Boryl-Dihydrideborate Osmium Complexes: Preparation, Structure and Dynamic Behavior in Solution

Miguel A. Esteruelas,* Ana M. López, Malka Mora, and Enrique Oñate

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain. *Supporting Information Placeholder*

ABSTRACT: The metal fragment $Os(CO)(P^iPr_3)_2$ stabilizes boryl-dihydrideborate species, which can be viewed as snapshots of states of B–H oxidative addition of a R₂BH molecule and frustrated B–H bond activation of a second one. Complex $OsH_2(\eta^2-CH_2=CHEt)(CO)(P^iPr_3)_2$ (**2**) shows tendency to dissociate the olefin. The resulting dihydride $OsH_2(CO)(P^iPr_3)_2$ (**3**) rapidly coordinates catecholborane (HBcat) and pinacolborane (HBpin) to give the corresponding σ -borane derivatives $OsH_2(\eta^2-HBR_2)(CO)(P^iPr_3)_2$ (BR₂ = Bcat (**4**), Bpin (**5**)). Complex **4** reacts with a second molecule of HBcat to release H₂ and to afford the octahedral boryl-dihydrideborate derivative $Os(Bcat)(\kappa^2-H_2Bcat)(CO)(P^iPr_3)_2$ (**6**), which undergoes a thermally activated Bcat site exchange process in solution. Borane displaces catecholborane from the dihydrideborate of **6** to generate the boryl-tetrahydrideborate $Os(Bcat)(\kappa^2-H_2BH_2)(CO)(P^iPr_3)_2$ (**7**). This compound and the Bpin counterpart $Os(Bpin)(\kappa^2-H_2BH_2)(CO)(P^iPr_3)_2$ (**8**) have been also prepared by reaction of the corresponding $Os(BR_2)Cl(CO)(P^iPr_3)_2$ with Na[BH4].

INTRODUCTION

The activation of B–H bonds is a reaction of great interest in connection with relevant catalytic processes including the hydroboration of unsaturated organic molecules,¹ the dehydrogenative borylation of hydrocarbons,² and the dehydrocoupling of Lewis adducts, mainly ammonia-borane.³ It is well stablished that the first step for the cleavage of the B–H bond is its coordination to an unsaturated transition metal to form $M(\eta^2$ -H–BR₂) σ -complexes, from which a limited number have been isolated and characterized.⁴ This intermediates can evolve by oxidative addition,⁵ heterolytic cleavage,⁶ or σ -bond metathesis⁷ depending upon the nature of the metal center and the co-ligands of the complex.

The simultaneous or sequential activation of the B–H bond of two R₂BH molecules shows high complexity. This is in a part due to the number and variety of possible reactions between the B–H units and the ligands of the precusors.⁸ On the other hand, it has been proposed⁹ that the release of labile and inert groups from the metal coordination sphere allows the formation of six different types of compounds (Scheme 1): di(σ -borane) (I), dihydridediboryl (II), boryl-dihydrideborate (III), hydride-boryl- σ -borane (IV), diboryl-dihydrogen (V), and dihydride-diboryl^{9,11} species have been previously isolated and characterized. In this paper, we report the first compounds of the type boryl-dihydrideborate. They are formed via a σ -borane intermediate.

Scheme 1. Possible Compounds with two R₂BH units in the Metal Coordination Sphere

RESULTS AND DISCUSSION

Scheme 2. Exchange Processes in 4

consequence of the substitution of the chloride ligand by a butyl group and a subsequent β-hydrogen elimination reaction at the alkyl unit.13 This compound shows tendency to dissociate the olefin, at room temperature, and the resulting unsaturated dihydride $OsH_2(CO)(P^iPr_3)_2$ (3) has been shown to promote the release of 1 equiv of molecular hydrogen from ammonia-borane and the formation of polyaminoborane via a Shimoi type intermediate.14 In accordance with this precedent, we have now discovered that the addition of 1.0 equiv of catecholborane (HBcat) and pinacolborane (HBpin) to pentane solutions of 2 gives rise to the coordination of the BH bond of the boranes to 3 to form the σ -borane derivatives $OsH_2(\eta^2-HBR_2)(CO)(P^iPr_3)_2$ (BR₂ = Bcat (4), Bpin (5)), which are isolated as yellow (4) and white (5) solids in high yield (70% (**4**), 75% (**5**)), according to eq 1. These compounds are diagonal counterparts of the trihydride-silyl derivatives $OsH_3(SiR_3)(CO)(P^iPr_3)_2$ (SiR₃ = SiHPh₂, SiPh₃, Si(OMe)₂Ph),¹⁵ which were obtained from the hydride-tetrahydrideborate complex $OsH(\kappa^2-H_2BH_2)(CO)(P^iPr_3)_2^{16}$ by replacement of the BH₃ moiety by the corresponding HSiR₃ silane and a subsequent oxidative addition of the Si-H bond.

