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Abstract  

Four types of granite widely exported and used in construction around the world were subjected 

to 280 accelerated freeze-thaw test cycles, conducted as stipulated in European standard UNE-

 EN 1237:2001 to ascertain their petrophysical response. 

The techniques used to characterise the granite before and after freeze-thaw-induced 

microcracking included vacuum water absorption, ultrasonic P-wave pulse velocity and ultrasonic 

S-wave pulse velocity, mercury intrusion porosimetry and polarised optical and fluorescence 

microscopy to quantify the type of microcracks developing (inter-, intra- or transcrystalline) and 

identify the associated mineral phases: quartz, feldspar and biotite. The linear crack density 

(number of cracks per millimetre) was calculated based on the microscopic data collected. 

Young‘s modulus was likewise found before and after the freeze-thaw cycles. 

The chief ice crystallisation mechanism involved in microcracking and hence deterioration was 

ice segregation. In all four granites, ultrasonic propagation velocities and strength parameters 

declined with the development of freeze-thaw-induced microcracking. More intercrystalline 

microcracks developed in the early cycles, while larger numbers of intracrystalline microcracks 

were found at the end of the test.  

The results of this study can be applied to other granites with similar characteristics and whose 

microcracks are generated with same mechanisms of frost damage. 
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Upon conclusion of the cycles, Zarzalejo granite exhibited the largest number of microcracks, 

with a linear crack density of 3.9, as well as the highest rise in microcracking. Colmenar Viejo 

ended the freeze-thaw test with the fewest number of microcracks and a post-test linear crack 

density of 2.3, denoting greater freeze-thaw resistance. The smallest increase in the number of 

microcracks was found for Cadalso de los Vidrios granite.  

The microscopic and microporosity findings reported in this paper revealed the existence of 

freeze-thaw test-induced microcracking which, while barely affecting mechanical stability 

(Young‘s modulus), did cause damage. 

Keywords: granite, durability, weathering, freeze-thaw test, microcracks. 
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1 Introduction 

 

Granite has been traditionally used as a building stone, in some countries because of quarry 

proximity to cities and in many others as a high quality import (Fort et al., 2013). Spain is the 

world‘s seventh largest producer of natural stone and the fourth largest exporter. Granite ships 

primarily to other European countries and North America for use in cities such as Vancouver, 

Paris, Cork, and Munich where temperatures dip below freezing over 30 times yearly, inducing 

frezze-thaw (FT) events. (Ruedrich and Siegesmund, 2007; Ruedrich et al., 2011). 

 

Thousands of tonnes of these granites are exported annually for use as construction materials in 

prominent buildings. Some examples are the Cork International Airport terminal in Ireland, Place 

Romagné in France, and retail parks at Dortmund, Germany and Guangzhou, China. Hence, the 

need to meet high quality standards to ensure the optimal performance in all manner of situations 

(Siegesmund and Török, 2011). 

The aim of the present study is to determine the quality of four widely used building granites to 

FT weathering, determined on the grounds of (P- and S-wave) ultrasonic pulse velocity, Young‘s 

modulus, linear crack density and porosity in several FT weathering stages. Damage was 

established by comparing the findings obtained with destructive and non-destructive techniques. 

The objective of FT testing is to simulate natural weathering caused by ice at a faster pace in the 

laboratory (Halsey et al., 1998). This may induce rapid change in the physical and mechanical 

properties of these materials in humid open systems with widely fluctuating temperatures (Hudec, 

1998; Iñigo et al., 2000; Gupta and Rau, 2001; Ehlen, 2002, Sanjurjo and Alves, 2006, Rivas-

Brea et al., 2008; Hall et al., 2012; Jamshidi et al., 2013). 

 

FT has a direct impact on landforms and building stone durability (Kieslinger, 1931). It limits 

durability not only in very cold regions, but also where freezing occurs during few days in 

temperate climates where temperatures occasionally drop to below freezing, particularly during 
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the night (Takarli et al., 2008). Where these cycles are frequent (Halsey et al., 1998), they 

generate fatigue in granite and cracks through which water can ingress. 

 

When ice crystallisation pressure equals the tensile strength of the rock, further microcracks 

develop and the existing cracks deepen and widen, damaging the rock. Ice crystallisation and 

growth mechanisms in geomaterials have been the object of research for several decades (Hor and 

Morihiro, 1998; Scherer, 1999; Coussy and Fen-Chong, 2005). Several mechanisms exist to 

explain ice crystallisation-induced stress in wall cracks (Chen et al., 2004; Ingham, 2005; 

Ruedrich and Siegesmund, 2007). 

 

The volumetric expansion of water during freezing: when water congeals its volume increases 

about 9 %, generating pressure on the walls of the cracks, which favours widening (Ozcelik et al., 

2012). For cracking to be due only to the expansion associated with the water to ice phase change, 

the rock would have to be highly saturated. FT-induced natural damage occurs without such 

saturation. (Chen et al., 2004; Ruedrich and Siegesmund, 2007; Takarli et al., 2008). 

 

Another mechanism is hydraulic pressure (Hor and Morihiro, 1998). The increase in volume 

attendant upon ice crystallisation confines the (liquid) water, which then places pressure on the 

walls of the cracks. This premise is based on the observation that ice crystallises as it moves 

deeper into the rock. Due to its increased volume, unfrozen water may ingress into the pore space. 

If insufficient expansion space is available near the ice front, stress is generated in the matrix. 

Other stress development models are based on osmotic pressure (Powers and Helmuth, 1953) and 

anomalous variations in ice density when it crystallises quickly. 

 

Ice segregation (Tabor, 1929, 1930, Arakawa, 1965, Walder J and Hallet, 1985, Akagawa and 

Fukuda 1991, Hallet et al., 1991, Matsuoka and Murton, 2008) takes place in freezing or frozen 

microporous media. The unfrozen water held in microcracks and adsorbed onto the surfaces of 

mineral particles is forced by temperature gradient-induced suction through a porous medium 
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such as micro-cracked granite toward freezing sites where ice lenses, ribbons, needles, layers or 

strands grow (Murton et al., 2006). In other words, water that starts off widely dispersed in the 

porous rock segregates into discrete pieces of ice. Since water but not ice can flow through pores 

of this size, ice segregation is a major cause of cracking in moist, porous rocks (Matsuoka, 2001). 

