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The optical absorption in a homogeneous and non-dispersive slab is governed by the well-known

Fabry-Perot resonances. We have found that below the lowest order Fabry-Perot resonance, there is

another absorption maximum due to the zero frequency mode whose peak frequency is given not

by the real part of the complex resonance frequency, as it is the case for all other resonances, but

by the imaginary part. This result is of interest, among other applications, for ultra thin solar cells,

as tuning the zero frequency mode peak with the maximum of solar irradiance results in an

increased efficiency. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4904027]

The theoretical description of the optical properties of a

homogeneous slab is a problem extendedly covered in optics

and electromagnetics textbooks. Conceptually, it plays a cen-

tral role in the design of solar cell devices, where the active

region is constituted by a single homogeneous layer.1,2 Very

recently, unexpected features on the absorption have been

reported when a lossy layer is placed on top of a metallic

substrate.3,4 In addition, inhomogeneous layers are fre-

quently approximated by a homogeneous layer of effective

material parameters through homogenization techniques.5 In

the ultra-thin limit (small thickness to wavelength ratio),

they accurately describe bidimensional materials, such as

graphene.6 Aside of its potential application, it is an intro-

ductory problem to illustrate fundamental concepts such as

field continuity conditions, interference, and phase delay. In

the case of a slab comprising a non-dispersive material, the

reflection and transmission spectra exhibit a series of max-

ima and minima which can be exactly described as an inter-

ference effect between the wave reflected or refracted by the

two interfaces bounding the slab. These spectral features are

the core of the Fabry-Perot (FP) interferometer and therefore

are known as FP resonances. From the constructive interfer-

ence condition, the maxima in the transmission spectrum fol-

lows a simple formula xm ¼ cmp=nL, being c the light

speed in vacuum, n the material refractive index, L the slab

thickness, and the integer m¼ 1,2,… the order of the FP res-

onance. If the material presents losses, these are described

by a complex refractive index. The absorption spectra result

in a series of peaks, where their maxima are coincident with

those of the transmission spectra. However, the peak posi-

tions are not accurately predicted anymore by the FP for-

mula, specially under strong losses. The illumination of a

dielectric layer can be seen as a scattering problem, and

hence the main features of the spectra can be attributed to

excitation of resonances. System resonances can be found as

the poles of the scattering matrix7 and, for the case of flat

surfaces, as the poles of the reflection or transmission coeffi-

cient.8 Moreover, as noted by Xia et al.,8 the pole condition

for the reflection coefficient is equivalent to the guidance

condition in the slab. A complete picture of the problem can

be attained from an earlier work. Kliewer, Fuchs, and Pardee

authored a thorough and detailed analysis of this problem in

a series of papers.9–11 The authors introduce the concept

of the light-line to distinguish between the radiative region

(solution above the light-line in the dispersion diagram) and

the non-radiative one (below the light-line). The latter are

described by the normal modes emerging from Maxwell’s

equations while the former are treated as virtual modes,12

i.e., solutions for which the fields are non-zero away from

the slab (r!1). Even though the study focusses on the par-

ticular physics of an ionic crystal slab (LiF), their main con-

clusions are valid to a dispersive slab. Indeed, the dispersion

relations are the same as those found for a step-profile planar

waveguide (Chapter 12, Ref. 13). Virtual modes are nowa-

days known as leaky modes in photonics14 and waveguide

theory,13 but also as Mie resonances15 or morphology-

dependent resonances.16 A proper treatment has only been

drawn in the theoretical framework of quasinormal modes

(QNMs), see Ref. 17 for a review and references therein.

In this letter, we carefully study the absorption spectrum

in a non-dispersive homogeneous slab. We show that at fre-

quencies below that of the “fundamental” FP resonance [see

Fig. 1(a)], the absorption does not go to zero in a trivial way.

In contrast, a maximum can be clearly identified. Relying on

the QNMs of a slab,18 it is possible to precisely get the posi-

tion and damping of all the resonances. However, the corre-

spondence with the absorption peaks can only be made for

those with ReðxmÞ;m ¼ 1; 2;…. The position of the maxi-

mum observed at smaller frequencies has no correspondence

with the real part of any quasinormal mode frequency. More

intriguing is the fact that the imaginary part of the zero-

frequency mode, Imðx0Þ, predicts its position [see Fig. 1(c)].