Complex **5** has been previously generated *in situ* from the borylthiolate-dihydrogen complex $OsH(SBpin)(\eta^2 H_2)(CO)(P^iPr_3)_2$ by means of a borylthiol-pinacolborane exchange, and characterized by NMR spectroscopy.¹⁷ The ¹H, ¹¹B, and ³¹P{¹H} NMR spectra of **4**, in toluene-*ds*, are consistent with those of **5**. The hydrogen atoms bonded to the metal center undergo two thermally activated site exchange processes, involving the hydride positions and those with the B–H site. Figure 1 shows the ¹H{¹¹B} NMR spectrum, in the high field region, as a function of the temperature. In agreement with **5** and the dihydride-iridium complex IrH₂(¹BuPOCOP)(\eta^2-H–Bpin) (¹BuPOCOP = $\kappa^3-C_6H_3$ -1,3-[OP(¹Bu)₂]₂),¹⁸ the hydride-hydride site exchange needs an

activation energy significantly lower than the hydride-BH site exchange. Thus, the ¹H{¹¹B} NMR spectrum, at 183 K, shows two high field resonances at -8.5 and -10.1 ppm, in a 1:2 intensity ratio, corresponding to the BH-hydrogen atom and the hydride ligands, respectively. As expected for the classical nature of the hydride ligands, a 300 MHz $T_{1(min)}$ value of 167 ms was found at 213 K for the highest field signal, in spite of the presence of the boron atom.¹⁹ At about 253 K, the coalescence between the hydride and BH resonances occurs and, at temperatures higher than 253 K, only one resonance centered at -9.7 ppm is observed. The presence of a coordinated HBcat group in **4** is also supported by the ¹¹B NMR spectrum, which shows a broad signal at 38 ppm. The ³¹P{¹H} NMR spectrum contains a singlet at 39 ppm, in accordance with equivalent phosphines.

Figure 1. High field region of the ${}^{1}H{}^{11}B{}$ NMR spectrum (300 MHz, toluene-*ds*) of **4** as a function of temperature.

The exchange processes can be rationalized according to Scheme 2. The hydride-hydride site exchange could take place via dihydrogen species, whereas the hydride-BH site exchange should proceed through trihydride-boryl intermediates related to the trihydridesilyl counterparts, previously mentioned, hydride-boryl-dihydrogen derivatives, and hydride-dihydrideborate species.²⁰ The $M(\eta^2-H-BR_2)$ interaction involves σ -donation from the σ orbital of the coordinated B–H bond to empty orbitals of the metal and back-bonding from the metal into the boron p_z -orbital which competes with oxygen π -donation from the boron substituents, for **4** and **5**. The decrease of the oxygen π -donation, strengthens the metal back-bonding and therefore increase the stability of the σ complex. In contrast to pinacolborane, the catecholate oxygens have the possibility of delocalizing electron density into the aromatic system. As a result the catecholborane complex **4** is more stable than the pinacolborane derivative **5**. Thus, at 243 K, the addition of 1.2 equiv of HBcat to pentane solutions of **5** leads after 7 days to the equilibrium shown in eq 2 with an equilibrium constant *K* of 16, determined by ³¹P{¹H} NMR spectroscopy (Figure S1).

Complex **4**, in contrast to **5**, reacts with a second molecule of HBcat, at room temperature. Treatment of pentane solutions of **4** with 1.2 equiv of the boron hydride for 3 h affords molecular hydrogen and the novel boryl-dihydrideborate complex Os(Bcat)(κ^2 -H₂Bcat)(CO)(PⁱPr₃)₂ (**6**), which was isolated as a white solid in almost quantitative yield. The reaction is reversible, at room temperature and under 1.2 atm of H₂, the benzene-*d*₆ solutions of **6** regenerate **4** and HBcat (eq 3).

Complex 6 was characterized by X-ray diffraction analysis. The structure (Figure 2) proves the boryl-dihydrideborate nature of the compound. The coordination geometry around the osmium atom can be described as a distorted octahedron, with trans phosphines $(P1-Os-P2 = 173.239(19)^{\circ})$. The perpendicular plane is formed by the chelate dihydrideborate ligand, which acts with a H01–Os–H02 bite angle of 68.4(11)° and the boryl and carbonyl groups. The separation between the metal center and the borate boron atom of 2.244(3) Å is in keeping with other crystallographically characterized osmium-hydrideborate complexes.²¹ According to an sp³-hybridization at the borate boron atom, the angles around B1 are between 104.5(16)° and 113.4(10)°. The osmium-boryl bond length of 2.076(3) Å (Os-B2) compares well with those reported for other osmium-boryl derivatives.²² The O4-B2-Os and O5-B2-Os angles of 129.07(19)° and 123.43(18)°, respectively, support the sp²-hybridization at B2.

Figure 2. Molecular diagram of **6** with 50% probability ellipsoids. The labels of the carbon atoms of the phosphine and Bcat groups are omitted for clarity. Selected bond lengths (Å) and angles (deg): Os–B2 2.076(3), Os–H01 1.84(2), Os–H02 1.72(3), B1–H01 1.26(2), B1–H02 1.27(2); P1–Os–P2 173.239(19), H01–Os–H02 68.4(11), H01–B1–H02 104.5(16), H01–B1–O1 113.1(10), H01–B1–O2 112.1(9), H02–B1–O1 106.8(10), H02–B1–O2 113.4(10), O4–B2–Os 129.07(19), O5–B2–Os 123.43(18).

