Syngas from palm oil mill effluent (POME) steam reforming over lanthanum cobaltite: Effects of net-basicity

Yoke Wang Cheng^{a,c}, Chi Cheng Chong^{a,c}, Soon Poh Lee^b, Jun Wei,Lim^c, Ta Yeong Wu^d, Chin Kui Cheng^a

^a Faculty of Chemical & Natural Resources Engineering, Lebuhraya Tun Razak, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia

^b Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang, 26300, Kuantan, Malaysia

^c Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia

^d Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia

ABSTRACT

Steam reforming (SR) of palm oil mill effluent (POME) over net-basic LaCoO₃ was optimised for syngas production (FSyngas) and degradation efficacies (XP) by tuning temperature (T), POME flow rate (V'POME), catalyst weight (Wcat), and particle size (dcat). Net-basicity of LaCoO₃ facilitated the adsorption of Lewis acid CO₂, thereby assisted carbon removal via reverse Boudouard reaction. POME SR over $LaCoO_3$ was promoted by using (i) higher T (endothermicity), (ii) greater V POME (larger partial pressure at constant weighthourly-space-velocity and total feed rate), (iii) larger Wcat (longer residence time for POME vapour), and (iv) smaller dcat (higher surface area to volume ratio). Nevertheless, the catalytic activity of LaCoO₃ declined with (i) severe coking and sintering deactivation (T≥973 K), (ii) carbon-encapsulation (V POME = 0.10 mL/min), (iii) agglomeration (Wcat>0.3 g), and (iv) pore occlusion (dcat<74 μm). Hence, the optimum conditions of POME SR over $LaCoO_3$ were T = 873 K, V POME = 0.09 mL/min, Wcat = 0.3 g, and dcat = $74-105 \mu m$. The optimised process able to produce syngas at a rate of 86.60 µmol/min whilst degrading POME to a less polluted liquid condensate (COD = 435 mg/L and BOD₅ = 62 mg/L).

KEYWORDS

Syngas generation; Palm oil mill effluent; Steam reforming; Wastewater valorisation

ACKNOWLEDGEMENTS

Ministry of Education Malaysia subsidised this work via the Fundamental Research Grant Scheme (FRGS) with a grant number of RDU170116. YWC also grateful to Malaysia Toray Science Foundation for financial allocation through Science & Technology Research Grant (STRG), RDU181501.