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Abstract: There are two surgical approaches to performing total hip arthroplasty (THA): a cemented
or uncemented type of prosthesis. The choice is usually based on the experience of the orthopaedic
surgeon and on parameters such as the age and gender of the patient. Using machine learning
(ML) techniques on quantitative biomechanical and bone quality data extracted from computed
tomography, electromyography and gait analysis, the aim of this paper was, firstly, to help clinicians
use patient-specific biomarkers from diagnostic exams in the prosthetic decision-making process.
The second aim was to evaluate patient long-term outcomes by predicting the bone mineral density
(BMD) of the proximal and distal parts of the femur using advanced image processing analysis
techniques and ML. The ML analyses were performed on diagnostic patient data extracted from a
national database of 51 THA patients using the Knime analytics platform. The classification analysis
achieved 93% accuracy in choosing the type of prosthesis; the regression analysis on the BMD data
showed a coefficient of determination of about 0.6. The start and stop of the electromyographic
signals were identified as the best predictors. This study shows a patient-specific approach could be
helpful in the decision-making process and provide clinicians with information regarding the follow
up of patients.

Keywords: database analyses; electromyography; machine learning; clinical decision making;
total hip arthroplasty
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1. Introduction

Advanced arthroplasty and pain in hip joints have been extensively treated with total hip
arthroplasty (THA). For several years, hip replacement with a prosthesis has been among the most
effective orthopedic surgeries for re-establishing function and lowering the pain of patients affected
by various pathologies, particularly osteoarthritis and osteonecrosis of the femoral head and neck
fractures. Patients generally experience less pain in the months and years following a THA or hip
resurfacing procedure; nevertheless, many of them express disappointment with their capacity to
perform daily tasks, a reduced ability to walk and long-term muscle weakness in the lower extremities.

THA can be performed with or without the use of bone cement. The advantage of a cemented
procedure is that stability can be achieved earlier in the recovery process than with an uncemented
procedure, in which the primary implant stability is obtained through a geometrical fitting, press-fit
forces and friction between the bone and implant, while the secondary stability is achieved by bone
ingrowth into the surface texture of the femoral component. However, use of the cement technique can
make the local bone weaken as a result of decreased mechanical stresses; that is, the density of the
bone progressively declines around the prosthesis, resulting in an increased fracture risk. Moreover,
bone resorption is recognized as one of the most common causes for the loosening of the stem [1].
In the case of an uncemented prosthesis, surgery is performed using a press fit, and the stratum
of the bone directly neighboring the implant stem is preloaded and stimulated to grow [2]. In the
first few years following surgery, uncemented stems receive more revisions than cemented ones
because of periprosthetic fractures, but the risk of infection is similar between the two options [3].
On the one hand, the management of these fractures is a difficult task for surgeons because of the
low quality of the adjacent bone [4]. On the other hand, revision operations for uncemented implants
achieve a higher success rate and generally lead to fewer complications than revision surgeries for
cemented implants [5-7], in which issues are also linked to the risk of cement cracking because of
fatigue. Nevertheless, the overall survival rate of uncemented THA is still marginally inferior to that
of cemented THA according to the Swedish Hip Registry [8]. In order to recommend an uncemented
prosthesis, the patient’s bone quality must be assessed: the femur must resist the press fitting and
compressive stress during surgery and during consequent functional loading. The bone ingrowth
should also be predictable. Currently, a common decision criterion for indicating whether to employ a
cemented or an uncemented prosthesis does not exist. Different results have been found by important
studies, but a consensus has not yet been reached [7]. Clinicians have to choose between the two types
of prosthesis according to the personal situation of each patient. Measurable preoperative evaluations
of bone quality are not taken into account with the existing guidelines, even though it is well known
that they would have a positive effect on the success of the surgeries [8]. Because the mineralization of
bone diminishes with aging, cemented arthroplasty is, in general, more commonly chosen for older,
inactive people and those with weak bones; uncemented replacements are more commonly chosen
for younger and more physically active people [9]. Because the probability of the need for revision
surgery increases with age, patients receiving an implant early in life have a higher probability of
needing revision surgery, and the risk of intra-operative fracture under press fitting due to poor bone
quality is lower in the population [10,11].