 

Frost damage may entail a combination of several mechanisms, although one or another generally 

predominates, depending upon conditions (Ingham, 2005). Water and temperature are the main 

weathering agents in FT ageing. As a rule, crystallisation begins in large surface cracks, for in 

smaller cracks ice crystallisation calls for colder temperatures. FT-induced decay in natural stone 

therefore depends largely on the existence of open cracks, the natural channels for water 

penetration into rock, and their post freezing development (Martínez-Martínez et al., 2013).  

 

Ice crystallisation cracking in granite is not fully understood, since it depends on a number of  

factors (Hudec, 1998): the temperature range, the frequency of FT, the stress applied, water 

composition and moisture content, as well as internal factors such as rock mineralogical 

composition, texture, rock strength, characteristics of the existing pore microstructure and thermal 

conductivity of the constituents.  

Preceded by elastic deformation in granite (Lajtai, 1998), in addition to existing crack closure and 

internal crack sliding, changes in the microcrack network affect the physical and mechanical 

properties of the rock and are responsible for the decay and anisotropy found in many granites 

(Fujii et al., 2007; Fort et al., 2011). Microcrack characteristics and the physical-mechanical 

properties of rocks are, then, essential considerations when assessing material durability (Matias 

and Alves, 2001; Sousa et al., 2005).  

Mechanical strength in granites is related to a number of petrographic parameters, including: 

grain size (Tuğrul and Zarif, 1999; Akesson, 2001; Yilmaz et al., 2011), microstructural 

characteristics (Alm et al.,1985; Carvalho et al., 1997; Feng and Yu, 2000; Lindqvist et al., 2007; 

Vasconcelos et al., 2008; Nasseri and Mohanty, 2008), mineral composition (Miskovsky et al., 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2004), grain boundaries (Raisanen, 2004) and mineral shape and spatial arrangement (Akesson et 

al., 2003). 

When destructive tests (such as static laboratory tests in heritage buildings) cannot be performed 

to determine the mechanical characteristics of the rock, the dynamic modulus must be found with 

non-destructive techniques such as ultrasonic testing (Brotons, 2014). As mechanical moduli are 

required to calculate the strain on new buildings generated by the live loads applied, pre- and 

post-FT Young‘s modulus values were calculated in this study.  

 

Like other agents of rock decay such as wet/dry cycles, thermal shock and salt crystallisation, FT 

is regarded as a physical weathering agent (Jamshidi et al., 2013; Shalkowshi et al., 2009), 

weathering granite at a rate of several millimetres per thousand years (Chen, 2000). An 

understanding of the long-term durability of construction granite exposed to FT cycles is 

therefore in order. While decay function models have been developed to predict FT-induced 

deterioration of the mechanical properties of building stone (Bayram, 2012; Jamshidi et al., 2013; 

Mutlutürk et al., 2004), the respective equations are only valid for specific rocks.  

 

Although FT testing has been standardised (UNE-EN 12371; TS 699, ASTM D5312; DIN 

52104), the number of FT cycles applied and the physical property used to quantify FT action 

differ among standards. The effect of FT has therefore been studied from different perspectives 

for different types of rocks. 

 

A sizeable number of studies have been conducted on freezing in building stones in recent 

decades. The number and duration of FT cycles and the temperature sequence and range applied 

in those studies varied widely. The concomitant inconsistencies in the findings (Cárdenes, 2014) 

must be borne in mind when comparing the results. 
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Ingham (2005) ran 50 cycles, for instance, compared to the 1 400 run by authors such as Ruedrich 

et al. (2011), Iñigo et al. (2000), García-del-Cura et al. (2008), Karaca et al. (2010), Jamshidi et 

al., (2013) applied 24-hour cycles, while in the Del Río et al. (2005) study cycle duration was 

4 hours and in the Tan et al. (2011) survey, 8. The temperature ranges also varied: Ozcelik et al. 

(2012) established a low of -40 and a high of 180 C, while in Wang et al. (2007) the interval ran 

from -7 to 14 C. 

Some authors measured FT-induced decay on the grounds of sample weight loss (Iñigo et al., 

2000; Erguler, 2009) or variations in ultrasonic pulse velocity (Matsuoka, 1990; Takarli et al., 

2008; Ruedrich, et al., 2011; Liu et al., 2012; Iñigo, et al., 2013). Others developed equations 

from which to infer microcrack distribution in granites (Sano et al., 1992; Takemura and Oda, 

2006; Nara et al., 2011). Moreover, the intrinsic characteristics of the granite (mineralogy and 

texture) also impact the type of microcracking generated by FT (inter-, intra- or transcrystalline) 

and hence rock petrophysical properties and ultimately durability. 

The matrix (Yavuz, 2011), pore size and pore size distribution are especially important factors in 

granite resistance to ice crystallisation. Many authors (Haynes and Sneck, 1972; Wolfenden and 

Winslow, 1991; Mallidi, 1996; Benavente et al., 2007; Martínez-Martínez et al., 2013,) contend, 

based on mercury intrusion porosimetry findings, that intra-pore crystallisation is favoured by 

slow capillary kinetics, while others (Oguchi and Yuasa, 2010) claim that these developments are 

driven by fast capillary kinetics.  

