EFFECT OF DEFECT GEOMETRIES UPON BURST CAPACITY OF COMPOSITE REPAIRED PIPE

TAY HONG WEI

B. ENG (HONS.) CIVIL ENGINEERING
UNIVERSITI MALAYSIA PAHANG
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : TAY HONG WEI
ID Number : AA15153
Date : 31 May 2019
EFFECT OF DEFECT GEOMETRIES UPON BURST CAPACITY OF COMPOSITE REPAIRED PIPE

TAY HONG WEI

Thesis submitted in fulfillment of the requirements for the award of the
B. Eng (Hons.) Civil Engineering

Faculty of Civil Engineering & Earth Resources
UNIVERSITI MALAYSIA PAHANG

MAY 2019
ACKNOWLEDGEMENTS

Firstly, I would like to express my gratefulness to the God Almighty for the good health and well-being throughout the entire study.

I would like to address my greatest gratitude to my supervisor, Dr. Lim Kar Sing for the greatest effort in guiding, giving advices, supports and encouraged me thorough the entire journey of my studies for the final year project.

Next, I wish to thank Dr. Nurul Nadrah Aqilah binti Tukimat for providing me with necessary knowledge in thesis writing. Throughout this final year project, I wish to place my sincere appreciations to all the lecturers for giving encouragement, support, and attention directly and indirectly in Universiti Malaysia Pahang.

I would also like to take this opportunity to thank my family and friends who encouraged me with their best wishes and support.

Last but not least, I would like to thank all who involved directly and indirectly in ensuring the smoothness of this study. Thank you very much.
ABSTRAK

Nowadays, composite wrap repair has been proven effective in repairing pipeline system. This method provides several advantages such as lightweight, excellent fatigue and corrosion resistance. Despite many advantages offered by composite repair system, several issues regarding the factors that influencing the behaviour and performance of this system are not fully understood. Effect of defect geometries of composite repaired pipe is one of the factors that may affect the burst capacity of a composite repaired pipe. However, existing design code only considered defect depth in calculating the burst pressure of the composite repaired pipe. Recently, there are some researches proved that the geometries (length and width) will affect the burst pressure of bare pipe, hence there is high possibility that the defect geometries will also affect the burst pressure of composite repaired pipe. Thus, the objective of this study is to explore the potential effect of defect geometries of composite repaired pipe towards its burst capacity through finite element analysis. Four composite repaired pipe models were developed to study the influence of defect geometries (length and width) towards the hydrostatic burst pressure of composite repaired pipeline. The result proved that as the dimension of defect geometries increased, the burst pressure of the composite repaired pipe has decreased. The difference in burst pressure was found to be about 20% between the largest and the smallest defect dimension of composite repaired pipe model used in this study. As a conclusion, the defect geometries (length and width) does affect the burst capacity of composite repaired pipe and the findings can be used for future research in optimizing the design of pipeline rehabilitation system especially solve the problem of conservativeness in existing design codes.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Objective 3

1.4 Scope of Study 4

1.5 Significance of Study 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Defect of Pipeline 6
2.2.1 Corrosion in Pipelines 6