In the decision-making process regarding uncemented or cemented THA for the individual patient,
bone and muscle quality are regularly included, when, for example, the biological age of the patient is
estimated. Preoperative measurements of bone and muscle quality are not performed routinely in the
clinic today, despite it being commonly accepted that they can have decisive influence on the outcome.
Although age is one indicator for bone and muscle quality, individual differences due to lifestyle and
genetics are wide, providing a broad range of bone density and muscle quality [12], which should be
taken into consideration. Gargiulo et al. proved statistically that the quantitative measurements of both
bone and muscle quality would certainly provide valid support to clinicians in their decision making [13].
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1.1. An Introduction to the Methodology

THA has been investigated with different methodologies and from various points of view [14,15]:
Lean Six Sigma was used to improve the process of THA and total knee arthroplasty in a university
hospital [16,17]; artificial intelligence perfectly fits this context through machine learning (ML)
techniques. ML is a subset of artificial intelligence and consists of the capacity of a computer to learn
from training/past data in order to make predictions, and classification or regression analyses on
new/test data. Many applications are present in the literature representing the implementation of ML
algorithms with healthcare data: Ricciardi et al. applied it to study fetal well-being [18], Stanzione et al.
and Romeo et al. applied ML in radiomics processes [19,20], and Ricciardi et al. performed ML studies
for the diagnosis and prognosis of patients affected by coronary artery disease [21,22]. Haeberle et al.,
recently, conducted a review of ML in the orthopedic field, as well as Cabitza et al., who stated that there
has been a 10-fold increase in reports mentioning ML in the last 20 years [23,24]. Different applications
have been found in the orthopedic field and, especially, for the lower extremities: image-based analysis,
mobile health technologies and value-based patients’ models. The aim of image-based analysis is to
analyze, directly, images to detect and confirm, for example, the presence of osteoarthritis. Importantly,
the number of mobiles has been increasing as well as the possibility to monitor remotely patients with
their own mobile phones [25]; thus, ad hoc software could be developed for this purpose. Value-based
patients’ models are an option that is considered in this paper: not only can ML detect pathologies or
be used for classification, but it can also be employed to introduce a data-driven approach that helps
the clinician implement personalized medicine, as modeled by a recent study from Navarro et al. [26].

In the literature, there are some reports of applications of machine learning to THA patients.
Ramkumar et al. developed and validated a predictive machine learning model using preoperative
patient demographics for estimating the length of stay after primary THA as the first step in identifying
a patient-specific payment model [27,28], while Harris et al. developed predictive models for mortality
and major complications after elective total joint arthroplasty that can be used to inform preoperative
discussions and decisions in diverse healthcare settings [29]. However, there is also evidence from
literature reviews that the advancement and employment of ML provides the opportunity to provide
data-driven, high-performance medicine that can rapidly improve the knowledge, economics and
delivery of lower extremity arthroplasty [23].

1.2. Aim of the Work

Considering the general lack of knowledge concerning the joint motion of the lower extremities in
the THA population, there is a need to characterize the joint mechanics of people that have undergone
THA so that interventions and rehabilitation strategies can be designed to reduce postoperative
complications and improve mobility. The final goal could be the creation of a tool so that the
management of these patients could be improved by providing them with the best option based on
quantitative patient-specific data.

The aim of this paper was to employ ML techniques on data such as measurements of bone and
limb function as evaluated by computed tomography (CT) scans, gait analysis, electromyography
(EMG) evaluations and 3D geometric modeling to help clinicians in the decision-making process of
choosing whether a cemented or an uncemented prosthesis is the best for a patient, thus creating a
patient-specific evaluation. The acquisition and the elaboration of the data strictly follows the research
of Gargiulo et al., meaning that all the procedures for acquiring data and obtaining parameters (such as
those from gait analysis of EMG) are the same of those in previous research [15]. Recently, Recenti et al.
performed a first implementation of logistic regression and k-nearest neighbor analysis in order to predict
the bone mineral density (BMD) of patients undergoing THA using only gait analysis features [30].

In this paper, the first analysis is described to provide clinicians with suggestions regarding the
best choice of prosthesis according to patient-specific data, while the second part presents a regression
analysis of the follow up, similarly to Recenti et al. [30], namely, trying to predict the adaptation of the
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prosthesis to the bone of the patient according to BMD measures through tree-based algorithms that
have not been used previously.