In first place, we use approximative theories based on the

QNM frequencies to reproduce the absorption spectrum of

an homogeneous slab.19 Although a good description of the

spectrum is obtained, they predict a trivial fade-out of the

absorption in the low frequency region. Only by properly

expanding the fields in the complete basis of the QNMs,20

the full spectrum can be reproduced. We will show later that

the spectral tuning of this peak with the solar irradiance max-

imizes the ultimate efficiency of a very thin solar cell.
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The absorption spectrum of a symmetric slab (same

front and back refractive indices) is straightforward to calcu-

late by invoking the principle of energy conservation and the

Fresnel formulae. In Figure 1(a), we present such spectrum

for a slab of refractive index N ¼ nþ ij ¼ 4þ i0:1 in air. A

series of symmetric peaks can be easily identified. Only the

maximum close to zero frequency exhibits an asymmetric

shape. To illustrate the correspondence with the transmission

and reflection features, we show in panel (b) the complemen-

tary spectra. It is clear that at the frequencies of the symmet-

ric absorption peaks, a maximum (minimum) in transmission

(reflection) takes place. This is not the case for the asymmet-

ric peak. A monotonous increase (decrease) of transmission

(reflection) is found around the peak maximum. The frequen-

cies of the QNMs can be derived from the dispersion rela-

tions of the guided modes. We will consider that the

incoming light is in the XZ plane, the slab is defined for

jxj � L=2, and the polarization is transversally electric. The

dispersion relations read: ikx1=kx2 ¼ tanðkx2L=2Þ for even

modes and �ikx2=kx1 ¼ tanðkx2L=2Þ for odd modes, where

kxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j � k2
z

q
is the x component of the wave vector in air

(1) or slab (2). At normal incidence (kz¼ 0) and for non-

dispersive material, it is easy to get the QNMs frequencies

just by substituting kx2=kx1 ¼ N in the dispersion relations.

Even and odd solution can be combined into a single

expression21

~xm ¼
xmL

2pc
¼ m

2N
� i

2pN
ln

N þ 1

N � 1

� �
; (1)

with m ¼ 0;61;62;…. Even (odd) modes correspond to

even (odd) m. Compact approximate expressions for the

real and imaginary part of ~xm can be found in the limit

j� n:

Re ~xmð Þ � 1

2n2
m n� j

p
2 n

n2 � 1
þ ln

nþ 1

n� 1

� �� �� �
; (2a)

Im ~xmð Þ � �1

2n2
m jþ n

p
ln

nþ 1

n� 1

� �� �
: (2b)

The red vertical lines in Figs. 1(a) and 1(b) denote Reð~xmÞ
for m � 0. The position of the symmetric peaks is perfectly

identified and corresponds to the well-known Fabry-Perot

resonances. Only the asymmetric peak is left without QNM

correspondence. However, Imð~x0Þ (indicated by a vertical

dashed line) matches the spectral position of the maximum.

This result can be generalized to other values of the refrac-

tive index as shown in Fig. 1(c). We have extracted the posi-

tion of the maximum of the asymmetric peak by inspection

of the absorption spectrum (lines) and superimposed to the

value of Imð~x0Þ for two j values and as a function of n. The

agreement between both results confirms that such prediction

is not obtained by accident. In order to unravel the nature of

this maximum and explain why a magnitude associated with

the damping ½ImðxÞ� predicts a peak position, we will pro-

ceed by exploring the contribution of each mode to the

absorption.

Fuchs et al. provided a detailed analysis of the optical

properties of a slab distinguishing between even and odd par-

ity fields.11 The fact that the slab is illuminated only from

one side breaks the mirror symmetry, and therefore, the

incoming light can couple to even and odd QNMs. Indeed,

the absorption can be decomposed into two non-interfering

contributions: A ¼ ð1� jP1j2Þ=2þ ð1� jP2j2Þ=2, where P1

and P2 stand for an arbitrary complex amplitude of the even

and odd fields, respectively. These amplitudes can be line-

arly expanded in terms of a complex frequency and the mate-

rial damping j. The absorption originated by the QNM m
results

Am ¼
2X00m x00m � X00m

	 

x� x0mð Þ2 þ x00mð Þ2

; (3)

where xm ¼ x0m þ ix00m and Xm ¼ X0m þ iX00m are the QNM

frequencies in presence ðj 6¼ 0Þ and absence (j¼ 0) of lossy

media, respectively. The total absorption results of adding up

the contribution of all QNMs. A comparison between the

exact absorption spectrum and that obtained through Eq. (3)

can be seen in Figure 2. The approximate solution reprodu-

ces quite accurately the FP resonances and goes to zero as

x! 0. The linear expansion is not capable to reproduce the

low frequency peak. A better approach could be obtained by

further expanding the fields to higher degree orders.