2.2.2 Effect of Corrosion Defect on the Collapse Pressure of Pipeline 8

2.3 Pipeline Repair Systems Using Composite 10

2.3.1 Pre-Cured Layered System 11

2.3.2 Flexible Wet Lay-Up System 12

2.3.3 Pre-Impregnated System 13

2.3.4 Split Composite Sleeve System 14

2.3.5 Flexible Tape System 15

2.4 Current Codes and Practices 16

CHAPTER 3 METHODOLOGY 20

3.1 Overall 20

3.2 Research Methodology 20

3.3 Development of Base Model 22

3.3.1 Modelling Corroded Steel Pipe 22

3.3.2 Modelling Composite Repaired Steel Pipe 26

3.3.2.1 Modelling of Putty 26

3.3.2.2 Modelling of Composite Wrap 29

3.4 Parametric Study 31

3.5 Concluding Remark 32

CHAPTER 4 RESULTS 33
LIST OF TABLES

Table 3.1 Steel pipe material properties 23
Table 3.2 Putty material properties 27
Table 3.3 Composite wrap material properties 29
Table 3.4 Defect geometries used in this study 32
Table 4.1 The parameters of composite repaired models used 34
Table 4.2 Summary of effect of geometries upon the burst pressure of composite repaired pipe models 43
Table 5.1 Result of finite element analysis for all four burst test 45
Table 5.2 Percentage in difference of burst pressure between the pipe model 47
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The irregular depth, width and length of a typical corrosion defect</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Laboratory illustrations on pit corrosions</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Basic components of pre-cured layered system</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Typical installation steps on flexible wet lay-up system</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>ProAssure™ Wrap Extreme</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>ProAssure™ Clamp</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Wrapping process of Kevlar tape repair system</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Guide to generic defect types</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Summarizes the overall research methodology</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Pipe-A (defect pipe)</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Internal pressure and boundary conditions</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Process in achieving structural mesh</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Meshed model of Pipe-A</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Geometry of putty</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Sequence for putty location translation</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Meshed model of putty</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Cylindrical coordinate system</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Bonding between composite, putty and pipe</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Stress contour plot for entire Pipe-B model</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Stress contour plot for the steel pipe of Pipe-B</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Stress contour plot for the putty of Pipe-B</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Stress contour plot for the composite wrap of Pipe-B</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Stress contour plot for entire Pipe-C model</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Stress contour plot for the steel pipe of Pipe-C</td>
<td>39</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Stress contour plot for the putty of Pipe-C</td>
<td>39</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Stress contour plot for the composite wrap of Pipe-C</td>
<td>40</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Stress contour plot for entire Pipe-D model</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Stress contour plot for the steel pipe of Pipe-D</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Stress contour plot for the putty of Pipe-D</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Stress contour plot for the composite wrap of Pipe-D</td>
<td>43</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Burst pressure of composite repaired pipe models subjected to various</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>combination of length and width defect</td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.2 Effect of defect geometries in combination of length and width on burst pressure

x
LIST OF SYMBOLS

\[D\] \hspace{1cm} \text{Pipe diameter}
\[d\] \hspace{1cm} \text{Depth of corrosion}
\[t\] \hspace{1cm} \text{Nominal pipe wall thickness}
\[L\] \hspace{1cm} \text{Measured length of corrosion defect}
\[\frac{d}{t}\] \hspace{1cm} \text{Ratio of corrosion depth to pipe wall thickness}
\[\frac{(d/t)}{\text{meas}}\] \hspace{1cm} \text{Measured relative corrosion depth}
\[\frac{(d/t)^*}{\text{*}}\] \hspace{1cm} \text{Actual relative corrosion depth to cover uncertainties related to inspection tool}
\[\gamma_m\] \hspace{1cm} \text{Partial safety factor for prediction model and safety class}
\[\gamma_d\] \hspace{1cm} \text{Partial safety factor for corrosion depth}
\[e_d\] \hspace{1cm} \text{Factor for defining a fractile value for the corrosion depth}
\[P_{mao}\] \hspace{1cm} \text{Maximum allowable operating pressure}
\[\text{StD}[d/t]\] \hspace{1cm} \text{Standard deviation for measurement}
\[\text{SMTS}\] \hspace{1cm} \text{Specified minimum tensile strength}
\[P_s\] \hspace{1cm} \text{Maximum allowable operating pressure (MAOP)}
\[s\] \hspace{1cm} \text{Specific minimum yield strength (SMYS) of pipe}
\[P\] \hspace{1cm} \text{Internal design pressure}
\[E_c\] \hspace{1cm} \text{Tensile modulus of the composite laminate in the circumferential direction}
\[E_s\] \hspace{1cm} \text{Tensile modulus of the pipe material}
\[t_{\text{min}}\] \hspace{1cm} \text{Minimum repair thickness}
\[P_{\text{yield}}\] \hspace{1cm} \text{Internal pressure of the pipe substrate at yield}
\[P_{\text{live}}\] \hspace{1cm} \text{Pipe internal pressure during repair}
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEA</td>
<td>Finite element analysis</td>
</tr>
<tr>
<td>FE</td>
<td>Finite element</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element model</td>
</tr>
<tr>
<td>FRP</td>
<td>Fibre-Reinforced Polymer</td>
</tr>
<tr>
<td>FRPs</td>
<td>Fibre reinforced polymer composites</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, pipelines are one of the safest, most efficient and economical ways to move products such as natural gas, refined petroleum products, crude oil and other fluids from one point to another. It is widely used in the world as the transportation medium of these commodities to promote economic development (Kiefner and Rosenfeld, 2012). The United States has the longest distance of pipelines system in the world, with 1,984,321 km in natural gas transport and 240,711 km in petroleum products. The country with the second longest of pipelines network is Russia with 163,872 km, follow by Canada with 100,000 km (Fan, 2016).