2. Materials and Methods

2.1. The Dataset

The cohort for this study includes 51 primary THA volunteer patients as part of a national database
at the Icelandic National Hospital (LSH, Landspitali, Reykjavik, Iceland). All patients underwent
primary and unilateral THA (the surgeon decided the kind of prosthesis) that allowed us to have a
healthy leg for comparison. Both types of hip prosthesis were Zimmer (Hip Replacement products,
Warsaw, IN, USA) (http://www.zimmer.com/medical-professionals/products/hip.html). All patients
underwent a biomechanical assessment at the health facility 1-2 days before and 1 year after surgery.
The mean age of the analyzed patients was 60.1 + 10.6 years; males represented the 42.3% of the total
sample. The Icelandic Bioethics committee approved the patient pre- and postoperative assessments.
Application number: 13-127-51, approved on 12 July 2013; Study type and level of evidence: “Level 2
prospective cohort study”.

2.2. Gait Analysis and EMG Assessment

The patients underwent gait analysis assessment at the Grensas rehabilitation clinic, 6 weeks
before and 52 weeks after surgery. In this study, KINE view, GAITRite and KINE EMG technologies,
which acquired the EMG at 1600 Hz, were used.

KineView employs advanced video capturing and data processing for patient gait using markers
placed on the ankles, knees and hips. Wireless EMG probes are positioned on the vastus medialis (VM),
vastus lateralis (VL) and rectus femoris (RFe). Muscle activation (start and stop, measured in time,
in order to identify the timing of each muscle activation during the gait cycle) is visualized on different
channels and automatically synchronized with video. The gait of the patients was recorded on an
electronic walkway system, called GAITRIite. This system is composed of more than fifteen thousand
pressure switches set between two sheets of vinyl, which allowed us to measure many spatial and
temporal parameters. These parameters and the on and the off of the muscles” activity are used as
input for the ML algorithms. Figure 1 represents the gait analysis and EMG assessment.

Figure 1. Acquisition of electromyography (EMG) parameters. Starting from the left, the panels show
(A) the position of the electrodes for the EMG, (B) the EMG signals, and (C) a patient walking off the
platform for the gait analysis. RF = Rectus Femoris, VL = Vastus Lateralis, VM = Vastus Medialis.

2.3. Imaging Acquisition

The procedure of the analyses was as that for those performed by Gargiulo et al. [13]. All patients
were scanned with the same 64-slice spiral CT Philips Brilliance three times in one year: before surgery,
immediately after surgery and, finally, at 52 weeks post-surgery. The CT scanned a region starting
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from the iliac crest and ending at the middle of the femur; the thickness of the slices was 1 mm, with a
slice increment of 0.5 mm, and the voltage of the tube was fixed to 120KVp. These CT scans allow an
accurate 3D reconstruction of the regions of interest.

2.4. Muscle and Bone Mineral Density Calculation

The segmentation of the images was performed with the MIMICS software (Materialise 20,
Leuven, Belgium) (http://www.materialize.com/en/medical/software/mimics) to accomplish a separate
analysis of the quadriceps muscles (RFe, VM and VL). Immediately and one year after the operation,
the mean values of the Hounsfield Units (HU) for each muscle were computed.

Variations in load response can cause bone remodeling according to Wolff’s law [31,32],
where the BMD rises or declines, depending on the load magnitude and implant fixation method.
Then, because one of the characteristics of THA patients is a decreased periprosthetic BMD due to the
transmission of the stresses through the prosthesis and not through the bone [33], the process of bone
remodeling in a time range of 52 weeks was mapped: the mean values of the BMD were computed
from the CT scan in the proximal and distal femoral regions as shown in Figure 2, as mean values from
segmented regions of interest. We used the same CT scanner for all the acquisitions, the scanner was
pre-calibrated with the Quasar phantom from Modus Medical Devices Inc. (1570 North Routledge
Park London, N6H 5L6 Canada) (www.modusmed.com) before each acquisition period. The Quasar
phantom contains five different elements with known physical density. The measured HU values
of the phantom’s five elements are plotted versus their physical density. We estimated a maximum
difference, between the years, of 4.2% in the HU values within the muscle regions (from 20 to 90 HU);
this deviation was considered in the calculation of the muscle mean densities. To accurately establish
the relationship between the BMD and HU of the images from the CT scan, the elements in the phantom
have a linear relationship above 0 HU and below 0 HU. When those linear relationships are united,
the equation of the linear regression for the BMD-HU transformation is available. The Equation (1) we
used to convert HU into BMD is the following;:

BMD [g/cm?] = -8 x 1078 x HU? + 0.0006 x HU + 0.9456. (1)

Figure 2. Segmentation of muscles in MIMICS: vastus medialis (VM) in red, vastus lateralis (VL) in
gold and rectus femoris (RF only in the figure) in purple.