The present study explored the physical and mechanical effects of FT testing on the quality of 

granite exported for use in construction. Microcracking favours soiling, lichen colonisation and in 

some cases, crystal detachment. An understanding of the performance of granite used in 

construction in climates prone to FT cycles will help choose the most suitable material for each 

place and use in both new construction and restoration. 
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2 Materials and methods 

2.1 Rock samples 

The four granites selected for the study, monzo-and leucogranites from Sierra del Guadarrama 

(Central System) in central Spain, have been traditionally used as building materials in Madrid 

and surroundings and are now used worldwide (Figures 1 and 2). Alpedrete (AL), Cadalso de los 

Vidrios (CA), Colmenar Viejo (CO) and Zarzalejo (ZA) granites (Fort et al., 2013) were studied 

to determine the effect of FT on their decay. These construction stones are found in plutons with 

different chemical compositions (Villaseca et al., 1998). 

 

Alpedrete is a 350- km
2
 monzogranite-granodiorite pluton with local porphyritic varieties located 

about 35 km north of the city of Madrid. The monzogranite has an equigranular texture with fine 

to medium crystals exhibiting small microgranular mafic enclaves.  

 

Cadalso de los Vidrios is a biotitic leucogranite (Mejías et al., 2009) and monzogranite pluton; it 

lies about 65 km west of Madrid and covers 59 km
2
. The monzogranite has an equigranular 

texture with medium to large crystals and local porphyry. The leucogranite, with fine crystals and 

a lower biotite content, was used for this study. 

 

Colmenar Viejo is a monzogranite pluton located about 31 km north of the city of Madrid, 

characterized by very homogeneous greyish white rocks. Leucocratic, medium-to-coarse grain 

size, or even darker porphyritic varieties are occasionally present.  

 

The Zarzalejo monzogranite pluton is located about 60 km northwest of the city of Madrid 

(García-del-Cura et. al., 2008). Two texturally different units can be distinguished: a grey unit 

and a porphyritic unit characterised by the presence of K-feldspar megacrystals in a medium-

grained matrix. It exhibits microgranular mafic minerals with enclaves and xenoliths, usually sub-
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rounded or ellipsoidal with a quartz dioritic composition and sometimes with a porphyritic texture 

(feldspar phenocrystals).  

 

The samples were selected from outcrops close to old quarries where the granite was fresh and 

fracture-free. Seven cubic (5x5x5±0.5 cm) specimens of each of the four types were extracted at a 

low cutting speed (120 rpm) and low strain. 

The petrological characteristics of the specimens tested and examples of buildings built with the 

respective granites are listed in Table 1 (modified from Fort et al., 2011).  

2.2 Freeze–thaw test (FT Test) 

FT testing was conducted as specified in European standard EN 12371: 2001 (with 280 instead of 

the stipulated maximum 240 cycles) in a FT chamber fitted with a control system to programme 

the FT cycles to an accuracy of ±1.0 °C. As described in the standard, the specimens were water-

saturated at 20 C and atmospheric pressure for 48±2 h. They were subsequently placed in an air-

filled FT test chamber (dry conditions), where they were spaced no less than 10 mm apart and at 

least 20 mm from the side of the chamber. The temperature sequence in each 12-hour cycle was 

as follows: (i) the temperature was lowered from +20 to -8 °C in 2ºh (dry conditions); (ii) and 

then to -12 °C in 4 h (dry conditions); (iii) the chamber was automatically filled with water in 

0.5 h until the specimens were completely submerged at temperatures of 5 to 20 ºC (wet 

conditions); (iv) the specimens remained submerged for 5 hours; and (v) the water in the chamber 

was emptied in 0.5 h. 

 

The specimens were removed from the FT chamber after every 70 FT cycles up to a total of 280 

and dried in a ventilated oven at 70 °C. They were then visually inspected and tested for water 

saturation to quantify frost action. One of the seven samples of each variety of granite tested was 

reserved for Hg porosimetry analysis and fractography during FT testing. 
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2.3 Effective porosity (Pe) 

Pe furnishes information on fractures, microcracks and pores generated during the FT cycles. Pe 

was therefore measured prior to the FT test and after every 70 cycles, up to and including 280. 

The samples were consequently tested for this parameter using the natural stone method described 

in Spanish and European standard UNE-EN 1936. After oven-drying at 70 C to a constant 

weight (variation in two consecutive weighings over 24 hours <0.1 %), they were stored in a 

desiccator for 30 min. Set in a vacuum chamber at 2 kPa for 2 h, they were slowly submerged in 

water and subsequently stored at atmospheric pressure for 24 h to ensure full saturation. The Pe 

values were calculated from equation (1) 

 

Pe (%) = [(Ws-Wd)/(Ws-Wh)] ×100        (1) 

 

Where Wd is the weight of the dry specimens (after oven-drying at 70 ºC and desiccation for 30 

min). Ws is the weight of 24-h water-saturated sample, and Wh is the weight of the sample 

submerged in water. 

 

2.4 Bulk density (ρb) 

ρb was measured using also the Spanish and European standard UNE-EN 1936, i.e., as the ratio 

between specimen mass and its bulk volume, from equation (2): 

ρb =[(Wd)/(Ws-Wh)]× 1000 (kg/m
3
)       (2) 

 

2.5 Ultrasonic pulse velocities (Vp and Vs) 

The velocity of ultrasonic pulses travelling in a solid material depends on the density, porosity, 

mineralogy and elastic properties of the material (Wang et al., 2007; Yarbaş et al., 2007). 

Ultrasonic pulse velocity provides an accurate measure of the total damage to the material 
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(Takarli et al., 2008), while fracture measurement affords an indication of the nature of the 

damage, i.e., whether the loss in Vp and Vs were more likely to have been induced by the 

generation of new or the extension of existing microcracks. 

Vp measurements were taken with CNS Electronics PUNDIT equipment (precision: ±0.1 μs) 

further to Spanish and European standard UNE-EN 14579 recommendations. The even and round 

(11.82 mm in diameter) 1 MHz transducers were affixed to the stone surface with Henkel 

Sichozell Kleister (a carboxymethyl cellulose) paste and water to enhance the transducer-stone 

contact and bond.  

Vp was measured on each sample in the three orthogonal directions, using the mean of four 

consecutive measurements on each side of the cube as the accepted value. Vp was determined 

before the FT test and after 140 and 280 cycles. 

