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ABSTRACT 25 

Multivariate techniques for two-dimensional data matrices are normally used in water-26 

quality studies. However, if the temporal dimension is included in the analysis, other 27 

statistical techniques are recommended. In this study, partial triadic analysis (PTA) was 28 

used to investigate the spatial and temporal variability in water-quality variables 29 

sampled in a northeastern Spain river basin. The results highlight the spatiality of the 30 

physical and chemical properties of water at different sites along a river over one year. 31 

PTA allowed us to clearly identify the presence of a stable spatial structure that was 32 

common to all sampling dates across the entire catchment. 33 

Variables such as electrical conductivity (EC) and Na⁺ and Clˉ ions were associated 34 

with agricultural sources, whereas total dissolved nitrogen (TDN), NH₄⁺-N 35 

concentrations and NO₂ˉ-N concentrations were linked to polluted urban sites; 36 

differences were observed between irrigated and non-irrigated periods. The 37 

concentration of NO₃ˉ-N was associated with both agricultural and urban land uses. 38 

Variables associated with urban and agricultural pollution sources were highly 39 

influenced by the seasonality of different activities conducted in the study area. In 40 

analyzing the impact of land use and fertilization management on water runoff and 41 

effluents, powerful statistical tools that can properly identify the causes of pollution in 42 

watersheds are important. PTA can efficiently summarize site-specific water chemistry 43 

patterns in an applied setting for land- and water-monitoring schemes at the landscape 44 

level. The method is recommended for land-use decision-making processes to reduce 45 

harmful environmental effects and promote sustainable watershed management. 46 

KEYWORDS: Water quality, Agricultural intensification, Statistical methods, Partial 47 

triadic analysis, Spatial analysis. 48 

 49 
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INTRODUCTION 50 

Water quality is considerably dependent on anthropogenic activities and changes in land 51 

use and management practices, with agricultural land use as a primary determinant 52 

(Niemi et al., 1990; Lenat and Crawford, 1994; Tong and Chen, 2002; Brainwood et al., 53 

2004). Water quality is also influenced by watershed runoff discharge (Caccia and 54 

Boyer, 2005; Zhang et al., 2007) due to the excessive use of mineral fertilizers and 55 

manure that are not efficiently or timely applied. As a result, agricultural practices in 56 

watersheds are the primary sources of nutrients worldwide (Baker, 1992), particularly of 57 

nitrogen in European aquatic environments (Grizzetti et al., 2005). Although point- and 58 

non-point-source pollution contribute to the degradation of water quality, the latter is 59 

much more difficult to attribute to a given source (Seeboonruang, 2012).  60 

Causality is difficult to demonstrate because it requires unraveling the interactions 61 

of a wide range of human-influenced variables, such as land use, fertilizer application, 62 

soil type and hydrological pathways that link the land to a particular stream (Casey and 63 

Clarke, 1979; Dermine and Lamberts, 1987). Similarly, the temporal patterns of non-64 

point-source pollutants can identify the transport characteristics associated with 65 

hydrological processes (Kang and Lin, 2007). Consequently, to improve agricultural 66 

management at the watershed scale with less harmful impacts on ecosystems, powerful 67 

statistical tools should be used to properly identify the causes of water pollution so that 68 

appropriate land use and fertilization measures can be suggested to end-users.  69 

Multivariate analyses available for water-quality assessments at the watershed scale 70 

are generally two-dimensional (Singh et al., 2004; Gourdol et al., 2013). However, 71 

when sampling is repeated at the same sites on different dates, the resulting data matrix 72 

is three-dimensional, i.e., the sampling sites, variables and dates form a cube. These 73 

spatial and temporal dimensions are inherent in ecology when assessing ecological 74 
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processes, although the classical statistical techniques that are used generally continue 75 

to be two-dimensional. Unfortunately, an incomplete picture is obtained of the 76 

multivariate space-time variation within the above-mentioned datacube (Thioulouse and 77 

Chessel, 1987). Commonly, conventional multivariate techniques have been applied to 78 

groundwater geochemistry studies (Güler et al., 2002; Cloutier et al., 2008). However, 79 

partial triadic analysis (PTA) has the potential to improve the interpretation of both 80 

spatial and temporal changes in geochemistry, with broad applications for assessing 81 

point-source and diffuse groundwater contamination (Gudmundsson et al., 2011; 82 

Gourdol et al., 2013). This spatio-temporal perspective is expected to improve decision-83 

making in watershed management and to achieve more sustainable use of territories. 84 

Thus, the main objective of this work was to prove the usefulness of PTA in efficiently 85 

monitoring the common spatial and temporal structures of water-quality variability at 86 

the catchment scale in a Mediterranean area with increasing high-input agricultural 87 

practices. 88 

 89 

METHODS 90 

Study area 91 

The Flumen River is located in Huesca Province in the north-central region of the large 92 

Ebro River Basin (NE Spain) (Fig. 1A). The river, which is 120-km long, and the Isuela 93 

River tributary drain a watershed area of 1,430 km². The Flumen River originates in 94 

“Sierra de Guara”, a calcareous pre-Pyrenean mountain chain (1,250 m.a.s.l.) with 95 

forest and pasture cover; following the mountainous region of the basin, the river flows 96 

through flat, agricultural plains. In this final route, the river crosses quaternary glacis 97 

and alluvial fans that overlay a tertiary structure composed of conglomerates, 98 

sandstones and clays. Saline mudstones and gypsum deposits observed in the lower 99 
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region of the basin influence the water quality of the lowest reaches of the river (Martín-100 

Queller et al., 2010). The Isuela River, which runs parallel to the Flumen River for one-101 

third of its length, is the only perennial tributary; it joins the Flumen River in the flat 102 

area of the basin. Other tributaries include seasonal streams that permanently discharge 103 

water during the agricultural irrigation period (April-October). 104 

The flow of the Flumen River is controlled by three reservoirs located in the upper 105 

third of the river, i.e., “Santa Maria de Belsué”, “Cienfuens” and “Montearagón”, with 106 

water storage capacities of 13, 1 and 51 hm
3
, respectively. The Isuela River is regulated 107 

by the “Arguis” reservoir (2.7 hm
3
), which is also located in the upper region of the 108 

river. Furthermore, in the lower half of the basin (Northern Monegros County), a 109 

complex network of irrigation canals distributes the water transported by a large 110 

irrigation canal, i.e., the Monegros canal, which is created by the confluence of two 111 

other large canals that transport water from the Cinca and Gállego Rivers (outside the 112 