The Bcat groups of **6** exchange their position, in solution, at room temperature. Thus, the ¹¹B NMR spectrum in toluene-*ds* shows only a broad resonance centered at 38 ppm whereas, in the ¹H NMR spectrum, the inequivalent OsHB-hydrogen atoms display only one resonance at –6.9 ppm. At 183 K, both resonances split into two signals, which appear at 47 (OsBcat) and 29 (Os(κ^2 -H₂Bcat)) and –6.2 and –7.5 ppm, respectively. The fluxional process could takes place via hydride-boryl- σ -borane intermediates in equilibrium with di(σ -borane) and dihydride-diboryl species, according to Scheme 3. In agreement with equivalent phosphines, the ³¹P{¹H</sup> NMR spectrum contains a singlet at 23.7 ppm.

Scheme 3. Bcat Position Exchange in 6

Borane displaces catecholborane from the dihydrideborate of **6**, in agreement with the niobium complex Nb(η^5 -C₅Me₅)(κ^2 -H₂Bcat') (cat' = O₂C₆H₃-4-'Bu)²³ and as expected for the transitory formation of a more stable M(η^2 -H–BH₂) intermediate. Thus, the addition of 1.0 equiv of BH₃·THF to pentane solutions of **6** gives rise to the instantaneous and quantitative generation of the boryl-tetrahydrideborate derivative Os(Bcat)(κ^2 -H₂BH₂)(CO)(PⁱPr₃)₂ (**7**), which was isolated as a white solid in 99% yield (eq 3). This compound can be also prepared in isolated

yield of 63%, by means of the replacement of the chloride ligand of the five-coordinate boryl complex Os(Bcat)Cl(CO)(PⁱPr₃)₂^{8c} with a tetrahydrideborate anion (eq 4). Similarly, treatment of tetrahydrofuran solutions of Os(Bpin)Cl(CO)(PⁱPr₃)₂^{22j} with 2.0 equiv of Na[BH₄], for 50 minutes, at room temperature affords the pinacolboryl counterpart Os(Bpin)(κ^2 -H₂BH₂)(CO)(PⁱPr₃)₂ (8) along with about 23% of the hydride OsH(κ^2 -H₂BH₂)(CO)(PⁱPr₃)₂.¹⁶ After recrystallization in pentane at 243 K, complex 8 was obtained as pure yellow crystals in 18% yield.

Complex 7 was also characterized by X-ray diffraction analysis. The structure has two molecules chemically equivalent but crystallographically independent in the asymmetric unit. Figure 3 shows a view of one of them. The coordination polyhedron around the osmium atom is as that of 6 with the tetrahydrideborate ligand occupying the position of the dihydridecatecholborate group and P1-Os-P2 and H2a-Os-H2b angles of 176.45(5)° and 171.57(5)° and 64(2)° and 67.1(10)°, respectively. The osmiumboryl bond lengths, Os-B1, of 2.067(6) and 2.045(6) Å are almost statistically identical to that **6**, whereas the separations between the metal center and the tetrahydrideborate boron atom B2 of 2.313(7) and 2.304(9) Å are between 0.04 and 0.02 Å longer than the separation between the metal center and the dihydridecatecholborate boron atom of 6. The angles around B1 and B2 support the respective sp²- and sp³- hybridizations at these atoms (see Supporting Information) and therefore the boryl and borate nature of the corresponding ligands.

Figure 3. Molecular diagram of **7** with 50% probability ellipsoids. The labels of the carbon atoms of the phosphine and Bcat ligands are omitted for clarity. Selected bond lengths (Å) and angles (deg): Os-B1 2.067(6), 2.045(6); Os-H2a 1.75(6), 1.86(8); Os-H2b 1.83(6), 1.59(8); B2-H2a 1.20(4), 1.301(10); B2-H2b 1.27(4), 1.296(10); B2-H2c 1.10(5), 1.05(6); B2-H2d 1.12(5), 1.04(6); P1-Os-P2 176.45(5), 171.57(5); H2a-Os-H2b 64(2), 67.1(10).

The ¹¹B, ¹H, and ³¹P{¹H} NMR spectra of **7** and **8**, in toluene- d_s , at room temperature are consistent with the structure shown in Figure 3. In agreement with the presence of boryl and borate ligands, the ¹¹B spectra contain two broad resonances at 43 (Bcat) and 8 (BH₄) ppm for **7** and at 37 (Bpin) and 7 (BH₄) ppm for **8**. In the

¹H NMR spectra, the inequivalent OsHB-hydrogen atoms displays resonances, in the high field region, at -4.6 and -6.6 ppm for **7** and at -4.7 and -6.7 ppm for **8** whereas the inequivalent terminal BH₂-hydrogen atoms give rise in the low field region to a broad signal centered at about 6.4 ppm for **7** and at about 6.1 ppm for **8**. The ³¹P{¹H}</sup> NMR spectra show singlets at 27.9 (**7**) and 26.6 (**8**) ppm, as expected for equivalent phosphines.

