Anisotropy effects and friction maps in the framework of the 2d PT model
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Abstract

We present a series of numerical simulations on the friction-anisotropy behavior and stick-slip dynamics of a point mass
in the framework of a 2d Prandtl-Tomlinson model. Results for three representative surface lattice are shown: square,
hexagonal and honeycomb. Curves for scan angle dependence of static friction force, and kinetic one at 7' = 0 K and
T = 300 K are shown. Friction force maps are computed at different directions.
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1. Introduction

The one-dimensional Prandtl-Tomlinson model has been
demonstrated to be a reference model to the theoretical
study of friction at the atomic level [1, 2, 3]. It gives ac-
count for the universally observed stick-slip phenomena in
friction and allows to qualitatively predict many of the
characteristics of the observed friction vs velocity curves
found in friction force microscopy experiments. Most stud-
ies using the PT model have been restricted to the 1d do-
main. However, material surfaces are bidimensional, a fact
that has unavoidable consequences. Perhaps, the most im-
portant feature is the dependence of the friction force with
the direction of motion of the tip. Sometimes, it has been
observed that the tip follows a straight line, which vali-
dates the use of a 1d model in many cases. However, there
exist other important situations where this is not the case.

Recent experiments have shown important variations
in the atomic friction force for different sliding directions [4,
5, 6]. Two possible mechanisms for this effect have been
proposed. On the one hand, commensurability and in-
commensurability effects in the sliding contatct can pro-
duce important differences in the friction force [7]. On the
other hand, anisotropy effects arise due to the symmetry
properties of the substrate [8].

Despite its importance, there are few systematic stud-
ies of the behavior of the friction force with the direction
of sliding of the support. Because of experimental diffi-
culties, such as sudden twisting of the tip termination [9]
or wearing and contamination occurring after prolonged
scanning, highly reproducible measurements of the fric-
tional force with the scan angle are not currently available.
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Some experimental work at this respect have analyzed the
behavior of the frictional force in quasi-crystalline sur-
faces [10, 11, 9], and on molecular complexes [12]. Thus,
theoretical studies of anisotropy in the friction force over a
wide type of lattices are important sources of information
to understand such effects.

2. Model

In the framework of the 2d Prandtl-Tomlinson (PT)
model, the motion of a sharp tip over the surface is de-
scribed as the motion of a single particle of mass m elasti-
cally coupled to a rigid support which moves over a 2d
surface in a given straight direction at certain velocity
vs(R) = (vg,vy). The scan direction of the support is
given by the polar angle ¢ = tan™'(v, /vs).

The dynamics of the system, including thermal effects,
is described by a Langevin type of equation,

d*r dr  OU(R,r)
J— — . 1
m +my o £(t) (1)
where 7 = (z,y) is the position vector of the tip and

R(t) = (R, Ry) = (vst,vyt) is the position of the sup-
port. The potential term U(R,r) = g [R(t) — 7> + V(r)
accounts for the effective elastic tip-support interaction
and the tip-substrate potential. In our simulations we will
use vy = 25 nmm/s, m = 2 x 1072 kg and a damping large
enough to ensure overdamped dynamics of the system. It
is common to measure the competition between the elas-
tic and the substrate potential in terms of the parameter
n = 4m2Uy/ka?, where Uy is related to the amplitude of
the substrate potential. We use Uy = 0.7 eV and n = 7 for
all the cases.

Following the experimental procedure, in our simula-
tions we will continuously move forth and back the support

December 2, 2013



.
L

Figure 1: Underlying atomic structure and tip-substrate surface po-
tential for a) the square; b) the hexagonal; and ¢) the honeycomb
lattices. Note that the tip will try to move following the lattice min-
ima positions and avoiding the surface atoms, that correspond to
potential maxima.

tracing a series of scan lines and covering a square region
of the surface. Different angles will be explored by rotating
the substrate potential. It is important to mention that
in some cases initial conditions dependence appear and re-
sults can be different from simulations made using other
protocols.

We will restrict below to three types of surfaces shown
in Fig. 1. The NaCl(001) surface can be modeled by a
square symmetry potential

V(x,y) = —Up(cosT + cosy), (2)

where Z = 27z /a and § = 27y/a. The unit cell parameter
a = 0.3988 nm.

The second example we will study here is the case of
highly oriented pyrolytic graphite (HOPG), which can be
modeled with an hexagonal symmetry surface lattice [7],
see Fig. 1(b). This potential can be written as

Viz,y) = —U [2005 (#) cos <\%) + cos <\2/y§>} 3)

with unit cell a = 0.246 nm.
In addition we will study a surface with honeycomb
symmetry [13], given by

V(,y) = 0.80 Up B S (%) o <g> - %COS (?ﬂ

X §+cos x cos ngz +lsin ﬁJrz
2 V3 33 2 3 6/

In this case we also choose a = 0.246 nm.

To determine the static friction force Fyg, is enough to
know the equilibrium positions of the point mass m as a
function of the support coordinates [8, 14]. The stability
region is obtained after resolving the equation given by
VU (r) = 0 and the static friction force is reached when the
tip position becomes unstable. Starting from this equation
it is possible to derive relation for the static friction as a
function of the support motion direction.