Flumen watershed). The flow of the Flumen River is partly determined by irrigation 113 

water outside the watershed, being minimum in “Barbués” (center of the lower basin) 114 

and prominent in “Albalatillo” (Fig. 1A) (Sorando et al., unpubl.) 115 

The climate over the entire study area is Mediterranean, with irregular seasonal and 116 

inter-annual rainfall (Comín and Williams, 1994). The average annual temperature and 117 

rainfall in the basin over the last 70 years were 10.5 – 13.9ºC and 987 – 402 mm, 118 

respectively, in the north and south regions of the basin (AEMET data). Annual 119 

precipitation in the basin during the study period was slightly lower for the south region 120 

of the basin, i.e. 372.6 mm (Fig. 2). 121 

The upper region of the watershed is dominated by oak woods and shrublands 122 

(7.8% of the total watershed area), whereas the middle region is an urban-dominated 123 

area that includes the town of Huesca (52,354 inhabitants) and substantial animal 124 
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farming and agricultural activity. The Isuela River passes through the town, which 125 

discharges effluents from the wastewater treatment plant into the river. Wastewater 126 

treatment plants are also found in the villages of Grañén and Lalueza (4,428 and 1,149 127 

inhabitants, respectively) in the central region of the basin. In the lower area, irrigation 128 

is used for rice (Oryza sativa, 7.1% of the total watershed area), maize (Zea mays, 129 

7.2%) and alfalfa (Medicago sativa, 13.2%), which are the most common crops. Cereals 130 

such as Triticum spp. (7.7% of the total watershed area) and Hordeum vulgare (32.5%) 131 

are also cultivated using only rainfall in the drylands along the margins of the lower 132 

region of the basin. Small and large farms and pig farming dominate all livestock 133 

husbandry in the region, particularly in the northern portion of Monegros County. 134 

Intensive pig production systems have considerably increased in the lower reaches of 135 

the basin (Martín-Queller et al., 2010).  136 

Sampling strategy 137 

The sampling stations are distributed throughout a 120-km river network, which 138 

includes tributaries and the main stem of a river that travels through forested, urban, and 139 

agricultural areas (Table 1).  140 

Water samples were collected directly by hand in weak acid pre-cleaned 141 

polyethylene bottles that were previously rinsed three times with distilled water. The 142 

bottles were filled with running water from the river, as far as possible from the edge of 143 

the river shoreline and avoiding big particles entering the bottles, and then transported 144 

to the lab in a cooler at 4ºC and later filtered with a fiberglass filter (Whatman GF/F 0.7 145 

µm). We followed a two-step procedure based on previous studies which showed a clear 146 

differentiation of the water characteristics between two periods of the year mostly 147 

related with huge inflows of water exceeding agricultural irrigation (April-September) 148 
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and non-irrigation period (October-March) (Martin-Queller et al. 2010; Darwiche et al. 149 

2015): 150 

Sampling group A: Water-quality measurements were collected at 15 sampling 151 

sites, i.e., nine along the Flumen River (F1-F9) and six in the Isuela River (I1-I6), on 152 

three dates in the non-irrigation season (November 2009, January 2010 and February 153 

2010). These sampling sites were first selected based on the watershed origin (Flumen 154 

and Isuela Rivers) according to the major land use present in a given area, the presence 155 

of governmental gauging stations (three in the Flumen River and one in the Isuela 156 

River) and where point pollution was clearly identified, i.e., discharge from the 157 

wastewater treatment plant of Huesca. All data were used for PTA-1. 158 

Sampling group B: After analyzing water samples from group A, 11 out of 15 sites 159 

were selected in the middle and lower regions of the basin according to their pollution 160 

potential. Samples were collected in 2010 in the following months: April, June, July, 161 

August, September and October. All data were used for PTA-2. 162 

The rationale for performing two separate PTAs for sampling periods A and B was 163 

to first obtain a global baseline perspective of the Flumen Basin during the non-164 

irrigation season for all sampling stations. Second, we focused on the increase in the 165 

water pollution during intensive irrigation in the lower region of the watershed (Table 166 

1). 167 

The water characteristics recorded in situ using portable calibrated electronic 168 

apparatus (YSI®ProPlus Multiparameter) were temperature (T), pH, electrical 169 

conductivity (EC) and dissolved oxygen (DO). Suspended solids (SS) were determined 170 

by means of gravimetric method, filtration through 0.45µm and drying out at 105ºC, 171 

difference of filter weight before and after filtering. Phosphate was determined 172 

spectrometically by colorimetry using the ascorbic acid method, total dissolved 173 
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phosphorus (TDP), and total dissolved phosphorus (TDP) and total phosphorous (TP) as 174 

phosphate after acid digestion of, respectively, filtered and non-filtered water aliquots. 175 

Dissolved ammonium (NH4
+
-N), nitrite (NO2ˉ-N), nitrate (NO3ˉ-N), chloride (Clˉ), 176 

sulfate (SO4²ˉ-S), sodium (Na
+
), potassium (K

+
), calcium (Ca²

+
), magnesium (Mg²⁺) 177 

concentrations were determined by ion chromatography (Metrohm 861 Advanced 178 

Compact IC). Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) 179 

were determined by catalytic combustion using a Multi-N/C 3100 analyzer (Analytik 180 

Jena®, Jena, Germany), fluoride (F⁻), bromide (Br⁻). The total phosphorous (TP) and 181 

the alkalinity (Alk) were determined using an unfiltered water sample. Alkalinity was 182 

determined by pH potentiometric automatic titration with H2SO4 (Metrohm®, Herisau, 183 

Switzerland). All the water variables were determined using standard methods described 184 

in APHA (1998) and Moreno-Mateos et al. (2008). 185 

An initial graph that depicts the values of these variables shows dissimilarity 186 

among the sampling stations (Fig. 1B). 187 

 188 

Statistical analysis: partial triadic analysis (PTA) 189 

An assessment of watershed hydrological patterns primarily relies on multivariate 190 

statistical approaches, such as principal component analysis (PCA) (Valder et al. 2012) 191 

or other classical multivariate techniques (e.g., linear regression analysis, cluster 192 

analysis, or discriminant analysis). Also, repeated measures analysis is common in 193 

statistical analysis of time series data at multiple sites (multiple objects) with multiple 194 

explanatory data (Vonesh and Chinchilli, 1997). In combination with these, 195 

simultaneous analyses of both the spatial and temporal variability in longitudinal data 196 

can be achieved with PTA. When repeated measurements are performed within a spatial 197 

structure, PTA allows for depicting of temporal variability of the multivariable spatial 198 
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structure and/or the spatial structure of the temporal trajectories (Rossi et al. 2014). This 199 

multivariate analysis was initially developed by Escoufier (1973) and was later 200 

integrated into the statistical method of ACT-STATIS (“Analyse Conjointe de Tableaux 201 