CONCLUDING REMARKS

In conclusion, the metal fragment $Os(CO)(P^iPr_3)_2{}^{14,24}$ stabilizes boryl-dihydrideborate species, in contrast to $Ti(\eta^5-C_3H_5)_2$ and $M(\eta^5-C_5Me_5)~(M=Rh,~Ir)$. Because complexes boryl-dihydrideborate in reality are snapshots of states of B–H oxidative addition of a R_2BH molecule and frustrated B–H bond activation of a second one, the compounds here reported suggest that the nucle-ophilicity of the osmium unit $Os(CO)(P^iPr_3)_2$ is intermediate between those of the $Ti(\eta^5-C_3H_5)_2$ and $Rh(\eta^5-C_5Me_5)$ metal fragments.

EXPERIMENTAL SECTION

General Information. All manipulations were performed with rigorous exclusion of air at an argon/vacuum manifold using standard Schlenk-tube techniques or in a dry-box (MB-UNILAB). Solvents were dried by the usual procedures and distilled under argon prior to use or obtained oxygen- and water-free from an MBraun solvent purification apparatus. Pentane was stored over P2O5 in the dry-box. Pinacolborane (HBpin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolane) was purchased from commercial sources and used without further purification. Catecholborane (HBcat = 1,3,2-benzodioxaborolane) was purchased from commercial sources and distilled in a Kugelrohr distillation oven. The starting materials $OsH_2(\eta^2-CH_2=CHEt)(CO)(P^iPr_3)_2$ $(1)_{1}^{13}$ Os(Bcat)Cl(CO)(PⁱPr₃)₂^{8c} Os(Bpin)Cl(CO)(PⁱPr₃)₂^{22j} were prepared according with the published methods. NMR spectra were recorded on a Varian Gemini 2000, a Bruker ARX 300, a Bruker Avance 300 MHz or a Bruker Avance 400 MHz instrument. Chemical shifts (expressed in parts per million) are referenced to residual solvent peaks (${}^{1}H$, ${}^{13}C{}^{1}H$), external H₃PO₄ (${}^{31}P{}^{1}H$), or BF₃·OEt₂ (${}^{11}B$). Coupling constants, *J*, and $N(N = J_{H-P} + J_{H-P'} \text{ or } J_{C-P} + J_{C-P'})$ are given in hertz. Infrared spectra were recorded on a Perkin-Elmer spectrum One Spectrometer (ATR). C and H analyses were carried out in a Perkin-Elmer 2400 CHNS/O analyzer.

Preparation of OsH₂(η²-H–Bcat)(CO)(PⁱPr₃)₂ (4). Catecholborane (18.5 μL, 0.174 mmol) was added to a colorless solution of 1 (100 mg, 0.174 mmol) in 3 mL of pentane. The suspension was stirred at room temperature for 5 minutes. After that, the suspension was filtered through Celite. The filtrate was concentrated to dryness to give a yellow solid. Yield 80 mg (70 %). Anal. Calcd for C₂₅H₄₉BO₃OsP₂: C, 45.45; H, 7.48. Found: C, 45.48; H, 7.69. IR (ATR, cm⁻¹): v(CO) 1938 (s). ¹H{¹¹B} NMR (300 MHz, C₇D₈, 298 K): δ 6.88 (m, 2H, Bcat), 6.72 (m, 2H, Bcat), 2.26 (m, 6H, PC*H*CH₃), 1.21 (dvt, *N* = 14.0, *J*_{H-H} = 7.0, 18H, PCHC*H*₃), 1.16 (dvt, *N* = 13.8, *J*_{H-H} = 7.0, 18H, PCHC*H*₃), - 9.7 (br, 3H, BH and OsH). ¹H{¹¹B} NMR (300 MHz, C₇D₈, 193 K): δ -8.5 (br, 1H, BH), -10.1 (br, 2H, OsH). ³¹P{¹H} NMR (121.49 MHz, C₇D₈, 298 K): δ 38.7 (s). ¹¹B NMR (96.29 MHz, C₇D₈, 298 K): δ 38 (br).

Preparation of OsH₂(η^2 -H–Bpin)(CO)(PⁱPr₃)₂ (5). Pinacolborane (25.3 µL, 0.174 mmol) was added to a solution of 1 (100 mg, 0.174 mmol) in 3 mL of pentane. The suspension was stirred at room temperature for 5 minutes. After that, the suspension was filtered through Celite. The filtrate was concentrated to dryness to give a white solid. Yield 87 mg (75 %). Anal. Calcd for C₂₅H₅₇BO₃OsP₂: C, 44.90; H, 8.59. Found: C, 44.84; H, 8.55. IR (ATR, cm⁻¹): v(CO) 1943 (s). ¹H{¹¹B} NMR (400 MHz, C₇D₈, 298 K): δ 2.30 (m, 6H, PC*H*CH₃), 1.23 (dvt, N = 14, *J*_{H-H} = 7.2, 18H, PCHC*H*₃), 1.21 (dvt, N = 14.2, *J*_{H-H} = 7.0, 18H, PCHC*H*₃), 1.1 (s, 12H, Bpin), -9.8 (br, 1H, BH), -10.5 (br, 2H, OsH). ¹H{¹¹B} NMR (400 MHz, C₇D₈, 283 K): δ -9.5 (br, 1H, BH), -9.8 (br, 1H, OsH), -11.2 (dt, 1H, *J*_{H-P} = 20.1, *J*_{H-H} = 5.2, OsH). ³¹P{¹H} NMR (162 MHz, C₇D₈, 298 K): δ 38.0 (s). ¹¹B NMR (128 MHz, C₇D₈, 298 K): δ 34 (br). NMR spectroscopic data are identical to those previously reported by us.¹⁷