The kinetic friction of the system can be calculated at
small or zero T and for small velocities. In this case, the

tip remains most of the time stuck to a potential mini-
mum which becomes unstable at some point due to the
motion of the support. Then the tip slides to another of
the accessible minima of the system.

To determine the values of the kinetic friction force we
have numerically solved the equation of the dynamics of
the system and computed the value of the projection of the
force F(r, R) = k(R(t) — r) along the direction of motion
of the support

Fyroj = Fy cos(6) + F sin(9). (5)

The kinetic friction is then computed as the mean value
of this projection Fj, := (Fpro;) (We average over around
4000 lattice constants).

3. Results

3.1. Square lattice: the NaCl case

Figure 2(a) shows the static (black squares) and the
kinetic (blue circles for 0 K and red circles for 300 K sim-
ulations) for the NaCl case. In this case our numerical
results can be compared to previous analytical ones. As
shown in [15, 14] the static force in the > 1 limit is given

by
1 o o
Fs:27onx{mw) (0° < ¢ < 45°),

6
a G (45° <6 < 90%) )

Thus, it can be seen that the static force shows a minimum
for ¢ = 0° and a maximum for ¢ = £45°.

Regarding the kinetic friction force, its angle depen-
dence can be written as [15]

F = Fi(0°) (cos ¢+ | sing |) . (7)

The kinetic friction force Fj has a minimum for ¢ = 0°
[this direction is marked as 1 in Fig. 2(a)] and a maximum
at ¢ = +45° (direction 2 in figure). In Fig. 2(b) and (c)
we can follow the tip motion in each case. For zero angle
the tip follows a straight line from minimum to minimum
over the saddle-point potential positions. This is different
for other angles. In particular at £45° as observed in the
figure the tip advances following a zig-zag pattern avoid-
ing potential maxima and exploring other regions of the
potential landscape. A maximum value of the kinetic fric-
tion force is obtained for this particular direction. Com-
paring the maximum and minimum values of the static
and kinetic friction, an anisotropy ratio Fyuau/Fmin = V2
is found in both cases.

We have also made finite temperature simulations. If
thermal effects are introduced in the system, a general
decreasing of the friction force curve is observed. This re-
duction is due to the thermal activation of the tip over the
overall potential barrier, which anticipates the slip events.
Recent theoretical works [16], have found that the thermal
behavior of the friction force in a square symmetry system

shows a good agreement with [T In(C T)]Q/ 3 law, initially



Figure 2: Square lattice results at 0 and 300 K. a) Computed static (black squares) and kinetic (blue and red circles for 0 and 300 K
respectively) friction force versus the scan angle. Lines correspond to theoretical predictions. Dashed vertical lines mark the 0° (numbered
as 1) and 45° (line 2) directions, that correspond to maximum and minimum values of the force. b) and c) show traces of the tip trajectory
at the two selected directions and for 0 and 300 K. From d) to g) we show the computed friction maps at 0° [T=0 K in d) and T=300 K in

e)] and at 45° [T=0 K in f) and T=300 K in g)].

ascribed to unidimensional systems. In 2d, thermal effects
also introduce a dispersion in the tip trajectories which
does not notably affect its basic pattern. Thus, the tip tra-
jectories at T' = 0 K, are just disturbed by thermal noise at
T =300 K, Fig. 2(b) and (c). In this case the global ther-
mal effect is to decrease F}, preserving the form of Fj(¢).
This point is explicitly shown in Fig. 2(a) where we see
that the angle dependence of the kinetic friction given in
Eq. (7) is preserved. Thus an important anisotropy effect
is also expected at T'= 300 K in this lattice.

In addition we have computed the 2d friction maps
(without and with temperature) of this structure for the
two chosen directions, following the procedure explained
in Sec. 2, Figs. 2(d)-(g). The maps show the measured
kinetic friction force as a function of the support position
given by (R, Ry). The map at ¢ = 45° of Fig. 2(f) clearly
reproduces the structure of the underlying lattice. The
presence of thermal effects just introduces an amount of
noise in the resolution of the friction map, figure 2(g).
Regarding the 0° direction, the situation is quite different.
It can be seen that now the lattice structure is not totally
shown, Figs. 2(d) and (e). The difference between both
patterns can be understood from the differences observed
in the tip motion for these configurations, figures 2(b) and
(¢). For 45°, the tip shows a zig-zag motion. In the 0° case
the tip makes its “stick-slip” advance following a straight
line, giving account of the friction map observed in Fig. 2.

3.2. Hexagonal lattice; the HOPG case

We present now results for an hexagonal lattice, see
Fig. 1(b). Results are summarized in Fig. 3. In Fig. 3(a)

we show the angle dependence of the static Fs(¢) (open
square) and kinetic Fj(¢) (blue circles for 0 K and red
ones for 300 K) friction force. The first thing that we
note is that the static force shows a weak dependence on
the scan direction, a behavior quite different from the one
found for the square lattice. According to our numerical
results Fs mae/Fsmin =1.015. Similar small variations in
the angle dependence of Fi has been recently reported for
smaller 1 values, (n = 2) [8].