– Structuration des Tableaux à Trois Indices de la Statistique”) by L'Hermier des 202 

Plantes (1976). PTA can be viewed as a particular simplified case of Tucker three-mode 203 

factor analysis (Tucker 1966). The first example was given by Jaffrenou (1978) and was 204 

later developed by Thioulouse and Chessel (1987), Thioulouse et al. (2004), 205 

Kroonenberg (1987; 1989), Dolédec (1988), Lavit (1988), Centofanti et al. (1989), 206 

Kiers (1991), Rossi (2003), Jiménez et al. (2006), Decaëns et al. (2009), Mendes et al. 207 

(2010), Marques et al. (2011), and Rossi et al. (2014). 208 

In PTA, “partial” indicates simplified and “triadic” refers to the three-mode 209 

analysis (Kroonenberg 1989). Indeed, PTA is a PCA that is performed on data matrices 210 

with a triple-array or three-dimensional structure (Fig. 3), while the latter uses two-211 

dimensional data matrices. This triple-array table is viewed as a sequence of two-way 212 

tables (Thioulouse et al. 2004). The objective of PTA is to define the common structure 213 

of several tables that share rows (sites or sampling points) and columns (variables), i.e., 214 

a datacube table that is expressed with different dates, in which only the main pattern 215 

described by the first axis is retained for interpretation (Rossi 2003). All tables, i.e., X1, 216 

X2, …, Xt, contain observations of p variables measured at s sites at each of t times, e.g., 217 

tables for analyzing the spatial distribution of soil organisms and the temporal stability 218 

of the observed spatial pattern (Rossi, 2003; Jiménez et al., 2006; Decaëns et al. 2009), 219 

spatio-temporally analyzing dynamic phytoplankton communities (Rolland et al. 2009; 220 

Bertrand and Mummy, 2010), assessing low and high flows (Gudmundsson et al., 221 

2011), and spatio-temporally analyzing hydrogeochemical parameters (Gourdol et al., 222 

2013). 223 
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PTA-1: This PTA refers to water-quality data from sample group A, i.e., from all 224 

stations during the low agricultural-activity period. Three tables for different sampling 225 

dates were used: November 2009, January 2010 and February 2010. Missing values of 226 

T, DO and SS due to multi-parameter probe malfunctions in November 2009 and 227 

January 2010 were treated with the “mice” package which allows filling empty cells in 228 

the data matrix by multivariate imputation by chained equations (Buuren and Groothuis-229 

Oudshoorn, 2011). The statistical software “R” was used (R Core Team 2013). 230 

PTA-2: Water-quality data that correspond to sample group B, which were 231 

collected during the intense farming activity period, were used to test the hypothesis 232 

that spatial and temporal trends of the analyzed variables from PTA-1 are similar. Six 233 

temporal data matrices were used: April, June, July, August, September and October 234 

2010. 235 

Each set of samples collected from sample groups A and B represents the same 236 

sites that were sampled at various times to analyze the same variables. All data matrices 237 

collected at all sampling dates were merged to perform the PTA. In other words, the 238 

data do not represent one sampling collection on one date but three and six dates for 239 

samples of groups A and B, respectively. The PTA reveals the spatial and temporal 240 

differences among the variables and sites. 241 

Three steps characterize the PTA: interstructure, compromise and intrastructure. 242 

 243 

Interstructure 244 

The first step of the PTA determines the common information or structure present in the 245 

different matrices (Fig. 3A) using PCA. The objective is to provide a global description 246 

of the sampling points as a function of the typology of the sampling dates and to extract 247 

information common to all variables (Fig. 3B). This process provides a statistical 248 
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analysis that is an alternative to the PCA application to several temporal matrices, and it 249 

has the advantage of grouping all sampling dates into the same PCA. Therefore, the 250 

temporal dynamics are not excluded with this statistical tool, in contrast to other 251 

methods in which only regular tendencies are analyzed. In other words, PCA analyses 252 

could be performed, one for each period (sampling dates t1, t2, …, tn), but the factorial 253 

axes are different in each PCA for each temporal data matrix. 254 

In addition, a duality diagram or statistical triplet (X, Dp, Dn) can be used to define 255 

a multivariate data analysis from a geometrical point of view, where X is the n × p table 256 

to analyze, Dp is the diagonal p × p symmetrical matrix (positive and definite) of 257 

column weights, and Dn is an n × n matrix of weights on the “observations”. 258 

The interstructure analysis is based on the concepts of vectorial variance VarV, 259 

vectorial covariance CovV, and vectorial correlation coefficient RV (Escoufier, 1973).  260 

The vector variance of table Xj is given by: 261 

= 𝑡𝑟()/𝑝 =) = 𝑝  

where Var is the vectorial variance of table Xj. 262 

 263 

The vector covariance between tables Xj and Xk (duality diagrams) is the sum of 264 

the correlations between identical pairs of variables: 265 

= 𝑡𝑟()/𝑝 =) 

 266 

where Covv(Xj, Xk) is the vectorial covariance of tables Xj and Xk. 267 

 268 

A cosine matrix was first created to analyze the similar structures of the tables. 269 

Matrices X(k) and X(k’) were normalized such that the sum of squares of their elements 270 

equals 1 and the inner product between both matrices equals the cosine between the 271 

matrices, i.e., the  RV coefficient, which is a measure of similarity between squared 272 
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symmetric matrices (Escoufier 1973). Thus, the RV coefficient between two tables 273 

ranges between 0 and 1, and it is equivalent to the r-correlation coefficient between two 274 

variables. This coefficient matrix allows for a comparison of the sampling dates and 275 

representation of the proximity between tables depending on the analyzed variables 276 

(Robert and Escoufier, 1976). Consequently, the RV coefficient is the mean of the 277 

correlations between identical pairs of variables: 278 

 279 

= 

 280 

              =  

 281 

The calculation of the vectorial correlation coefficient matrix (RV) between 282 

sampling dates allows for a comparison of the sampling dates and representation of the 283 

proximity between dates that depend on the analyzed variables. The function of this step 284 

is to assign a weight to each sampling date sub-matrix (αк coefficients). 285 

 286 

Compromise 287 

The second step is the compromise analysis, which involves PCA of a new data table 288 