Reaction of 5 with 1.2 equiv of Catecholborane. Catecholborane (18.5 μ L, 0.174 mmol) was added to a colorless solution of **5** (100 mg, 0.150 mmol) in 2 mL of pentane. After 7 days at 243 K, the ³¹P{¹H} and ¹¹B NMR spectra of this solution, showed the presence of **4** and **5** in a molar ratio of 1:0.17 (Figures S1 and S2).

Preparation of Os(Bcat)(κ^2 -H₂Bcat)(CO)(PⁱPr₃)₂ (6). Catecholborane (18.5 μL, 0.174 mmol) was added to a solution of 4 (100 mg, 0.151 mmol) in 1 mL of pentane. Immediately, the solution changed from yellow to colorless. The solution was stirred at room temperature for 3 h. During this time a white solid was formed. This solid was separated by decantation and dried in vacuo. Yield: 114 mg (97%). Anal. Calcd for C₃₁H₅₂B₂₀SOSP₂: C, 47.82; H, 6.73. Found: C, 47.70; H, 6.95. IR (ATR, cm⁻¹): v(CO) 1960 (s). ¹H{¹¹B} NMR (300 MHz, C₇D₈, 298 K): δ 6.98 (m, 4H, Bcat), 6.78 (m, 4H, Bcat), 2.67 (m, 6H, PC*H*CH₃), 1.11 (dvt, N = 13.4, *J*_{H-H} = 6.8, 36H, PCHC*H*₃), -7.0 (br, 2H, BH). ¹H{¹¹B} NMR (300 MHz, C₇D₈, 183 K): δ -6.2 (br, 1H, BH), -7.5 (br, 1H, BH). ³¹P{¹H} NMR (121.49 MHz, C₇D₈, 298 K): δ 23.7 (br). ¹¹B NMR (96.29 MHz, C₇D₈, 298 K): δ 38 (br). ¹¹B NMR (96.29 MHz, C₇D₈, 183 K): δ 47 (br, OsBcat), 29 (br, Os(κ^2 -H₂Bcat)).

Reaction of 6 with H₂. A Young NMR tube containing a solution of **6** (15 mg, 0.019 mmol) in 0.5 mL of C_6D_6 was placed under hydrogen atmosphere (1.2 atm). Immediately, the solution changed from light yellow to colorless. The NMR spectra showed the complete conversion of **6** to **4** along with the formation of HBcat.

Preparation of Os(Bcat)(κ^2 -H₂BH₂)(CO)(PⁱPr₃)₂ (7). *Method A.* BH₃·THF (15.3 µL, 1.0 M, 0.015 mmol) was added to a NMR tube containing a solution of **6** (12 mg, 0.015 mmol) in 0.5 mL of C₇D₈. Immediately, the solution changed from light yellow to colorless. The NMR spectra showed the complete conversion of **6** to **7** along with the formation of HBcat.

Method B. NaBH₄ (62 mg, 1.639 mmol) was added to a solution of $Os(Bcat)Cl(CO)(P^iPr_3)_2$ (200 mg, 0.289 mmol) in 5 mL of THF. The suspension was stirred at room temperature for 20 minutes. During this time the suspension changed from light yellow to colorless. The solvent was removed in vacuum. Pentane (5 mL) was added, and the resulting suspension was filtered through Celite. The filtrate was concentrated to dryness to give a white solid. Yield 122 mg (63%).

Method C. BH₃·THF (151 μL, 1.0 M, 0.151 mmol) was added to a yellow solution of **4** (100 mg, 0.151 mmol) in 2 mL of pentane. The resulting colorless solution was stirred at room temperature for 5 minutes. After that, the solvent was removed in vacuum to give a white solid. Yield 101 mg (99 %). Anal. Calcd for C₂₅H₅₀B₂O₃OsP₂: C, 44.65; H, 7.49. Found: C, 44.75; H, 7.55. IR (ATR, cm⁻¹): v(BH) 2480, 2443 (w), v(CO) 1924 (s). ¹H{¹¹B} NMR (300 MHz, C₇D₈, 298 K): δ 7.21 (m, 2H, Bcat), 6.84 (m, 2H, Bcat), 6.44 (br, 2H, BH), 2.56 (m, 6H, PC*H*CH₃), 1.20 (dvt, N = 14.0, *J*_{H-H} = 7.1, 18H, PCHC*H*₃), 1.00 (dvt, N = 13.0, *J*_{H-H} = 6.8, 18H, PCHC*H*₃), -4.6 (br, 1H, BH), -6.6 (br, 1H, BH). ³¹P{¹H} NMR (121.49 MHz, C₆D₆, 298 K): δ 27.9 (s). ¹¹B NMR (96.29 MHz, C₆D₆, 298 K): δ 43 (br, Bcat), 8 (br, BH₄).