The correlation coefficient for this calibration was R? = 0.99.

The BMD of the bones (operated and healthy) and the HU of the muscles are used as input in
the ML analysis. A representation of the analysis described in this paragraph is provided in Figure 2.
Another model, ranging from the periprosthetic femur, without the femoral head (Figure 3), to the
greater trochanter, with a distal axial cut through the lesser trochanter, was used to compute the BMD.
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Proximal

Figure 3. The distal and the proximal regions of the femur bone: the dark blue indicates 2.0 cm of the
proximal part of the femur, while the light blue indicates the distal part.

2.5. Tools and Algorithms

Several tools are available to help different users in decision making; however, in this study;,
the Knime analytics platform was chosen because it is a well-known platform, designed for advanced
users [34] and employed in many biomedical studies [35-37]. This platform allows the creation of
workflows by combining nodes that handle the different steps of an ML analysis. The algorithms
implemented in this study were Random Forests (RF) and Gradient boosted tree (GB) to perform the
classification for cemented or uncemented prosthesis. The same algorithms were also implemented to
perform the regression analysis to evaluate the adaptation of the prosthesis on the bone (particularly,
the BMD of the proximal and the distal region of the femur). Both analyses were supervised and needed
a training and a testing phase: the classification consists of using some features to distinguish two or
more different classes (in this paper, cemented and uncemented prostheses); the regression analysis is
similar to the previous one as regards the training and testing phases, but it consists of predicting a
continuous number (in this paper, the BMD of the distal and the proximal parts of the femur). GB and
RF are both based on decision tree, a famous state-of-the-art structure made up of leaves and nodes, and
exploit ensemble learning techniques: randomization, bagging and boosting. RF uses randomization
and bagging, while the GB adds a form of boosting. RF operates by building a group of decision trees
during the training time and outputting the class that is the mode of the classes (classification) or mean
prediction (regression) of the individual trees, while GB is a generalization of boosting the arbitrary
differentiable loss function; it gives greater weight to the records that are misclassified.

The Synthetic Minority Oversampling Technique (SMOTE) was slightly applied in order to balance
the dataset [38]. It produces artificial data by extrapolating between a real record of an assumed class
and one of the nearest neighbors of the same class.

2.6. Metrics and Workflow of the Machine Learning Analysis

The hold out was used to divide the dataset into training and test set (75% and 25%), the Wrapper
method was employed to find the best subset of features maximizing the accuracy in the training set,
and a leave-one-out cross validation was implemented to compute more-honest evaluation metrics [39].
The following were used for the classification analysis:

e Accuracy: the number of correct predictions over the total.

e  Precision: a measure of the positive patterns correctly predicted from the total predicted patterns
in a positive class.

e  Recall: a measure of the fraction of positive patterns that are correctly classified.

e  Specificity: better known as the “true negative rate”.

e  Sensitivity: better known as the “true positive rate”.
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The Area Under the Curve Receiver Operating Characteristics (AUCROC) were employed since
they are a quantitative evaluator of binary classification.

The coefficient of determination (Rz), mean absolute error, mean squared error, root mean squared
deviation and mean signed difference were used for evaluating the regression analysis.

It is important to note that the algorithms were trained and tested on past clinicians’ decisions.

As regards the ML analysis, firstly, a procedure to handle missing data was implemented
(some features used as input to the algorithms had a missing value, and we proceeded with missing
data management to avoid losing an entire patient); all the missing data were replaced with the mean
value for the considered feature. Then, SMOTE was applied, making the number of records increase
to 54 (only 3 were added) to allow the exploitation of the whole power of tree-based algorithms,
which need two balanced classes. After these pre-elaborations, the hold out split the dataset into
training and test sets (respectively, 75% and 25% of the dataset); the wrapper was applied on the training
set in order to find the best features to maximize the accuracy. The features identified by the wrapper
method were used on the test set together with a leave-one-out cross validation. Finally, the evaluation
metrics were computed.