(compromise table) that results from reorganizing the variable-sample scores (Fig. 3C). 289 

This analysis involves construction of a mean matrix of maximum inertia (referred to as 290 

the compromise matrix). The compromise analysis allows for a multivariate synthesis of 291 

the information expressed through axis I (Compromise 1) of the date ordination analysis 292 

and provides an idea of the structures that are common to all tables and a simultaneous 293 

representation of individuals and variables (Thioulouse and Chessel, 1987; Bertrand and 294 

Mummy 2010). In other words, this analysis provides a description of the sampling sites 295 
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as a function of the typology of variables and identification of the variables responsible 296 

for similar patterns at different dates (Fig. 3D). Therefore, our approach focuses on 297 

analyzing the spatial patterns and temporal variability/stability of the variables linked to 298 

water quality in agricultural effluents.  299 

The compromise table provides the best summary properties of the initial temporal 300 

matrices. The RV coefficient indicates the extent to which the compromise expresses the 301 

information contained in each sub-matrix (the cos² between a sub-matrix and the 302 

compromise table). Next, the matrix that represents the vectorial correlations between 303 

the different sampling dates and sub-matrices (RV coefficient) provides an indication of 304 

the strength of the links among the different sub-matrices from the various sampling 305 

dates (Rolland et al., 2009). This step describes the sampling sites as a function of the 306 

typology of variables and identifies the variables responsible for similar patterns on 307 

different dates (Jiménez et al., 2006; Decaëns et al. 2009).  308 

 309 

Intrastructure 310 

The last step is known as the intrastructure or the reproducibility of the compromise. In 311 

this representation, the row and column loadings of all tables are graphically displayed 312 

on the first two principal components of the compromise matrix as additional elements 313 

(Thioulouse and Chessel, 1987). This step summarizes the variability in the series of 314 

tables around a common structure defined by the compromise, highlighting which 315 

elements best fit (or do not fit) the structure of the compromise. The rows and columns 316 

of all tables of the series are projected onto the factorial plane of the PCA of the 317 

compromise as additional elements (Thioulouse et al. 2004). The intrastructure analysis 318 

shows the departure of the spatial structure observed at each date from the spatial 319 

structure common to all sampling dates.  320 
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All of the computations involved in the PTA were directly processed with the Ade-321 

4 package (Thioulouse et al. 1997) in R statistical software (R Core Team 2013). 322 

 323 

Correlogram analysis 324 

The resulting compromise table from the PTA can be used with spatially explicit 325 

statistical functions, such as the correlogram, the function that represents the spatial 326 

pattern of a given variable and its significance (Sokal and Oden 1978; Legendre and 327 

Fortin 1989; Overmars et al. 2003). The degree of spatial autocorrelation for each PTA 328 

was assessed using Moran’s I  (Moran 1948) spatial autocorrelation statistics (Cliff and 329 

Ord, 1981), which were computed using the positive and negative sample scores of the 330 

first axis of the compromise table (Decaëns and Rossi 2001). This procedure aims to 331 

reveal the degree of spatial autocorrelation in the common structure described by the 332 

PCA of the compromise table. 333 

Moran’s I index is given by: 334 

𝐼 = 

for h ≠ i, where yh and yi denote the values of the observed variable at sites h and I, d is 335 

the distance class, and w is the weight.  336 

These indices are plotted in a graph called a correlogram, which is used to quantify 337 

the spatial dependency of the variables per distance class or lag. Only the pairs of sites 338 

(h, i) within the stated distance class (d) are taken into account when calculating any 339 

given coefficient (Legendre and Legendre, 1988). Moran’s I usually takes on values in 340 

the interval (-1, +1), although values < -1 or > 1 might be obtained. High values of I, 341 

either negative or positive, indicate strong autocorrelation (Legendre and Legendre, 342 

1988). 343 
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The overall statistical significance is tested with the Bonferroni-corrected 344 

probability procedure (Oden 1984). The corrected P* is α’ = α/k, where k is the number 345 

of distance classes, and α<0.05 is the global significance level (Oden, 1984). The 346 

computation of spatial autocorrelation indices was performed with the ncf package in 347 

the R statistical software (R Core Team, 2013). 348 

 349 

RESULTS 350 

A statistical summary of all of the data and variables is provided in Table 2. The 351 

variability in our data was within that observed using historical data collected monthly 352 

at the gauging stations during 2007-2014 (Fig. 4). 353 

 354 

Spatio-temporal pattern at the watershed scale 355 

A common pattern was detected across the different sampling dates during the study 356 

period. Two axes accounted for 73.6% and 14.2% of the total data variability in the 357 

interstructural analysis of PTA-1. The representation of the eigenvectors in Euclidean 358 

space revealed that all sampling dates displayed positive scores on axis I, indicating the 359 

presence of a structure common to all dates (Fig. 5A). This so-called “inter-table size 360 

effect” indicates that no inversion of the temporal structure of the analyzed variables 361 

occurred.  362 

This distribution was consistent with the RV coefficient matrix (Table 3a, Fig. 5B), 363 

which exhibited a strong correlation (RV = 0.631) between November and January, 364 

whereas the weakest correlation (RV = 0.577) occurred between January and February. 365 

The matrix corresponding to November 2009 most greatly contributed to the temporal 366 

dynamics of the variables, as given by the highest value of cos
2
. 367 
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In the compromise analysis (Fig. 5C), the main spatio-temporal patterns of the 368 

variables were highlighted by extracting only the first two axes, which explained 80.7% 369 

of the total inertia of the PCA performed on the compromise matrix. The first axis 370 

(56.7% of the total variance) separated the variable SS (negative side of axis I) from the 371 

remainder of the variables on the positive side, whereas the second axis (24.0% of the 372 

total variance) was characterized primarily by pH and NH4
+
-N, as opposed to NO2-N. 373 

Two main groups were distinguished with respect to the second axis, and those 374 

variables were related to salt and ion concentrations (EC, Ca²⁺, Mg²⁺, Na⁺, SO4²ˉ-S and 375 

F⁻); NO3ˉ-N occupied the positive side of axis II, whereas variables related to nutrients 376 

(TP, TDP, PO4
3-

-P, TDN, NO2
-
-N, NH4

+
-N, and DOC) and K

+
 were grouped on the 377 

negative side of axis II (Fig. 5C). The distribution of the 15 sampling stations (Fig. 5D) 378 

in the factorial plane formed by the first two axes showed a clear separation between the 379 

stations located in non-urban areas and areas with non-intensive agricultural use (F1, 380 