Preparation of Os(Bpin)(κ²-H₂BH₂)(CO)(PⁱPr₃)₂ (8). NaBH₄ (97 mg, 2.564 mmol) was added to a solution of

Os(Bpin)Cl(CO)(PⁱPr₃)₂ (200 mg, 0.285 mmol) in 5 mL of THF. The suspension was stirred at room temperature for 50 minutes. During this time the suspension changed from yellow to light yellow. The solvent was removed in vacuo. Pentane (5 mL) was added, and the resulting suspension was filtered through Celite. The filtrate was concentrated to dryness to give a 1:0.3 mixture of complexes 8 and OsH(κ^2 - $H_2BH_2)(CO)(P^iPr_3)_2^{16}$ as a light yellow solid (123 mg). This mixture was recrystallized in 3 mL of pentane at -30 °C to give 8 as yellow crystals. Yield 35 mg (18%). Anal. Calcd for C25H58B2O3OsP2: C, 44.12; H, 8.59. Found: C, 44.10; H, 8.63. IR (ATR, cm⁻¹): v(BH) 2474, 2455 (w), v(CO) 1909 (s). ¹H{¹¹B} NMR (300 MHz, C₇D₈, 298 K): δ 6.13 (br, 2H, BH), 2.70 (m, 6H, PCHCH₃), 1.37 (dvt, N= 13.9, $J_{\text{H-H}} = 7.0, 18\text{H}, \text{PCHC}H_3$, 1.20 (dvt, $N = 13.4, J_{\text{H-H}} = 6.1, 18\text{H},$ PCHCH₃), 1.22 (s, 12H, Bpin), -4.7 (br, 1H, BH), -6.7 (br, 1H, BH). ³¹P{¹H} NMR (121.49 MHz, C₆D₆, 298 K): δ 26.6 (s). ¹¹B NMR (96.29 MHz, C₆D₆, 298 K): δ 37 (br, Bpin), 7 (br, BH₄).

Structural Analysis of 6 anf 7. X-ray data were collected on a Bruker Smart APEX DUO diffractometer equipped with a normal focus, 2.4 kW sealed tube source (Mo radiation, $\lambda = 0.71073$ Å) operating at 50 kV and 30 (6) or 40 (7) mA. Data were collected over the complete sphere. Each frame exposure time was 10s (6) or 30s (7) covering 0.3° in ω . Data were corrected for absorption by using a multiscan method applied with the SADABS program.²⁵ The structures were solved by the direct methods. Refinement of both complexes was performed by full-matrix least-squares on *I*² with SHELXL97, ²⁶ including isotropic and subsequently anisotropic displacement parameters (for non-hydrogen non disordered atoms). The hydrogen atoms attached to boron and osmium atoms were found in the last cycles of difference of Fourier and refined freely in 6. However, they did not refine properly in 7, so a restricted model was used to force the same geometry around the boron atom in the two independent molecules. The other hydrogen atoms were calculated and refined riding to bonded atoms. In addition two triisopropylphosphines were observed disordered and were refined with two moieties and complementary occupancy factors and isotropic displacement parameters.

Crystal data for **6**: C₃₁H₅₂B₂O₅O₅O₅P₂, M_W 778.49, irregular block, colourless (0.40 x 0.15 x 0.12), monoclinic, space group P2₁/c, *a*: 12.8512(15) Å, *b*: 16.8240(19) Å, *c*: 16.3209(18) Å, β: 101.268(2) °, V = 3460.7(7) Å³, Z = 4, Z' = 1, D_{calc} : 1.494 g cm⁻³, F(000): 1576, T = 100(2) K, μ 3.812 mm⁻¹. 26959 measured reflections (20: 3-58°, ω scans 0.3°), 8956 unique (R_{int} = 0.0279); min./max. transm. factors 0.619/0.862. Final agreement factors were R¹ = 0.0216 (7865 observed reflections, I > 2σ(I)) and wR² = 0.0552; data/restraints/parameters 8956/0/388; GoF = 1.003. Largest peak and hole: 1.724 and -0.971 e/Å³.

Crystal data for 7: C₂₅H₅₀B₂O₃OsP₂, M_W 672.41, irregular block, colourless (0.15 x 0.12 x 0.09), monoclinic, space group P2₁/c, *a*: 26.620(4) Å, *b*: 9.7721(14) Å, *c*: 24.328(3) Å, β: 108.669(2)°, *V* = 5995.6(15) Å³, *Z* = 8, *Z'* = 2, *D*_{calc}: 1.490 g cm⁻³, F(000): 2720, *T* = 100(2) K, µ 4.383 mm⁻¹. 62803 measured reflections (20: 3-51°, ω scans 0.3°), 15525 unique (R_{int} = 0.0415); min./max. transm. factors 0.692/0.862. Final agreement factors were R¹ = 0.0399 (12285 observed reflections, I > 2σ(I)) and wR² = 0.0890; data/restraints/parameters 15525/28/616; GoF = 1.106. Largest peak and hole: 2.482 and -2.123 e/Å³.