The kinetic friction force F(¢) shows two singularities
at ¢ = 0° and ¢ = 30° (n =7). First one corresponds
to a straight motion of the tip, Fig. 3(b). The second
singularity is associated with a zig-zag motion where tip
alternates advances at 0° and 60°, Fig. 3(c). Excluding
the singularities, F} increases from ¢ = 0° to ¢ = 30°
with Fy maw/Fk,min ~1.09. This value is larger than the
one found for the static case but smaller than the one ob-
tained for the square lattice. Verhoeven et al. [7] reported
larger variation in the kinetic force (up to 20— 30%) in nu-
merical calculations for a sheet of material with hexagonal
symmetry and 93-atoms in the tip apex.

The addition of thermal effects reduce the value of the
kinetic friction force. At 300 K we still observe singulari-
ties at the 0° direction (and equivalent ones), but strongly
reduced. The one found at ¢ = 30° has nearly disap-
peared. In the same figure, panels (d) to (g) show the
friction force maps at the different angles and tempera-
tures.

We have to mention that the two super-cells pattern
reported by Sasaki et al. [17] for hexagonal lattice friction
maps is not observed in our simulations. The reason is
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Figure 3: Angle dependence of the friction for an hexagonal lattice at T'= 0 and T' = 300 K. (a) Static, Fs (squares), and kinetic, F}, (circles)
friction force. Singularities in the kinetic case are observed for ¢ = 0° (and equivalent values), 30° (and equivalent values). The structure has
a rotational symmetry of 60°. Dashed vertical lines show two specific directions labeled as 1 (0°) and 2 (30°). (b) and (c) show the trajectories
for the selected directions at 0 and 300 K. (d)-(g) are friction maps at the selected angles and temperatures. 7 =7.0 in all simulations.
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Figure 4: Friction force of the honeycomb structure. (a) Angle dependence of static (squares) and kinetic (circles) friction force. Dashed
vertical lines label two different directions for which singularities in the kinetic friction force are found. (b) and (c) show trajectories of the
tip for ¢ = 0° and 30° at 0 K and 300 K respectively. (d)-(k) Friction force maps for four directions at 0 and 300 K. In all the cases n = 7.

the use of a different procedure to trace the maps. We
have checked that this structure appears when friction map
is traced scanning only the forth direction of the friction
loops.

3.83. Honeycomb lattice:

We will show now results for a more complex struc-
ture, a honeycomb type which can be obtained from a

hexagonal lattice with two atoms per unit cell, Fig 1(d).
Figure 4(a) shows the dependence of the static force Fj
(squares) and the kinetic one F}, (circles) as a function of
the scan angle ¢. Dashed vertical lines show two different
values of the angle, corresponding to different symmetry
directions of the structure. Static friction force shows a
120° period. Due to the existence of two atoms in the
unit cells the value of the friction force depends on the



chosen initial potential minimum and two, 60° displaced
one from each other, identical curves appear. Anisotropy
effects are strong here since we find Fj 05/ Fs min ~1.48,
a large value. Regarding the kinetic force Fj, apart from
the observed singularities, the observed anisotropy ratio
Fy max/Frmin ~1.11. Thermal effects reduce friction and
reduce the singularities. Figures 4(b) and (c¢) show two
trajectories (0°, 30°) at 0 and 300 K.

To finish our study, Figs. 4(d)-(g) show the friction
force maps for the two given angles: ¢ = 0° [(d) (0 K) and
(e) (300 K)] and ¢ = 30°, figures 4(f) and (g). In a simi-
lar way that in the previous cases (square and hexagonal
structures), these differences can be understood analyzing
the point position distributions which result from the tip
dynamics. Figure 4(b) and (c) show such distributions for
¢ = 0° and ¢ = 30°. Evident differences in the point po-
sition are found. For ¢ = 30° there exists two different
patterns meanwhile for ¢ = 0° a single one is observed.

4. Discussion and conclusions

In conclusion, we have extended recent works where the
PT model was used to study the angle dependence of the
static and kinetic friction force of different surfaces. We
have also include thermal effects in our simulation work.

We see that the PT model is able to reproduce a se-
ries of interesting effects: from the strong anisotropy of
the square lattice (when comparing to the hexagonal one)
to the existence of a variable number of peaks in the fric-
tion curve depending on the scan angle. Such predictions
can be experimentally studied only by detailed AFM mea-
surements. Ultra-high vacuum conditions are required to
measure static and kinetic friction force variations at dif-
ferent angles.

An important point to consider is the occurrence of
tip-apex changes when the scan direction is varied. Un-
fortunately such problems are hard to avoid in an exper-
iment. An interesting possibility is to rotate the sam-
ple via piezoelements without breaking the vacuum con-
ditions [18]. Maintaining the cantilever and surface orien-
tation and changing the sliding direction introduce prob-
lems, as perturbations coming from the buckling of the
cantilever. This problem has been revisited in a recent
work by Campione et al. [19], where apparent variations
in the elevation produced by buckling were related to the
friction component along the cantilever axis and used to
determine the so-called hodograph friction of the surface.
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