F2, F3, F4, F5, I1 and I2), as opposed to the remainder of the sites along the negative 381 

side of axis I. Sampling stations I3 and I4, which correspond to urban contributions, 382 

slightly participate in the data structure; they were related to the variable “dissolved 383 

solids”. Along the second axis, stations F8 and F9 were opposed to I5 and I6; the latter 384 

indicate sampling stations that received inputs from the Isuela River after passing 385 

through the city of Huesca and the wastewater treatment plant. These stations were 386 

related to the group of variables that consist of phosphorus compounds, NO2ˉ-N, NH4⁺-387 

N and K⁺ (Fig. 5C). Sampling stations F8 and F9 were located in areas with intensive 388 

agricultural use and were related to saline compounds and NO₃ˉ-N. 389 

In the last step, the intrastructure helps reveal which initial table fits the model 390 

expressed in the previous step. The original tables were projected as complementary 391 

tables onto axis I of the PCA of the compromise table. The structure was strongest in 392 
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November 2009, when the physical and chemical properties of the water indicated 393 

higher pollution compared with January and February 2010 (Fig. 6), when agricultural 394 

activity was lower. Sites located upstream (half of the negative side of the first axis) of 395 

the watershed are less polluted, whereas the stations located downstream (F8, F9, I5 and 396 

I6) that receive sewage and fertilization inputs have greater pollution.  397 

 398 

Influence of agricultural use on the common spatial structure of water quality 399 

In PTA-2, the analysis of the interstructure of the sampling dates that correspond to the 400 

sampling stations of the agricultural zone revealed similar measured-variable dynamics 401 

(Fig. 7). We retained the first two axes of the interstructure analysis, which explained 402 

69.3% and 9.7% of the total variance. The representation of the eigenvectors in 403 

Euclidean space revealed that all sampling dates displayed positive scores on axis I of 404 

PTA-2, indicating the presence of a structure common to all dates (Fig. 5A). Again, the 405 

“intertable size effect” appeared, i.e., no inversion of the structure occurred from one 406 

date to another (Fig. 7A). 407 

The RV coefficient (cos
2
) is an indicator of the extent to which the compromise 408 

expresses the information contained in every table. According to the information in Fig. 409 

7B, the sub-matrices for September, July, June and April (RV = 0.737) substantially 410 

contributed to the definition of the compromise, whereas those of August and October 411 

had lower weights (RV = 0.307) in the development of the compromise (Table 3b). 412 

In the compromise analysis (Fig. 7C, D), two axes were retained that explained 413 

70.9% of the total inertia. The first axis of the compromise PCA (Fig. 7C) explained 414 

44.5% of the total inertia and revealed a clear organization of the variables related to 415 

human activities, i.e., electrical conductivity and nitrogen compounds (NO3ˉ-N and 416 

TDN) and salinity (Mg
2+

, SO₄2-
-S and Alk) on the positive half of the first axis in 417 
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opposition to SS (Fig. 7C). The second axis (Fig. 7C) accounted for 26.4% of the total 418 

inertia, and it was interpreted as a higher availability of nutrients, such as NH₄⁺-N, 419 

PO₄3-
-P, and TP on the positive side of axis II, pH on the negative side of the axis and, 420 

to a lesser extent, the T, NO₂ˉ-N, DOC concentrations and DO.  421 

The map of the factorial coordinates of the 10 sampling stations (Fig. 7D) also 422 

revealed a clear spatial variation. Sampling stations located in the region of the basin 423 

with highly intensive agricultural use (IC1, F8, F9, and IC2) were linked to ions related 424 

to salinity (Na⁺, Cl⁻, EC, Br⁻, and F⁻), whereas sampling stations IW (the discharge 425 

from the wastewater treatment plant) and I6 (in the Isuela River downstream of the 426 

wastewater treatment plant) were associated with TDN and NO3ˉ-N and NH4⁺-N, PO₄ˉ-427 

P, TP and K⁺, respectively. 428 

Finally, the intrastructure analysis was achieved by projecting the six temporal 429 

matrices onto the factorial plane of the compromise (Fig. 8) to display their similarity 430 

with the common spatio-temporal pattern extracted in the PTA; in other words, the 431 

temporal stability of the process was analyzed only if the variables were projected in the 432 

same places in the factorial plane. Overall, the structure was strongest in July, August, 433 

September and October 2010, when the physical and chemical properties of the water 434 

indicated higher pollution compared with April and June 2010 (Fig. 8). The projection 435 

intrastructure analysis showed how the different variables contributed to the definition 436 

of the factorial axes for each sampling date. In all cases, stations F4 and F5 (negative 437 

half of the first axis) were displayed in opposition to sites F8, F9, IC1, IC2 and IW, 438 

which received larger inputs of fertilization and sewage.  439 

 440 

Correlogram analysis 441 
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A significant positive autocorrelation was observed at a distance lag of 10-11 km, and 442 

negative autocorrelation was observed at greater distances (17 km) for axis I of the 443 

compromise in PTA-1 (Fig. 9a). However, the correlograms computed with the sample 444 

site scores on the compromise PCA were not globally significant at the Bonferroni-445 

corrected probability level of p* = 0.002 (25 distance classes) and p*= 0.0029 (17 446 

distance classes) for PTA-1 (Fig. 9a) and PTA-2 (Fig. 9b), respectively. 447 

 448 

DISCUSSION 449 

Spatio-temporal structure and stability of water-quality data 450 

The results highlight the spatial structure of the physical and chemical water properties 451 

of different sites in the Flumen River Basin over one year. PTA allowed us to clearly 452 

identify the presence of a significant spatial structure across the entire catchment that 453 

was present on all sampling dates. Both PTAs provided a good summary of the spatio-454 

temporal structure of water variables for two time periods and all sampling sites. The 455 

interstructure analysis of PTA-2 basically followed the same pattern as PTA-1 (Fig. 5), 456 

even though the latter refers to winter months only. Moreover, differences were 457 

observed in the distribution of the variables that were dependent on the sampling dates; 458 

these differences could be partially related to the agronomic calendar of existing land 459 

use in the territory. 460 

- PTA-1 461 

Our analysis showed that land use had a strong influence on the spatio-temporal 462 

pattern of water quality as given by the observed typology of sampling stations in the 463 

factorial plane. Differences were observed in the distribution of the variables among the 464 

three sampling dates (Fig. 5). Indeed, the upper watershed sites (I1, I2, F1, F2, F3, F4 465 