3. Results

3.1. Classification Task

The assessment of the classification performance for both the training and test sets is shown in
Table 1, while the selected features are shown in Table 2.

Table 1. Scores for training and test set for the classification task.

Training Set Test Set
N° Accuracy Accuracy Recall Precision Sensitivity Specificity
Features (%) (%) (%) (%) (%) )  AUCROC
RF 9 91.7 78.6 714 83.3 714 85.7 0.735
GB 22 75.0 92.9 85.7 100 85.0 100 0.857

RF =Random Forests, GB = Gradient Boosting, AUCROC = Area Under the Curve Receiver Operating Characteristics.

Table 2. Features chosen by Wrapper for the classification task.

RF GB
Base of support (cm) Base of support (cm) Stop Healthy VM
BMD of the Proximal region of femur Toe In Out Operated (angle) Start Healthy RFe
SD of the BMD of the Proximal region of femur Velocity (m/s) Stop Healthy RFe
VM Operated HU Healthy leg BMD Start Healthy VL
VM Healthy HU RFe Operated HU Stop Healthy VL
Stop Healthy VM RFe Operated Dev. Std. Start Operated VM
Stop Healthy RFe RFe Healthy Dev. Std. Stop Operated VM
Start Healthy VL VL Operated HU Start Operated RFe
Start Operated VL VL Healthy HU Stop Operated RFe
VM Operated HU Start Operated VL
Start Healthy VM Stop Operated VL

VM = Vastus Medialis, RFe = Rectus Femoris, VL = Vastus Lateralis, HU = Hounsfield Unit.
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While the RF method obtained the highest results with the training set, the best algorithm was GB
considering the test set, with an accuracy of 92.9%, a specificity of 100% and a good AUCROC (0.857).
It was surprising that RF obtained such low results compared with the GB.

From Table 2, it is clear that the majority of the features helping in classifying patients into
cemented or uncemented groups were related to the start and the stop of the EMG signal.

3.2. Regression Task

Firstly, the missing data were managed as they were in the previous task. In the regression
analysis, the aim was to collect information on the follow up of the patients through a prediction:
since the stresses on the proximal and distal parts of the femur are a good way to understand the
reactions of the bone to the prosthesis, the BMDs of “proximal” and “distal” were the targets of the
regression analysis. A matrix of correlation was computed, and a threshold of 0.6 was chosen: all the
features overcoming this threshold were excluded since they did not add information to the classifiers.
This threshold indicated a value beyond which the correlation can be considered strong and influential.
A hold out method was employed, also, in this case to divide the dataset into a training and a test set.
Finally, the evaluation metrics were computed. Tables 3 and 4 represent the evaluation metrics and the
features included in the algorithms.

Table 3. Scores for the regression task.

Root Mean

2 Mean Absolute =~ Mean Squared Mean Signed
R Squared .
Error Error . . Difference
Deviation

Proximal RF 0.634 0.017 0.001 0.026 —-0.004
BMD GB 0.539 0.018 0.001 0.029 ~0.007
Distal RF 0.591 0.02 0.001 0.029 0.002
BMD GB 0.621 0.016 0.001 0.024 ~0.004

RF = Random Forests, GB = Gradient Boosting.

Table 4. Features chosen through the correlation analysis.

Features

Type of prosthesis Start Healthy VM

Base of support (cm) Stop Healthy VM

Double Support (% of gait cycle) Start Healthy VL

Toe In Out Healthy (angle) Stop Healthy VL
Toe In Out Operated (angle) Stop Operated VM
SD of the BMD of the Proximal region of femur Start Operated RFe
Healthy leg BMD Stop Operated RFe

RFe Operated HU Start Operated VL

VL Operated HU Stop Operated VL

All types of error were lower than 3%, and the R2 was mostly about 0.60. The majority of the
selected features were related to the start and stop of the EMG. Moreover, it is interesting that the type
of prosthesis, which was the target of the first analysis, was included in the feature selection of the
regression analysis for the follow up.

4. Discussion

In recent years, the decision to employ a cemented or an uncemented prosthesis has been based
only on the experience of the orthopedic surgeon and on the age and gender of the patients. In this
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study, a patient-specific approach using ML techniques and quantitative features was performed.
First, after identifying the best subset of features through the wrapper method, a classification was
performed for cemented or uncemented prosthesis. Second, the adaptation of the prosthesis to the
femur after a year from the surgery was predicted through a regression analysis considering the BMD
of the proximal and distal parts of the bone.