ASSOCIATED CONTENT

Supporting Information

³¹P{¹H} and ¹¹B NMR spectra of the reaction of **5** with 1.2 equiv of HBcat and CIF files giving positional and displacement parameters, crystallographic data, and bond lengths and angles of compounds **6** and

7. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: <u>maester@unizar.es</u>.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

Financial support from the Spanish MINECO (Projects CTQ2011-23459 and CTQ2014-51912-REDC), the DGA (E35), and the European Social Fund (FSE) is acknowledged. M.M. thanks the Spanish MEC for her FPU grant.

REFERENCES

(1) (a) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535-1553. (b) Crudden, C. M.; Glasspoole, B. W.; Lata, C. J. Chem. Commun. 2009, 6704-6716. (c) Dang, L.; Lin, Z.; Marder, T. B. Chem. Commun. 2009, 3987-3995.

(2) (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. *Chem. Rev.* **2010**, *110*, 890-931. (b) Ros, A.; Fernández, R.; Lassaletta, J. M. *Chem. Soc. Rev.* **2014**, *43*, 3229-3243.

(3) (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. *Chem. Soc. Rev.* **2009**, *38*, 279-293. (b) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. *Chem. Rev.* **2010**, *110*, 4023-4078. (c) Waterman, R. *Chem. Soc. Rev.* **2013**, *42*, 5629-5641. (d) John, A. S.; Goldberg, K. I.; Heinekey, D. M. Top Organomet. Chem. **2013**, *40*, 271-288.

(4) See for example: (a) Muhoro, C. N.; Hartwig, J. F. Angew. Chem. Int. Ed. 1997, 36, 1510-1512. (b) Schlecht, S.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9435-9443. (c) Crestani, M. G.; Muñoz-Hernández, M.; Arévalo, A.; Acosta-Ramírez, A.; García, J. J. J. Am. Chem. Soc. 2005, 127, 18066-18073. (d) Lin, Z. in Contemporary Metal Boron Chemistry I Vol. 130 (Eds: Marder, T. B.; Lin, Z.), Springer, Berlin, 2008, 123-148. (e) Gloaguen, Y.; Alcaraz, G.; Pécharman, A.-F.; Clot, E.; Vendier, L.; Sabo-Etienne, S. Angew. Chem. Int. Ed. 2009, 48, 2964-2968.

(5) See for example: (a) Cook, K. S.; Incarvito, C. D.; Webster, C. E.; Fan, Y.; Hall, M. B.; Hartwig, J. F. *Angew. Chem. Int. Ed.* **2004**, *43*, 5474-5477. (b) Câmpian, M. V.; Harris, J. L.; Jasim, N.; Perutz, R. N.; Marder, T. B.; Whitwood, A. C. *Organometallics* **2006**, *25*, 5093-5104. (c) Câmpian, M. V.; Perutz, R. N.; Procacci, B.; Thatcher, R. J.; Torres, O.; Whitwood, A. C. *J. Am. Chem. Soc.* **2012**, *134*, 3480-3497. (d) Braunschweig, H.; Brenner, P.; Dewhurst, R. D.; Guethlein, F.; Jimenez-Halla, J. O. C.; Radacki, K.; Wolf, J.; Zöllner, L. *Chem. Eur. J.* **2012**, *18*, 8605-8609.

(6) See for example: (a) Salomon, M. A.; Braun, T.; Penner, A. *Angew. Chem. Int. Ed.* **2008**, *47*, 8867-8871. (b) Fernandes, A. C.; Fernandes, J. A.; Paz, F. A. A.; Romão, C. C. *Dalton Trans.* **2008**, 6686-6688. (c) Zhu, Y.; Chen, C.-H.; Fafard, C. M.; Foxman, B. M.; Ozerov, O. V. *Inorg. Chem.* **2011**, *50*, 7980-7987.

(7) Perutz, R. N., Sabo-Etienne, S. Angew. Chem. Int. Ed. 2007, 46, 2578-2592.

(8) (a) Montiel-Palma, V.; Lumbierres, M.; Donnadieu, B.; Sabo-Etienne, S.; Chaudret, B. *J. Am. Chem. Soc.* 2002, *124*, 5624-5625. (b) Esteruelas, M. A.; Fernández-Alvarez, F. J.; López, A. M.; Mora, M.; Oñate, E. *J. Am. Chem. Soc.* 2010, *132*, 5600-5601. (c) Esteruelas, M. A.; Fernández, I.; López, A. M.; Mora, M.; Oñate, E. *Organometallics* 2012, *31*, 4646-4649.

(9) Hartwig, F. J.; Cook, K. S.; Hapke, M.; Incarvito, C. D.; Fan, Y.; Webster, C. E.; Hall, M. B. *J. Am. Chem. Soc.* **2005**, *127*, 2538-2552.

(10) (a) Hartwig, J. F.; Muhoro, C. N.; He, X. J. Am. Chem. Soc. 1996, 118, 10936-10937 (b) Muhoro, C. N.; He, X.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 5033-5046.

(11) Kawamura, K.; Hartwig, J. F. *J. Am. Chem. Soc.* **2001**, *123*, 8422-8423.

(12) (a) Esteruelas, M. A.; Werner, H. *J. Organomet. Chem.* **1986**, *303*, 221-231. (b) Esteruelas, M. A.; Oro, L. A. *Adv. Organomet. Chem.* **2001**, *47*, 1-59.