and F5), which corresponded to forest and low-intensity agricultural areas, were all 466 
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similar and relatively diluted (Fig. 5D), i.e., they were not affected by temporal 467 

variation, in contrast to the zones in the lowest region of the basin. Sites downstream of 468 

the wastewater treatment plant outfall (I5 and I6) dramatically deviated from the upper 469 

watershed group, presumably due to input of wastewater effluent upstream of I5, which 470 

contributes DOC and nutrients. Determining whether this observation represents the 471 

impacts of urban land use or the impact of a point source of poor-quality water is 472 

beyond of the scope of this study; however, the I3 and I4 urban stations were distinctly 473 

different from I5 and I6. The characteristics of sampling stations F6 and F7 were 474 

between those of the upper watershed sites and I5-I6, indicating that they are composed 475 

of a mixture of these two sources, i.e., F6 and F7 are located just downstream of the 476 

confluence of I6 and F5 (Fig. 5D).  477 

Finally, stations F8 and F9 (agricultural sampling sites) located in the lower region 478 

of the basin (North Monegros County) showed an increase in major ions (NO₃ˉ-N and 479 

saline compounds) relative to the other regions of the watershed in November 2009 and 480 

January 2010 (Fig. 5). A dilution of salt concentration occurs with intensive irrigation 481 

during the spring and summer, i.e., EC decreases from 1,550 µS cmˉ¹ in the non-482 

irrigation period to 450 µS cmˉ¹ in the irrigation season (Martín-Queller et al., 2010). 483 

Monteagudo et al. (2012) reported that irrigation practices are more influential in NO3
-
-484 

N export than in non-irrigated agriculture. A large group of salt compounds was 485 

correlated with non-irrigation dates in PTA-1, whereas Na
+
 and Cl

-
 ions were linked to 486 

summer months (Figs. 4 and 5). In the factorial plane of PTA-1, the variables were 487 

clearly organized into two groups: nitrogenous compounds (aligned with sampling 488 

stations that receive urban inputs) and saline variables (more closely correlated with 489 

sampling stations located in agricultural zones, i.e., F8 and F9). This effect also could 490 
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be related to the cumulative effect of saline compounds across the lower basin area; 491 

however, stations F6, F7, I5 and I6 were not highly correlated with salt compounds.  492 

This result is possibly associated with the temporal fertilization of cereals (Triticum 493 

spp. and Hordeum vulgare) and alfalfa (Medicago sativa). A correlation was also 494 

observed in the RV coefficient matrix (RV=0.631, Table 3b). These results, which are 495 

essentially a site-specific interpretation of longitudinal changes in water quality, were 496 

efficiently summarized in the PTA. 497 

 498 

- PTA-2 499 

In PTA-2, the interstructure analysis and the representation of variables in the 500 

factorial plane of the compromise revealed a correlation between the physico-chemical 501 

water parameters and the agricultural practices performed on each sampling date (Figs. 502 

4 and 5). A stable temporal pattern of the measured variables at particular sampling 503 

stations of the basin is shown in PTA-2. The described structure represents a relatively 504 

important proportion of the total variability in the initial matrices (44.5% of 69.3% 505 

explained by axis I of the interstructure). The sub-matrices that correspond to April, 506 

June, July and September 2010 best represent the temporal dynamics of the measured 507 

parameters as given by their high values of cos², with the highest RV coefficient 508 

observed between April and June 2010 (Table 3b). This result appears to explain why 509 

TDN and NO₃ˉ-N, EC and alkalinity were aligned with the sampling dates (Figs. 4 and 510 

5) during the irrigation season, when the principal agricultural practices are conducted. 511 

The base fertilizer for rice is applied in April, whereas fertilization of maize crops 512 

occurs in June. These results allow us to infer that the trends adopted by the analyzed 513 

variables followed a spatio-temporal pattern marked by the seasonal agronomic calendar 514 

of adjacent land use. 515 
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The sampling stations with the highest row score on axis I in PTA-2 are expected to 516 

have the highest EC and major ion concentrations; these locations corresponded to IC1, 517 

IC2, F8 and F9, i.e., stations at the lowest region of the basin that are most impacted by 518 

agricultural use. In contrast, sampling stations with the lowest scores on axis I exhibited 519 

the lowest EC and ion concentrations and corresponded to F4 and F5. Consequently, 520 

this axis is interpreted as intensive agricultural use; in other words, the results reflect the 521 

cumulative influence of human activities on water chemistry in the lowland areas of the 522 

basin. The EC increment represents the progressive water enrichment by major ions and 523 

NO3
-
-N (Fig. 7). With respect to axis II, NH4

+
, TP and PO4

2-
 were positive contributors, 524 

whereas pH was negatively correlated. In summer, the concentrations of NH₄⁺-N, TP 525 

and PO₄³ˉ-P on axis II of PTA-2 appear to be important to the water chemistry and 526 

could be linked to the increasing number of tourists, residential buildings and recreation 527 

areas during this period (Perona et al., 1999).  528 

This effect was apparent at stations I6 and F6, which received contributions from 529 

the wastewater treatment plant of Huesca, the largest city in the study area. The findings 530 

are also supported by the different placements of NO3
-
-N in each multifactorial analysis, 531 

which could be explained by the contribution of the Huesca wastewater plant to the IW 532 

station (PTA-2). High concentrations of NO3
-
-N in the streams of urbanized areas were 533 

also reported by Osborne and Wiley (1988) and Sliva and Williams (2001). 534 

The pH and suspended solids (SS) did not follow any spatiotemporal pattern with 535 

significant effects in the Flumen River Basin, which might indicate a water buffering 536 

effect. The value for SS was separated from the remainder of the variables in the PTA-2 537 

factorial plane. The concentration of SS exhibited a high inter-annual variability that is 538 

likely more closely linked to the number of punctual flood events during the year than 539 
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to seasonal variations because nearly all of the SS are transported during these events 540 

(Rovira and Batalla, 2006; Oeurng et al., 2011). 541 

Finally, the differences observed in both PTAs could also reflect dissimilar sources 542 

of urban pollution, i.e., in the factorial plane, these variables were not aligned with the 543 

IW station. This observation corresponds to a point source of pollution, whereas NH₄⁺-544 

N, TP and PO₄³ˉ-P may arise from different urban runoff regimes and non-point sources 545 