Vs was taken with a Panametrics 5058 PR high voltage pulser-receiver connected to a Tektronix 

digital phosphorus oscilloscope (Model TDS 3012B). 

Panametrics V151, 25.4-mm diameter, 0.5-MHz even and round transducers were affixed to the 

stone surface with a coupling gel consisting of 80 % sugar (primarily fructose and glucose) and 

20 % water to enhance the transducer-stone contact and bond. The pulse repetition rate was 20 Hz 

and damping 200 Ohm. 

Vs was measured on each sample in the three spatial directions, taking the mean for each 

specimen as the accepted value. Vp was determined before the FT test and after 280 cycles. 

Vp and Vs were then used to compute Young‘s modulus (Edyn) from the Darracott (1976) equation 

(Eq. (3)) and the Vp/Vs ratio. 

Edyn=ρ [3 Vp
2
-4Vs]/[(Vp/Vs)

2
-1]    (3) 

where Vp is the longitudinal wave value (m/s); Vs, the transverse wave value (m/s); Edyn, Young‘s 

modulus (Pa); and ρb, bulk density (kg/m
3
). 

The conversion from dynamic to static modules was based on Sousa‘s (2014) equation: 

Est=0.99Edyn - 0.92. 
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2.6 Mercury intrusion porosimetry (MIP) 

MIP was conducted on a single prismatic specimen (12±2 mm in diameter and 20±2 mm high) 

cut from an upper corner of one of the cubic specimens. The analysis was run before and after FT 

testing on samples oven-dried to a constant weight at 70 C. A Micromeritics Autopore IV 9 520 

porosimeter with a maximum pressure of 414 MPa (60 000 psi) was used to assess sample pore 

structure, including total porosity (pore diameter range: 0.001-400 μm), macro- and micro-

porosity and pore size distribution. The cut-off between micro- and macro-porosity was set at a 

pore diameter of 5 m (Russel, 1927; Rodríguez and Sebastián, 1994; Fort et al., 2011). 

 

2.7 Fractography 

A 30x20±3 mm thin section measuring, 30 µm thick was sectioned from one specimen of the AL, 

CA and ZA before FT testing and after each series of 70 cycles. Identical thin sections were cut 

from CO after 0, 70, 140 and 280 cycles. To ensure the thin section was removed from a surface 

of the specimen exposed to all FT cycles, successive thin sections were sawn off different sides of 

the specimen, parallel to and within 1 cm of the surface. Sawing was performed at low speed 

(120 rpm) and low strain so as not to generate artefacts (microcracks).  

 

The thin sections were impregnated with fluorescence and characterised under an Olympus BX 

51 polarized light microscope (PM) fitted with DP 12-coupled (6 V/2.5 Å) Olympus digital 

micrography and Olympus DP-Soft software (version 3.2). Cracks were characterised with the 

same equipment, as well as with the same set-up using an Olympus U-RF-T mercury lamp 

fluorescence microscope (FM).  

 

PM and FM micrograph mosaics (Gale et al., 2010) were made from the thin sections to monitor 

microcrack development. Each mosaic comprised 40 micrographs of the same area, measuring 

approximately 4.5 cm
2
. The cross-Nicols micrograph mosaics were used for mineral 

quantification, and the fluorescence mosaics to study cracks. One fragment of the FM mosaic was 
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laid over the same fragment of the PM mosaic and two squares were drawn on the resulting 

image, one measuring 1 cm
2
 and the other 0.25 cm

2
. The sides of these squares were drawn 

parallel to the two sides of the original FT-tested cubic specimen (Figure 3). Fracturing was 

quantified by counting the total number of microcracks that intersected with the sides of these 

squares, as well as the number that cut across quartz, feldspar and mica. A distinction was also 

drawn among microcracks found along the edge (intercrystalline) or inside (intracrystalline) 

crystals or that impacted more than one grain (transcrystalline). Intercrystalline microcracks were 

subdivided by the mineral interface involved: quartz/feldspar, quartz/biotite or feldspar/biotite. 

Lastly, the linear crack density (LCD) (Sousa et al., 2005) was calculated as the number of 

microcracks per millimetre. In other words, the LCD was found by counting the number of each 

type of fracture intersecting the boundary lines, with a total length of 50 mm, of the squares 

drawn on the mosaic. 

 

3 Results 

3.1 Bulk density (ρb), weight loss and effective porosity (Pe) 

Initial ρb was similar in the four granites, ranging from 2 602 kg/m
3
 in CA to 2 668 kg/m

3
 in AL, 

and varied very little throughout the FT test: from 0.2 % in CA to 0.6 % in ZA. The initial Pe was 

low, at 0.7 % in CO to 1.7 % in ZA. The lowest post-FT cycle weight loss was recorded for CA 

and CO (0.6 %) and the highest for ZA (1.1 %). Porosity rose in all the granites after the FT 

cycles. Pre-and post-test weight, ρb and Pe of specimens are given in Table 2. 

 

3.2 Cracks 

Initial cracking was greatest in CA, followed in descending order by ZA, AL and CO. Crack rates 

rose with the FT cycles in all the materials studied (Table 3).  
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LCD rose steeply in CA after the first 70 cycles, but more moderately from then on through the 

end of the test. From the 70
th
 to the 280

th
 cycle, the pace was similar to the crack generation rate 

observed in CO, which held steady throughout the test. Total crack generation in CO was much 

more linear than in the other granites and post-280 cycle fracturing was also lowest in this variety. 

The highest post-FT LCD was observed in ZA, where the fracture rate in the first 70 cycles was 

nearly as low as in AL and CO. The sharp rise was recorded after 140 and 210 cycles.  

 

3.2.1 Relationship between type of fracturing and minerals involved  

The same trend was observed in the four granites: similar numbers of existing microcracks were 

found, mostly in quartz and feldspar. No pre-cracking was detected in biotite.  

Quartz exhibited the steepest rise in fracturing in the first 70 cycles, after which the slope of the 

curve tapered (Figure 4). Fracturing rose more sharply in feldspar in the final series, except in CA 

where the slope was steepest in the first 140 cycles. Very few microcracks developed in biotite. 