Throughout the service years of pipelines, several factors such as material and construction defects, natural forces, third party damage and corrosion will damage and deteriorate these pipelines. As a result, it will reduce their strength and eventually their service life. These factors could also lead to failures such as leaking and explosion which involve considerable cost and inconvenience to the industry and to the public, if we do not handle this problem very well (Cosham and Hopkins, 2004; Teixera et al., 2008). This is a serious problem faced by oil and gas industry due to the deterioration of steel pipelines commonly used by oil and gas industry.

On September 6, 2010, San Bruno, a blast has caused a 22-meter-long crater, eight people died and more than fifty were injured. Investigation found that the blast was caused by the natural gas spewing out from a ruptured pipeline. At the same year, 840,000 gallons of crude oil spilled from a ruptured pipeline and spilled into the Kalamazoo River, this was the most expensive accident of pipeline spill in U.S. history, estimated to cost
around $800 million to cleaning up the oil. According to the research, the 2.5 million miles of America’s pipelines suffer hundreds of leaks and ruptures every year, costing lives and money. One of the biggest problem contributing to leaks and ruptures is pipelines are getting older. More than half of the nation's pipelines are at least 50 years old in America (Groeger, 2012). In 2011, in Allentown Pa., a natural gas pipeline made of cast iron and had been installed in 1928 exploded underneath a city street, killing five people who lived in the houses above and igniting a fire that damaged 50 buildings (Groeger, 2012). Most of these pipelines are in need for rehabilitation in order to re-establish their desired operating capacity. Therefore, corrosion and metal loss cause pipeline failures and their repair techniques are of interest to researchers all around the world.

Right now, a lot of rehabilitation techniques and repair methods are available for onshore and offshore pipelines however it is seen that the composite material repair system is increasingly used as the repair methods for pipelines system. The composite material repair system mainly includes three parts which is a high strength Fibre-Reinforced Polymer (FRP) composite wrap, a high-performance adhesive and a high compressive infill material. Composite material repair system provides several advantages such as lightweight, high strength and stiffness, excellent fatigue and good corrosion resistance. Despite many advantages offered by composite repair system, several issues regarding the factors that influencing the behaviour and performance of this system are still not fully understood. These issues include the delamination and debonding between steel pipe and composite, complexity of surface preparation, load transfer mechanisms, performance and contribution of the infill material, conservativeness in existing design codes and effect of defect geometries (Lim et al., 2016). Therefore, further investigation is needed for better understanding on the behaviour of composite repaired steel pipeline to optimize the design of pipeline rehabilitation in regards to the usage of composite repair system.

1.2 Problem Statement

Effect of defect geometries which include depth, width and length of defect upon burst capacity of composite repaired pipe is one of the factors that may affect the burst capacity of a composite repaired pipe. However, existing design codes such as ISO/TS
24817 and ASME PCC-2 only account minimum remaining wall thickness of defective pipe (which is original wall thickness minus defect depth) to design the minimum repair thickness (Lim et al., 2016). Besides that, some existing assessment codes account defect depth and length in determining the remaining strength of corroded pipe, such as DNV-RP-F101. In addition, there are some researches proved that the geometry defect will affect the burst pressure of defective pipe. In 2013, an FEA parametric study done by Dewanbabee and his team found that not only the depth, but the shape of defect geometries will affect the collapse pressure of a pipe (Dewanbabee et al., 2013). Furthermore, in 2004, Cosham and Hopkins found that longitudinal length of corrosion is much more important than the circumferential length of corrosion in controlling the burst strength of a pipe under internal pressure and when axial or bending loads are introduced, the circumferential length must also be considered to determine the burst pressure (Cosham and Hoplins, 2004). Therefore, it is expected that the defect geometries of length and width for composite repaired pipe will affect its burst capacity.

Thus, the purpose of this study is to explore the potential effect of defect geometries (length and width) of composite repaired pipe towards its burst capacity. It is expected that the defect geometries will affect the performance of burst capacity of composite repaired pipe where it may help to improve the accuracy for repair the defective pipe by composite wrap repair system.

1.3 Objective

The aim of this study is to investigate the effect of defect geometries namely defect length and defect with towards burst capacity of composite repaired pipeline. In order to achieve the aim, the objectives of this study are outlined as follows:

1. To determine the burst capacity of composite repaired pipe subjected to various defect geometries (length and width) through finite element analysis (FEA).
2. To evaluate the potential effect of defect geometries (length and width) of composite repaired pipe towards its burst capacity.
REFERENCES

Clock Spring® product brochure 2012. The Clock Spring Company.