(Sliva and Williams, 2001). The primary sources of reactive PO₄³ˉ-P and NH₄⁺-N are 546 

urban inputs (Brainwood et al. 2004; Mendiguchía et al., 2007; Neal et al., 2000), 547 

which are also the sources for NO₂ˉ-N (Martín-Queller et al., 2010). This close 548 

relationship with urban pollution sources was clearly shown in PTA-1 (Fig. 5C), in 549 

which the variables were linked to I5 and I6 (urban stations).  550 

 551 

Spatial autocorrelation of the common structure described in the PTA 552 

The sampling sites distributed throughout the river basin are highly spatially clustered. 553 

The largest forested areas are headwater sites (I1, I2, and F1 in Fig. 1). Two rainfed 554 

sites are immediately downstream of the Montearagon Reservoir. The urban sites are all 555 

located within a few kilometers in the upper reaches of the river (I3, I4, IW, and I5). 556 

The irrigated sites are distributed in the lower half of the watershed (I6-I9). The likely 557 

spatial relationship between sites complicates their interpretation as a function of land 558 

use. With respect to the impact of land use on water quality and the inherent spatio-559 

temporal autocorrelation of sites, the correlogram showed positive and negative spatial 560 

autocorrelations at distances of 11 km and 17 km, respectively. Because the correlogram 561 

was not statistically significant, our results indicated that different processes (natural 562 

and anthropogenic) affect the water quality across the river network. 563 
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Although no correlation analysis was performed between changes in water quality 564 

and land use, our results indicate that the PTA efficiently summarized changes in the 565 

water quality that might be influenced by the range of land uses along the stream 566 

network. 567 

 568 

CONCLUSIONS 569 

The proposed methodology allowed us to identify a common multivariate spatial 570 

structure and to assess the temporal stability of the spatial structure of the measured 571 

water variables. The PTA constitutes a robust technique for land and water management 572 

monitoring programs that evaluate the ecological state of ecosystems and agro-573 

ecosystems. This method is a potentially beneficial tool for decision-making by 574 

watershed managers and for use by engineers and scientists in evaluating water-quality 575 

impacts and addressing natural and anthropogenic influences in watershed management.  576 

Our results showed that in urban and agricultural areas, the observed trend of the 577 

analyzed variables followed spatio-temporal patterns that are possibly marked by the 578 

seasonality of land use. The stability of the spatio-temporal structure of water-quality 579 

data appeared to be linked to agricultural use (seasonal land management) and human 580 

activities. The cumulative effect of pollutants derived from agricultural and urban uses 581 

was observed in stations located in the lowest regions of the basin. Nevertheless, land 582 

use cannot be treated as the sole driving force of the variability in the analyzed 583 

parameters, and other hydrogeological or biochemical processes might also be 584 

important. 585 

PTA can be used as a convenient space-time framework tool for assessing the 586 

dynamics of the relationships among variables, sites and time (Doledec and Chessel, 587 
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1987; Centofanti et al., 1989). In our study, with regards to water quality at the 588 

catchment scale, we assessed: 589 

1) The temporal variability in a common spatial pattern;  590 

2) The common spatial structure of a pattern via removal of the temporal effect;  591 

3) The temporal stability of the common structure, i.e., over months or the 592 

calendar of agricultural practices, and 593 

4) The spatial autocorrelation (and significance) of the global spatio-temporal 594 

structure with the correlogram using the row scores of the first axis extracted in the 595 

compromise. 596 

In conclusion, knowledge of basin characteristics and spatio-temporal trends of 597 

pollutant transfer is essential when applying effective corrective measures that minimize 598 

the effects of water pollution. PTA can be used for efficiently summarizing site-specific 599 

water-quality patterns in an applied setting for land- and water-monitoring schemes at 600 

the landscape level, in isolation or in combination with other available tools to assess 601 

spatial and temporal variations of water quality at landscape scales.  602 
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Figure captions 782 

 783 

Fig. 1. A) Pictorial representation of sampling stations in the Flumen catchment in the 784 

Ebro Basin and B) concentration of select variables in November 2009 (raw data). NO3 785 

= nitrate; SO4 = sulfate; NH4 = ammonium; TDN = total dissolved nitrogen; DOC = 786 

dissolved organic carbon; EC = electrical conductivity; and TP = total phosphorous. The 787 

symbol sizes are relative to the maximum value of the variable, e.g., 2x[NO3 conc]/[NO3 788 

max.conc]). The sampling stations along the Flumen River are F1-F9, whereas I1-I6 789 

represent sampling stations along the Isuela River; IC corresponds to irrigation 790 

channels, and IW corresponds to the sampling point located close to the sewage 791 

treatment plant for the city of Huesca along the Isuela River.  792 

 793 

Fig. 2. Average precipitation during the study period in the whole basin. 794 

 795 

Fig. 3. Graphical layout of the general sampling scheme and different steps performed 796 

in partial triadic analysis. From the datacube and initial matrices of the different 797 

sampling dates (X1, Xk…., Xt), the interstructure matrix Y was constructed and 798 

analyzed using a simple PCA. The data were first centered (removal of mean) and 799 

standardized, i.e., divided by the standard deviation (Centofanti et al., 1989). The 800 

extraction of the compromise table Z and the compromise tables were derived from the 801 

coordinates of the variables at the sites on the principal components of the PCA of Y 802 

(construction of the first compromise table from the first principal component of the 803 

simple PCA of Y is depicted). The compromise tables were subsequently analyzed 804 

using a simple PCA, and the reproducibility of the compromise analysis constitutes the 805 
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intrastructure analysis (Adapted from Centofanti et al. 1989; Rossi, 2003 and Gourdol 806 

et al., 2013). 807 

 808 

Fig. 4. Box-plot of the historical records for the physical and chemical properties of 809 

water at four permanent governmental gauging stations across the catchment for 810 

comparison. The total number of observations, the median (straight line), and the 5% 811 

and 95% percentiles for the period 2007-2014 are shown (data from CHE). 812 

 813 

Fig. 5. (A, top left) Temporal interstructure derived from each sampling station table. 814 

Ordination of sampling dates on the factorial plan defined by the first two axes of the 815 

PCA on the interstructure matrix in PTA-1, and eigenvalues associated with each axis; 816 

(B, bottom left) projections of the variables in the first plane (axes I–II) of the 817 

compromise table and histogram of eigenvalues that identify the prominence of the first 818 

two axes that define the average spatio-temporal structure; (C, top right) projections of 819 

the sampling stations in the first plane (axes I–II) of the compromise table; and (D, 820 

bottom right) weight of each table (αк) in the construction of the compromise and the 821 

quality index of the compromise structure (cos²) for each original sampling date matrix. 822 