The earliest microcracks were observed in ZA after the first 70 cycles, whereas in the other 

granites no microcracking appeared until after 140 cycles or even after 210 cycles (CA). 

 

3.2.2 Inter-, intra- and transcrystalline microcracks 

Before FT testing, intercrystalline microcracks prevailed over the intracrystalline type. 

Intracrystalline microcracks grew in number as the FT test advanced. ZA had more intra- than 

intercrystalline microcracks after 70 cycles; CA had more intra-than intercrystalline microcracks 

after 140 and AL after 210, while CO only exhibited more intra- than intercrystalline microcracks 

after 280 cycles (Figure 5). In AL, the number of intracrystalline microcracks remained more or 

less constant through the first 140 cycles, growing after 210. With a sharper rise in the number of 

inter- than intracrystalline microcracks after 210 cycles, however, this was the only granite that 

had a larger number of intercrystalline than intracrystalline microcracks at the end of the FT test. 
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CA exhibited the lowest increase (30 %) in LCD for intercrystalline microcracks. The increase in 

intercrystalline microcracks was greatest in AL (180 %). The largest increase in intracrystalline 

microcracks, 505 %, was recorded for ZA, compared to 192 % for AL, where it was lowest 

(Table 4, Figure 5). 

 

3.2.3 Relationship between fracture type (inter-, intra- trans-crystalline) and crystals  

The proportion of inter-, intra- and transcrystalline microcracks in each granite varied with the 

number of FT cycles (Table 4). The fracture network was primarily intercrystalline in the earliest 

series. With each new series, feldspar developed more intracrystalline microcracks along its 

crystallographic planes of weakness. Biotite had the fewest intercrystalline microcracks.   

The number of intercrystalline microcracks affecting quartz grew moderately in all four granites, 

by 12 % in ZA to a maximum of 61 % in AL. The intracrystalline microcracks in quartz rose 

more rapidly, by a minimum of 80 % in CO to a maximum of 625 % in AL. The number of 

intercrystalline microcracks increased more in feldspar than in quartz, from 35 % in CA to 225 % 

in AL. The number of intracrystalline microcracks after 280 cycles, in the four granites studied, is 

higher inside feldspar than inside quartz (Table 5). Figure 6 shows the pre- and post- FT testing 

microcracks for the four granites studied. 

 

3.3 Ultrasonic pulse velocities (Vp and Vs)  

Each granite had a characteristic initial Vp and Vs. The highest initial Vp was found in CO 

(5 051±349 m/s ), followed by AL (4 620±163 m/s), CA (3 687±300m/s) and lastly ZA 

(3 219±204 m/s). Vp declined after the FT cycles in all four varieties of granite. The rate of 

decline in their post-280-cyle Vp was 2.8 % in CO, 2.9 % in CA, 3.8 % in AL and 5.2 % in ZA. 

The highest initial Vs was found in AL (3 812±107 m/s ), followed by CO (3 494±94 m/s), CA 

(2 596±110 m/s) and lastly ZA (2 2116±89 m/s). Vs declined after the FT cycles in all four 
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varieties of granite. The rate of decline in their post-280-cyle Vs was 2.7 % in CO, 2.8 % in AL, 

3.0 % in CA and 4.7 % in ZA. The Vp/Vs ratio was similar for all granites: AL= 1.2; CA= 1.4; 

CO= 1.4 and ZA= 1.4. 

 

Edyn was initially highest in CO, followed by CA, AL and lastly ZA. Edyn declined after the FT 

cycles in all four varieties of granite. The specimens exhibited different rates of decline in their 

post-280-cyle Vs values: 5.8 % in CO, 6.0 % in CA, 10.2 % in ZA and 21.9% in AL. Table 6 

gives Edyn and Est  for the four types of granites tested.  

 

3.4 Mercury intrusion porosimetry (MIP) 

According to the Hg intrusion findings, the granite with the highest initial porosity was ZA 

followed by CA, CO and AL in descending order. Porosity as determined by Hg intrusion rose 

during FT testing in all the granites except CO (Table 7). 

The initial microporosity followed essentially the same pattern as porosity in the four granites, 

i.e., the greatest microporosity was observed in ZA and CA, followed by AL and CO. 

Microporosity also rose in all four materials after the FT cycles. The pore size distribution graphs 

(Figure 7) showed a rise in microporosity in all the granites: by 7.6 % in ZA, 15.1 % in CA, 

16.3 % in AL and 25.4 % in CO.  

 

4 Discussion  

Other FT studies conducted on granite under conditions similar to those described here (Del Río 

et al., 2005; García-del-Cura et al., 2008; Karaca et al., 2010; Liu et al., 2012; Jamshidi et al., 

2013), in which fewer than 70 cycles were run, could not determine the changes actually 

impacting these materials. Ruedrich et al., 2011 noted that clear evidence of damage was only 

observable after over 50 FT cycles, although the FT testing conditions, i.e., temperature, cooling 

rate and water pressure inside the microcracks, affect microcrack generation and damage 
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substantially. In nearly 100 % saturated, closed system rocks, volumetric expansion is the ice 

crystallisation mechanism that governs microcracking. These were not the conditions prevailing 

in the present tests nor in granites used as ashlars or façade cladding, however. Such rocks may be 

affected by ice segregation, another mechanism that induces microcracking and hence 

deterioration. The suction temperature induced by the FT chamber generated a freezing gradient 

in the granite samples, with ice concentrating on the surface of the specimens. The water inside 

the granites migrated through the microcracks to the surface, where the ice grew, inducing surface 

microcracks. Murton et al., (2006) contended that for ice segregation to prompt microcracking in 

highly porous chalk, the temperature must hover around 0 C, whereas Walder and Hallet (1985) 

claimed that in low porosity rock such as granite cracking is most intense when the temperature 

ranges from -4 to -15 C at a rate of 0.1 to 0.5 C/h. At the cooling rate and temperatures 

proposed in Spanish and European standard UNE-EN 1237:2001 and used here, i.e., 14 C/h in 

the temperature range +20 to -8 C and 1 C/h between -8 and -12 C, ice crystallised on the 

specimen surface. This may have occurred when the outside temperature was below zero and the 

temperature inside the specimens was above zero, enabling the interstitial water to flow across the 

microcracks to the surface. 

