ 1 0 0
s4 sx sy sz J3

(4) Gd5 −0.218 0.345 −0.403 4.17 n −1 0 −1
s5 sx −sy sz J4

(4) Gd6 0.782 0.345 0.597 4.17 n 0 0 0
s6 sx −sy sz J4

are on four sublattices and we adopt the usual assumption
that only interactions (Jij ,i �= j,j = 1–6) between spins on
different sublattices are operative. Neglecting any longer range
interactions, the exchange term can then be written as

Hex =
6∑

j=1

Jij si · sj � si ·
6∑

j=1

Jij sj . (8)

In principle mean-field theory applied to this problem could
lead to several possible ordered antiferromagnetic structures.
Instead, we impose the four-sublattice arrangement established
by the combination of dipolar and CF interactions. Table III
lists the components of the six nearest spin neighbors to a
reference Gd0 spin for the GdPO4 structure and the magnetic
mode CxAyCz for k = (1/2,0,1/2). According to Table III, the
ground-state molar exchange energy can be then be written as

2Eex

R
= Ps2

⊥ + Qs2
y = (P − Q)s2

⊥ + Qs2, (9)

where P = 2(J4 − J1) + J3 − J2, Q = 2(J1 − J4) + J3 − J2,
and s⊥ = sxux + szuz is the projection of s on the ac plane,
and the four intrasublattice exchange constants Jij are denoted
by Ji,i = 1–4.

A number of interesting conclusions can be extracted from
Eq. (9). First, in the most general case, the exchange energy
is seen to be the sum of differences between four similar
exchange terms. Therefore, in case the Ji are similar in
magnitude and in sign, the result will be quite small even
for finite values for Ji . Indeed, in the special case J1 =
J2 = J3 = J4, the exchange energy would even be exactly
zero because of the symmetry of the CxAyCz mode with
k = (1/2,0,1/2). Mean-field theory then predicts the system
to remain in the disordered, paramagnetic state down to T = 0,
similar to a frustrated antiferromagnet, such as the well-studied
gadolinium gallium garnet [3]. However, in view of the known
differences in the superexchange paths between the nearest
neighbors this situation will not likely occur. Obviously, if

the exchange interactions would have been substantial, i.e., of
the same order as the dipolar interactions or the CF anisotropy
energy, the system could have ordered in a completely different
antiferromagnetic arrangement, for instance as found in the
previously published Monte Carlo simulations [6].

V. CONCLUSIONS

We have determined the magnetic structure of GdPO4,
which undergoes a transition to a magnetically ordered state
below TN = 0.77 K. The present data unambiguously show
the magnetic structure to be a four-sublattice compensated
antiferromagnetic arrangement, which is found to be favored
by the dipolar interaction in combination with the local
crystal-field site symmetries at the four Gd3+ sites in the unit
cell. The magnetic superexchange is found to be negligible
compared to the dipolar and crystal-field energies, making this
compound an interesting example of a dipolar antiferromagnet.

The magnetocaloric effect is found to exceed by a consid-
erable margin the maximum values reported to date, as were
measured for Gd formate [4]. GdAsO4 and GdVO4 have much
higher TN in spite of larger distances. Probably in these cases,
the magnetic order is dominated by the exchange interaction.
These compounds are worthy of further research. A proposed
strategy to produce high magnetocaloric materials is to find
high magnetic density compounds where dipolar, exchange,
and anisotropy compete (rather than trying to make them very
small, when the dipolar energy increases with the magnetic
density in any case), preventing ordering down to very low
temperatures.
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