 823 

Fig. 6. (left) Reproducibility of the compromise for each of the sampling stations on 824 

axes I and II for PTA-1 for the sites and (right) analyzed variables. The row and column 825 

loadings of all tables are projected onto the first two principal components of the 826 

compromise matrix as additional elements (Thioulouse and Chessel, 1987). 827 

 828 

Fig. 7. (A, top left) Temporal interstructure derived from each sampling station table. 829 

Ordination of sampling dates on the factorial plan defined by the first two axes of the 830 
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PCA on the interstructure matrix in PTA-2, and eigenvalues associated with each axis; 831 

(B, bottom left) projections of the variables in the first plane (axes I–II) of the 832 

compromise and histogram of eigenvalues identifying the prominence of the first two 833 

axes that define the average spatio-temporal structure; (C, top right) projections of the 834 

sampling stations in the first plane (axes I–II) of the compromise table; and (D, bottom 835 

right) weight of each table (αк) in the construction of the compromise and quality index 836 

of the compromise structure (cos²) for each original sampling date matrix. 837 

 838 

Fig. 8. Reproducibility of the compromise for each of the six sampling dates on axes I 839 

and II for PTA-2, summarizing the variability in the series of tables surrounding the 840 

common structure defined by the compromise. 841 

 842 

Fig. 9. Correlograms using the scores of the first axis extracted in the compromise table 843 

in (a) PTA-1 and (b) PTA-2 with 999 permutations. The black dots indicate significant 844 

autocorrelation at p<0.05 for a given distance class. The correlogram was not 845 

statistically significant at the Bonferroni-corrected p-level of p*=0.0020 (25 distance 846 

classes) and p*=0.0029 (17 distance classes) for PTA-1 and PTA-2 under the null 847 

hypothesis. 848 

 849 

  850 
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Table captions 851 

 852 

Table 1. Percentage of area occupied by the primary land uses associated with the 853 

sampling stations in the Flumen catchment. 854 

 855 

Table 2. Descriptive summary statistics of all analyzed water-related variables. 856 

 857 

Table 3. Matrix of vectorial correlation coefficients (RV) between tables for PTA-1 (a) 858 

and PTA-2 (b). 859 

 860 
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Table 1. 861 

Sampling  

Station 

Canola-

Polish  Maize  

Winter  

Wheat 

Italian  

Ryegrass Alfalfa 

Winter  

Barley  Sunflower  Rice  

Grain  

Sorghum  Pasture  Soybean 

Mixed 

Forest Water  Residential  

I1 -- -- -- 26.1 -- -- -- -- -- 20.6 -- 53.3
* -- -- 

F1 -- -- -- -- -- -- -- -- -- 44.5 -- 55.5
§ -- -- 

I2  0.4  9.2    7.0  21.3  58.3
¶ 3.8  

I3 0.4 0.1 11.0 6.2 0.6 25.0 2.4 3.3 0.0 21.8 0.1 26.7 2.3 0.2 

I5 0.4 0.1 10.3 5.8 0.7 27.5 2.3 3.1 0.1 21.2 0.2 24.9 2.1 1.2 

I6 0.3 0.3 9.7 5.3 2.2 33.0 1.9 3.0 0.1 19.1 0.3 19.1 1.6 4.1 

F5 0.4 1.0 9.6 6.0 2.7 25.3 1.5 3.0 0.1 19.3 0.6 25.9 2.9 1.5 

F6 1.2 1.4 9.4 5.0 4.3 30.0 3.9 2.9 0.1 15.6 1.3 21.3 2.3 1.2 

F7 1.0 2.3 8.9 5.2 7.1 30.4 3.4 5.2 0.2 14.2 1.4 17.7 2.0 1.0 

F9 0.5 6.5 7.3 5.8 11.8 29.2 2.4 6.7 0.3 14.8 1.1 11.8 1.2 0.7 

*
 Pinus sylvestris, Buxus sempervirens, Ilex aquifolium; 862 

§
 Quercus ilex, Pinus sylvestris, Buxus sempervirens; 863 

¶
 Quercus faginea, Q. ilex. 864 

 865 
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Table 2.  866 

Variables Mean Standard 

deviation 

Skewness Kurtosis 

NO3-N 1 3.86 4.77 5.30 40.36 

PO4
3
-P 1 0.09 0.14 2.49 6.33 

TDP 1 1.02 6.75 7.37 53.34 

TP 1 0.18 0.27 4.76 32.47 

Cl
- 1 63.39 47.06 1.12 1.54 

SO4
2
-S 1 61.10 40.62 0.86 0.45 

Na
+ 1 55.12 41.37 1.35 2.50 

K
+ 1 5.48 4.48 1.53 1.77 

Ca
2+ 1 110.92 34.98 0.27 -0.40 

Mg
2+ 1 29.26 13.34 0.91 0.82 

DOC 1 4.97 2.22 2.71 13.91 

TDN 1 4.55 4.29 1.34 2.01 

ALK 1 253.62 40.81 0.36 -0.18 

SS 1 62.92 99.04 3.90 16.35 

Br
-  0.26 0.13 1.17 1.25 

F
- 1 0.10 0.17 6.53 56.05 

T  14.56 4.93 -0.41 -1.10 

pH 8.04 0.28 -0.76 1.44 

EC 2 889.95 316.57 0.33 -0.01 

DO 1 10.00 2.26 0.84 0.88 

NH4⁺-N 1 1.41 3.74 3.94 17.33 

NO2ˉ-N 1 0.24 0.96 8.55 81.13 

* TDP = total dissolved phosphorous; TP = total phosphorous; DOC = dissolved organic 867 
carbon; TDN = total dissolved nitrogen; ALK = alkalinity; SS = suspended solids; T = 868 
temperature; EC = electrical conductivity; DO = dissolved oxygen. 869 
1 mg·l

-1 870 
2 µS·cm

-1
 871 

 872 

873 
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Table 3a.  874 

 Nov-09 Jan-10 Feb-10 

Nov-09 1   

Jan-10 0.631 1  

Feb-10 0.604 0.577 1 

 875 

Table 3b.  876 

 Apr-10 Jun-10 Jul-10 Aug-10 Sep-10 Oct-10 

Apr-10 1      

Jun-10 0.737 1     

Jul-10 0.575 0.688 1    

Aug-10 0.467 0.493 0.553 1   

Sep-10 0.656 0.732 0.708 0.486 1  

Oct-10 0.456 0.452 0.331 0.307 0.432 1 

 877 

  878 
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