The petrophysical and mechanical properties of studied in the four granites varied to some degree 

after the FT cycles. CO exhibited the lowest LCD, MIP, Pe and the highest Vp,Vs and Est, denoting 

a higher resistance to FT. Conversely, ZA showed the least resistant post-FT test petrophysical 

and mechanical characteristics.  

The smallest rise in Pe, ρb, LCD and weight loss was observed in CA. These factors also 

increased minimally in CO, which had the lowest decline in Vp. The smallest growth in 

microporosity was recorded for ZA, the granite with the steepest rises in Pe, ρb, weight loss and 

LCD and the sharpest decline in Vp. As CA has a smaller crystal size than the other granites, it 

exhibited the highest initial and final intercrystalline LCD. ZA, the granite with the largest crystal 

size due to the presence of large feldspar crystals, developed the highest number of 

intracrystalline microcracks.  
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Through the first 70 FT cycles, microcrack development was similar in the four granites. The 

intercrystalline type initially accounted for 54 to 64 % and after the 70
th
 cycle, from 56 to 63 % of 

all the cracking detected, except in ZA, which after the 70
th
 cycle had 43 % intercrystalline 

microcracks. Following the first 70 cycles, all the granites developed more intracrystalline 

microcracks, albeit in different proportions. At the end of the test (280 cycles), intracrystalline 

microcracking predominated in all except AL. This result was consistent with prior granite 

weathering studies (Sousa et al., 2005), which reported intracrystalline microcracks to be the most 

frequent form of cracking.  

Takemura et al. (2003) and Takemura and Oda (2004), who also distinguished between 

microcracks in quartz and feldspar (as well as in terms of grain boundaries), found that 

microcrack generation differed in these minerals. The present quantification of microcracks on 

PM and FM micrographs showed that intracrystalline fracturing was greater in feldspar than in 

quartz. Sousa et al. (2005) reported that over half of the cracks detected in ornamental granites 

were intracrystalline and located on feldspar crystals. These authors noted that microcracks often 

appeared in the cleavage direction, a finding observed as well in the scanning electron microscope 

images published by Manchao et al. (2010).  

The FT test induced greater inward confinement stress in the cracks developing along both the 

edges of the crystals and their planes of weakness. Nonetheless, no microcracking was found in 

the areas between quartz and biotite, inasmuch as the laminar texture of biotite affords it 

sufficient flexibility and ductility to reduce cracking, particularly in the cleavage direction. In 

other types of accelerated ageing tests (salt crystallisation) conducted on AL and ZA (López-

Arce, 2010), biotite was observed to be more heavily impacted by surface microcracks. However, 

according to the present FM findings for thin sections taken at a depth of 1 cm, biotite was the 

mineral that developed the fewest fractures inside the granite. 

 

Scant transcrystalline microcrack proliferation was observed in all four granites. Transcrystalline 

microcracking appeared in different forms and at different stages of the FT test. Transcrystalline 
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microcracks, which were larger than the inter- and intra-crystalline varieties, were the result of 

interconnections, normally when an intercrystalline fracture spread in the cleavage direction. 

Microscopic quantification of the fractures showed that ZA exhibited the largest number of 

transcrystalline fractures, weakening inter-crystalline boundaries and favouring grain detachment. 

This finding is consistent with the fact that weight loss was greatest in ZA. 

These fractures were the reason that the Pe was greater than could be detected with MIP, which 

detect microcracks <400 m. MIP nonetheless revealed a rise in microporosity in all the 

specimens. Iñigo et al. (2000) ruled out the use of MIP because the extremely high pressures 

required to fill the narrowest pores induce microcracking. The consistency among the findings for 

Pe, porosity and microporosity observed with MIP in the present study before and after FT testing 

(Table 5) was an indication that MIP is suitable for this type of analyses. In fact, it is primarily 

used to determine microporosity, which rose in all the granites studied. Microporosity 

development was greatest in ZA, the most porous granite, and lowest in CO, the least porous 

granite studied.  

Tuğrul and Zarif (1999) and Yilmaz et al. (2011) reported an inverse relationship between K-

feldspar crystal size and mechanical strength in granites. Larger crystals have longer edges, 

favouring the propagation of intercrystalline microcracks, while the cleavage typical of potassium 

feldspars, which act as the weakest planes, facilitates intragranular microcracking (Eberhardt et 

al., 1999; Chen et al., 1999; Wong et al., 2006). In the present study, the K-feldspar content in 

ZA, its larger crystal size and larger number of initial microcracks contributed to its lower Est. 

Nonetheless, CO, with larger K-feldspar crystals than AL and CA, had a higher pre-and post-FT 

test Est. That effect was the result of its lower pre- and post-trial micro- and effective porosities 

and its higher Vp than the other three granites. The PM and FM findings for each granite explain 

their Est values. Despite the similarity in the number and size of potassium feldspar crystals in ZA 

and CO, the former exhibited the highest and the latter the lowest LCD. Microcracks generate 

strain under stress. Benmeddour et al. (2012) reported a linear correlation between Est and 

porosity. The decline in Est with exposure to FT cycles denotes a reduction in rock elasticity. 
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However, Est remained high after FT testing in all the specimens studied here was an indication 

that the granite underwent no severe internal damage, inasmuch as the cracks generated did not 

affect the inside of the samples. 

 

The Vp/Vs ratios found for the granites studied resembled the values reported by Liu et al. (2012) 

for a granite subjected to 30 FT cycles. Vp/Vs remained essentially unchanged after FT testing in 

the present research because the deterioration induced in the four granites was not critical.  