(13) Albéniz, M. J.; Buil, M. L.; Esteruelas, M. A.; López, A. M.; Oro, L. A.; Zeier, B. *Organometallics* **1994**, *13*, 3746-3748.

(14) Esteruelas, M. A.; López, A. M.; Mora, M.; Oñate, E. ACS. Catal. 2015, 5, 187-191.

(15) Buil, M. L.; Espinet, P.; Esteruelas, M. A.; Lahoz, F. J.; Lledós, A.; Martínez-Ilarduya, J. M.; Maseras, F. ; Modrego, J.; Oñate, E.; Oro, L. A.; Sola, E.; Valero, C. *Inorg. Chem.* **1996**, *35*, 1250-1256.

(16) Werner, H.; Esteruelas, M. A.; Meyer, U.; Wrackmeyer, B. Chem. Ber. 1987, 120, 11-15.

(17) Esteruelas, M. A.; López, A. M.; Mora, M.; Oñate, E. *Chem. Commun.* **2013**, *49*, 7543-7545.

(18) Hebden, T. J.; Denney, M. C.; Pons, V.; Piccoli, P. M. B.; Koetzle, T. F.; Schultz, A. J.; Kaminsky, W.; Goldberg, K. I.; Heinekey, D. M. *J. Am. Chem. Soc.* **2008**, *130*, 10812-10820.

(19) The boron atoms have a marked influence on the relaxation of the hydrides decreasing the *T*₁ values. See: Esteruelas, M. A.; Jean, Y.; Lledos, A.; Oro, L. A.; Ruiz, N.; Volatron, F. *Inorg. Chem.* **1994**, *33*, 3609-3611.

(20) The formation of species of this type by reaction of transitionmetal hydride complexes and boranes is well known. See for example: (a) Antiñolo, A.; Carrillo-Hermosilla, F.; Fernández-Baeza, J.; García-Yuste, S.; Otero, A.; Rodríguez, A. M.; Sánchez-Prada, J.; Villaseñor, E.; Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledós, A. *Organometallics* 2000, *19*, 3654-3663.
(b) Lachaize, S.; Essalah, K.; Montiel-Palma, V.; Vendier, L.; Chaudret, B.; Barthelat, J.-C.; Sabo-Etienne, S. *Organometallics* 2005, *24*, 2935-2943. (c) Ohki, Y.; Hatanaka, T.; Tatsumi, K. *J. Am. Chem. Soc.* 2008, *130*, 17174-17186. (d) Hesp, K. D.; Rankin, M. A.; McDonald, R.; Stradiotto, M. *Inorg. Chem.* 2008, *47*, 7471-7473.

(21) Frost, P. W.; Howard, J. A. K.; Spencer, J. L. *J. Chem. Soc., Chem. Commun.* **1984**, 1362-1363.

(22) See for example: (a) Irvine, G. J.; Roper, W. R.; Wright, L. J. Organometallics 1997, 16, 2291-2296. (b) Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. Organometallics 1998, 17, 4869-4874. (c) Irvine, G. J.; Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. Angew. Chem. Int. Ed. 2000, 39, 948-950. (d) Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. Organometallics 2000, 19, 4344-4355. (e) Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. Organometallics 2002, 21, 1714-1718. (f) Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. Organometallics 2002, 21, 4862-4872. (g) Clark, G. R.; Irvine, G. J.; Roper, W. R.; Wright, L. J. J. Organomet. Chem. 2003, 680, 81-88. (h) Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. J. Organomet. Chem. 2004, 689, 1609-1616. (i) Buil, M. L.; Esteruelas, M. A.; Garcés, K.; Oñate, E. J. Am. Chem. Soc. 2011, 133, 2250-2263. (j) Esteruelas, M. A.; López, A. M.; Mora, M.; Oñate, E. Organometallics 2012, 31, 2965-2970. (k) Buil, M. L.; Esteruelas, M. A.; Fernández, I.; Izquierdo, S.; Oñate, E. Organometallics 2013, 32, 2744-2752.

(23) Lantero, D. R.; Ward, D. L.; Smith, III, M. R. J. Am. Chem. Soc. **1997**, *119*, 9699-9708.

(24) This metal fragment is the basis of relevant catalytic systems. See: (a) Esteruelas, M. A.; Oro, L. A.; *Chem. Rev.* **1998**, *98*, 577-588. (b) Esteruelas, M. A.; Herrero, J.; López, A. M.; Olivan, M. Organometallics **2001**, *20*, 3202-3205. (c) Cobo, N.; Esteruelas, M. A.; González, F.; Herrero, J.; López, A. M.; Lucio, P.; Olivan, M. *J. Catal.* **2004**, *223*, 319-327. (d) Esteruelas, M. A.; García-Obregón, T.; Herrero, J.; Olivan, M. Organometallics **2011**, *30*, 6402-6407.

(25) Blessing, R. H. Acta Cryst. **1995**, A51, 33-38. SADABS: Areadetector absorption correction; Bruker-AXS, Madison, WI, 1996.

(26) SHELXTL Package v. 6.10; Bruker-AXS, Madison, WI, 2000. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

Insert Table of Contents artwork here