The results obtained in the classification task are important because they allowed the researchers
to obtain two fundamental pieces of information. The first is well described by the evaluation metrics
in Table 1; the accuracy of 93% is a valuable score, as well as the AUCROC of 0.857, and represents the
validity of the approach. The second is shown by Table 2, as it represents the quantitative features that
were identified as the most relevant in the study.

The results of the study are in agreement with clinical findings stating that the muscle mechanics
play a key role in the success of the THA operation in terms of both strength [40] and temporal
parameters during gait [41]. From Table 4, it can be seen how the algorithm identified the muscle
parameters as among the most important, both in terms of temporal behavior during gait but also with
regards to the HU values that can be correlated to the muscle quality and strength.

The results regarding the regression task had lower scores but are as relevant as the previous
classification analysis. Not only would this approach allow the clinicians to receive a suggestion
based on quantitative features regarding the type of prosthesis, but it would also provide them with a
quantitative insight on the follow up of patients.

Before this study had been performed, only Gargiulo et al. had conducted some quantitative
measurements of both bone and muscle to investigate in the same directions of this research [13,42,43].
The novelty of this study lies in two things: it is the first study aiming to help orthopedics in the
decision-making process regarding the kind of prosthesis. Moreover, it is the first time that the decision
regarding the kind of prosthesis has been based on a patient-specific approach, namely, by using
measurements of bone and muscle density and function obtained by CT scans, gait analysis, the start
and stop of EMG signals, and 3D geometric modeling. The addition of Finite Element Analysis
(FEA)-based data, obtained by means of the automated construction of a numerical model from the
cohort of patients’ CT data [44—46], could improve the proposed methodology by taking into account
measures of punctual stress before and after the implant [47-50].

Compared with the previous pilot study [30], a new concept was introduced (namely,
the classification for the type of prosthesis) and an extension of the algorithms and the features
to predict the BMD was performed (namely, the features regarding the measurements of bone and
function by CT scans and the EMG evaluations). These analyses fit with the idea of Haeberle et al.,
who considered ML not only for the classification of images but also as a valuable tool for moving in
the direction of personalized care [23].

It is certain that increased mobility following THA is highly associated with better health
status, physical activity levels [51], healthy body weights and improved quality of life [52].
However, the existing clinical preoperative assessment for THA patients does not employ the use
of patient-specific gait profiles, which quantitatively characterize the quality and function of lower
extremity muscles in recovering patients.

The purpose of this study was to compute data and information regarding the biomechanical and
clinical aspects of THA and demonstrate the utility of ML technologies for supporting clinical decision
making and post-operational assessment. Currently, THA surgical revision rates are increasing [53]
and the effects of non-optimal prosthesis selections and fixation methods may dramatically affect
patient mobility. These results demonstrate that patient-specific information such as gait parameters,
BMD, and fracture risk calculation during press fitting are important in assessing patient conditions
pre-THA and determining an optimal surgical strategy.
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Limitations and Future Development

There are some limitations to this study: the algorithms were trained on the past decisions
made by clinicians regarding the type of prosthesis. Of course, the reader could wonder if this
computation effort would be valid with a different decision of the clinicians. The question would
be understandable, but this study aimed to investigate the feasibility of creating a new approach in
this context: deciding the prosthesis of patients undergoing THA based on their quantitative data,
thus following a patient-specific approach. Indeed, the algorithms could have also been trained on
decisions made after an FEA analysis regarding the risk fracture for the bone, which might have
contradicted the decisions of the clinicians. Therefore, a new future analysis could be based on the
decision regarding the type of prosthesis based on the risk of fracture computed through FEA analysis,
which is the direction recently embraced by some researchers [54].

5. Conclusions

This study proved that a patient-specific approach based on biometrics and ML technology
can effectively support implant strategy decision making in THA surgery. Particularly important
for indicating cemented or uncemented prosthesis are the skeletal muscle parameters such as the
start and stop of muscle contraction from EMG signals and temporal and spatial gait parameters.
Moreover, the regression analysis showed that employing machine learning could also provide
clinicians with information regarding the follow up of patients, namely, predicting the BMD of the distal
and proximal parts of the operated femur after one year from the surgery. Future studies should focus
on implementing tools with these features to help clinicians in the direction provided by this research.
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