 

Microcrack proliferation has adverse effects on granite quality, soiling building stones and 

favouring both lichen colonisation (De la Torre et al., 2010) and water circulation. Such cracking 

ultimately induces disaggregation, crumbling and detachment of the constituent crystals, with the 

concomitant loss of surface volume. 

 

5 Conclusions  

Parameters monitored in this study complement one another and are needed to quantify and 

assess granite microcracking during FT cycles. Vp and Vs are sensitive to the presence of 

microcracks but less sensitive to their number and type. This technique, which delivers valuable 

information for determining durability, affords the advantages of portability, ease of use and 

speed. Pe furnished information on the largest microcracks, while data on micropore development 

was gleaned from MIP.  

While the four granites studied were mineralogically similar and the FT test conditions applied 

and ice crystallisation mechanisms were the same in all four, their clearly distinct textures 

explained their differential decay when exposed to FT cycles. The pre- and post-test findings 

provided clear evidence of the quality and durability of these four building granites and their 

resistance to FT events, attributable to their high density, low porosity and high Vp and Vs. 
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Nonetheless, the FT test had an adverse effect on the petrophysical and mechanical properties of 

all the granites, in which microcracking was the main sign of the decay induced by the test. 

Resistance to FT was greatest in CO due to its texture and especially to its lesser initial cracking, 

while ZA was the least resistant to FT testing. This lesser durability was attributable to the greater 

initial cracking and high feldspar crystal content in ZA. 

Ice crystallises in microcracks existing in the granite, whose intrinsic properties determine 

microcrack development. Intracrystalline microcracking, especially along cleavage planes or 

areas of crystalline weakness, was greatest in feldspar and lowest in biotite. LCD rose most in the 

granite with the largest crystal size (ZA) and least in the granite with the smallest crystal size 

(CA). At the end of the test, ZA had the highest Pe, MIP, weight loss and LCD and the lowest Vp, 

Vs and Est while the lowest decay was observed in CO. The granites where intracrystalline 

microcracks appeared earliest were the ones with the highest rate of decay.  

The minor decline in Est recorded for the four granites studied was an indication of their high 

mechanical resistance to FT, which would explain their centuries long endurance in good 

condition in heritage buildings, despite the microcracks observed in PM and FM analysis. 

FT test conditions such as maximum and minimum temperatures, the minimum number of cycles 

and petrographic monitoring of weathering should be standardised for each type of rock. The 

number of FT cycles applied and the physical property used to quantify FT action differ among 

standards.  
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Fig. 1. Post-FT test surface (25 cm2) of four granite specimens; AL: Alpedrete granite; CA: Cadalso 
de los Vidrios granite; CO: Colmenar Viejo granite; ZA: Zarzalejo granite 
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Fig. 2. Polarised light petrographic micrographs of the four granites studied; AL: Alpedrete 

granite; CA: Cadalso de los Vidrios granite; CO: Colmenar Viejo granite; ZA: Zarzalejo granite 

  

Fig. 3. Thin section of ZA specimen: fragment of an FM micrograph mosaic overlaid on the same 

fragment of a PM micrograph mosaic, showing the sides of the two squares (50 mm, linear) on 

which LCD was measured 
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Fig. 4. Number of fractures in 50 mm (linear) of the four granites exposed to FT test, by mineral: 

quartz (rhombi), feldspar (squares) and biotite (triangles) 
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Fig. 5 Number of microcrack developing vs. number of FT test cycles by type of microcrack and 

granite studied (Inter-crystalline microcracks: x-marks; intra-crystalline microcracks, squares; 

trans-crystalline microcracks: circles)  
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Fig. 6. Fluorescence microscope images of granite samples (AL: Alpedrete granite, CA: Cadalso 

de los Vidrios granite, CO: Colmenar Viejo granite, ZA: Zarzalejo granite); left: before FT 

testing; right: after 280 FT cycles  
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Fig. 7. Pore size distribution (PSD) graphs for four granites exposed to FT testing; dotted line: 

specimen pore size distribution of the specimens prior to FT testing; dashes: pore size 

distribution after 280 FT cycles  
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Table 1. Four granites studied: type, petrographic description, accessory minerals and heritage 

buildings on which they are found 

  

    
 

 

Granite 

Name 

Type Textural properties and 

mineralogical composition Accessory minerals  
Buildings 

Alpedrete 

(AL) 

 

Monzogranite Medium-grained, 

hypidiomorphic, equigranular. 

Quartz (2–3 mm and 40–50 % 

vol.), plagioclase (1–3 mm and 

20–25% vol.), K-feldspar 

(microcline; 2–4 mm and 10–

15% vol.) and biotite (1– 2 mm 

and 10–15% vol.) 

Ilmenite, cordierite, 

apatite, zircon and 

monazite.  

Nuestra Señora de la 

Asunción Church-fortress at 

Alpedrete, Royal Palace and 

Alcalá Gate at Madrid. 

 

Cadalso de 

los Vidrios 

(CA) 

Leucogranite Fine-medium-grained, 

hypidiomorphic, equigranular. 

Quartz (1–3 mm and 50–55 % 

vol.), plagioclase (1–3 mm and 

20–25 % vol.), K-feldspar (1–4 

mm and 20–25 % vol.) and 

biotite (0.5–2 mm and 3–5 % 

vol.) 

Zircon, apatite, 

monazite, sphene, 

ilmenite, allanite and 

some opaque 

minerals. 

Casa de los Austria, Asunción 

Church and Villena Palace at 

Cadalso de los Vidrios. Cork 

International airport. Vieux 

Port, Marseille. 

Colmener 

Viejo (CO) 

Monzogranite Medium-coarse-grained, 

heterogranular. Quartz (2–7 

mm and 30–40 % vol.), 

plagioclase (2–7 mm and 20– 

25 % vol.), k-feldspar (3–6 

mm and 20–25 % vol.) and 

biotite (1–5 mm and 7– 10 % 

vol.) 

Cordierite, muscovite, 

apatite, zircon and 

opaque minerals. 

Roman road and Asunción 

Basilica at Colmenar Viejo. 

Zarzalejo 

(ZA) 

Monzogranite Coarse-grained, 

hypidiomorphic, 

heterogranular. Quartz (2–7 

mm and 30–40 % vol.), 

plagioclase (3– 9 mm and 15–

20 % vol.), K-feldspar (4–9 

mm and 25–30 % vol.) and 

biotite (2–6 mm and 10–15 % 

vol.) 

Apatite, zircon, 

opaque minerals and 

monazite. 

San Pedro el Apóstol Church, 

Royal Monastery of San 

Lorenzo de El Escorial, 

Encarnación and Descalzas 

Reales Monasteries at 

Madrid. Royal Palace at 

Madrid y Moncloa Palace 

(restoration) 

 

 

 

Table 2. Pre- and post-FT test values of effective porosity and bulk density in four granite 

varieties 

Granite 

Cycle 0 Cycle 280 

Δ Weight (%) 
Δ Effective 

porosity (%) 

Δ Bulk density 

(%) 
Effective 

Porosity (%) 

Bulk density 

(kg/m3) 

Effective 

porosity (%) 

Bulk density 

(kg/m3) 

AL 0.8±0.08 2668±18 0.9±0.22 2 660±7 -0.9 10.5 -0.3 

CA 1.2±0.20 2602±16 1.3±0.18 2 596±45 -0.6 6.0 -0.2 

CO 0.7±0.12 2629±13 0.8±0.16 2 620±5 -0.6 7.1 -0.3 

ZA 1.7±0.06 2657±15 1.9±0.01 2 640±26 -1.1 11.6 -0.6 
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Table 3 Linear crack density (LCD) for four granite varieties, before FT testing and after 70, 140, 

210 and 280 cycles 

Linear crack density by number of FT cycles (cracks per mm) 

Granite 0 70 140 210 280 Δ 0 to 280 (%) 

AL 1.1 1.3 1.44 2.48 3.22 193 

CA 1.82 2.94 3.14 3.4 3.76 107 

CO 0.92 1.36 1.52 -- 2.3 150 

ZA 1.2 1.58 3.02 3.8 3.94 228 

 

Table 4: Inter- and intracrystalline linear crack density (LCD) after FT testing for four granites.  

Linear crack density (cracks per mm) by FT cycle fracture type 

Granite 
0 cycles 70 cycles 140 cycles 210 cycles 280 cycles Δ 0 to 280 

(%) Inter 

Δ 0 to 280 

(%) Intra Inter Intra Inter Intra Inter Intra Inter Intra Inter Intra 

AL 0.6 0.5 0.82 0.48 0.92 0.52 1.14 1.34 1.68 1.46 180 192 

CA 1.34 0.42 1.66 1.28 1.5 1.64 1.62 1.78 1.74 2.02 30 381 

CO 0.54 0.34 0.76 0.56 0.86 0.64 - - 1.06 1.2 96 253 

ZA 0.76 0.42 0.68 0.84 1.06 1.78 1.36 2.36 1.22 2.54 61 505 

 

Table 5. Number of intra- and intergranular microcracks (affecting a line of 50 mm) in quartz and 

feldspar for four granites 

Granite Microcracks 

type 

Quartz microcracks  

0 cycles 70 cycles 140 cycles 210 cycles 280 cycles Δ (%) 

AL 
 Inter 18 20 18 21 29 61 

 Intra 4 10 7 18 29 625 

CA 
 Inter 33 46 28 37 37 12 

 Intra 11 33 35 43 46 318 

CO 
 Inter 13 26 20 - 18 38 

 Intra 10 19 17 - 18 80 

ZA 
 Inter 16 20 21 27 22 37 

 Intra 6 24 39 37 42 600 

Granite Microcracks 

type 

Feldspar microcracks  

0 cycles 70 cycles 140 cycles 210 cycles 280 cycles Δ (%) 

AL 
 Inter 12 20 27 29 39 225 

 Intra 21 14 19 42 34 62 

CA  Inter 34 37 47 44 46 35 
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 Intra 10 31 47 46 53 430 

CO 
 Inter 13 12 23 - 31 138 

 Intra 7 9 15 - 39 457 

ZA 
 Inter 22 14 28 31 31 41 

 Intra 15 18 45 71 79 426 

 

Table 6. Pre- and post- FT test dynamic Young‘s moduli, Edyn (Darracott, 1976 ) (left) and static 

Young‘s moduli, Edyn (Sousa, 2014) (right) for four granites 

Edyn Darracott, 1976   Est  Sousa, 2014 

Edyn=ρ [3 Vp2-4Vs]/[(Vp/Vs)2-1]  Est=0.99 Edyn -0.92 

Granite 
Initial Edyn 

(MPa) 

Final Edyn 

(MPa) 

Initial Est 

(MPa) 

Final Est 

(MPa) 

AL 33612 26238 33275 25975 

CA 35377 33243 35023 32910 

CO 66838 62931 66169 62301 

ZA 27155 24393 26882 24148 

 

Table 7. Porosity and microporosity as determined by Hg intrusion for four granites: pre- and 

post-accelerated ageing  

Granite 
Porosity (%) Microporosity (%) 

∆ (%) 

Porosity 

∆ (%) 

Micro-

porosity 0 cycles 280 cycles 0 cycles  280 cycles 

AL 0.44 0.5 0.31 0.36 13.6 16.3 

CA 0.95 0.96 0.67 0.77 1.1 15.1 

CO 0.59 0.47 0.17 0.22 -20 25.4 

ZA 1.4 1.48 1.06 1.14 5.5 7.6 
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Highlights 
 

 

It‘s required to have a correct unification according to the FT test standards under more number 

of cycles. 

The analysis of microcracks with MF permits study their characteristics and quality. 

The granites with the highest initial fracture developed after FT test greater number of fractures. 

In granites, feldspars are mineral that generate the greatest number of fractures under FT test. 

The different texture in each granites determined differential decay. 