However, as noted by Fuchs et al.,11 increasing the complex-

ity of the approximate model will eventually minder its illus-

trative potential, resulting in an effortless attempt.

Complementary, we have used the coupled mode theory

(CMT), which is rooted in the coupling of modes. In general

terms, the modes to be coupled can be either propagating or

resonant. It results quite intuitive the description of how an

incoming wave couples to the resonances of a cavity.22 CMT

has been employed in the description of a guide resonance in

a photonic crystal slab,23 optical Fano resonances of nano-

structures,24 and light absorption of low-dimensional semi-

conductor nanostructures.19 Following the derivation of Yu

and Cao,19 the absorption due to the coupling with a QNM

of a slab can be written as

FIG. 1. Absortion (a) together with reflection and transmission (b) spectra

for a layer of refractive index N¼ 4þ i0.1. The vertical red dotted lines in

(a) and (b) indicate the real part of the quasinormal mode frequencies, while

the vertical blue dashed line indicates the imaginary part of the m¼ 0 quasi-

normal mode frequency. Panel (c) shows the match between the imaginary

part of the m¼ 0 quasinormal mode frequency (solid symbols) with the max-

imum position derived by inspection of the exact spectrum (lines).
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Am ¼
2Q�1

absQ
�1
rad

4 x=xm � 1ð Þ2 þ Q�1
abs þ Q�1

rad

	 
 ; (4)

where Qabs ¼ n=2j and Qrad ¼ x0m=2x00m. Fig. 2(a) shows that

the CMT also fails in reproducing the low frequency peak.

Finally, we introduce the QNM formalism with the aim

of finding a complete basis of functions that allow for

the expansion of the fields in an open cavity system.

Completeness can be rigorously proved for a one dimen-

sional cavity of refractive index n(x) fulfilling (i) a disconti-

nuity condition at the bounds of the cavity [0,L] and (ii) the

no tail condition, i.e., n(x)¼ n0 for x< 0 and x>L.20 Under

this assumptions, the transmission of cavities such one

dimensional photonic crystals has been studied.20,25

Extending the formalism to higher dimensions is rather

involved. Some progresses have been made relying on nu-

merical methods.26,27 The QNMs are defined by a set of

eigenfrequencies [see Eq. (1)] and eigenfunctions fm(x).

Considering the slab as a one dimensional open cavity illu-

minated from the left by an electric field Epðx; tÞ, the electric

field in the cavity can be expanded in the basis of QNMs:

Eðx; tÞ ¼
P

mamðtÞfmðxÞ. Applying the Fourier Transform,

the field can be expressed in the frequency domain
~Eðx;xÞ ¼

P
m~amðxÞfmðxÞ. Transmission can be exactly

derived noting that the electric field at the right surface

of the cavity is continuous with the transmitted field
~EðL;xÞ ¼ ~ETðL;xÞ. Hence, tðxÞ ¼ ~EðL;xÞ= ~Epð0;xÞ. The

final expression results20

t xð Þ ¼
P

m~am xð Þfm Lð Þ
~Ep 0;xð Þ

¼ f
X

m

�1ð Þm

x� xm
: (5)

A similar procedure can be followed for the reflection

coefficient

r xð Þ ¼
~E 0;xð Þ
~Ep 0;xð Þ

� 1 ¼ f
X

m

1

x� xm
� 1: (6)

The global factor is defined as f¼ 2in0c/DnL, where

Dn ¼ n2 � n2
0. This expression fails in reproducing the exact

reflection coefficient. Such disagreement results from the

impossibility of the QNMs to cover the contribution of the

incoming field. Note the different boundary conditions at the

left and right surfaces of the cavity. This limitation remains

unsolved although it has been reported by Ho et al. in

Ref. 28. It is possible, however, to approximate the value of

the field at x¼ 0 by a value nearby within the cavity using

the field expansion ~Eðx;xÞ. The resulting absorption spec-

trum is shown in Fig. 2(b) together with the exact solution.

In contrast with the spectra shown in Fig. 2(a), the peak

appearing at low frequencies is accurately reproduced by the

QNM theory. The main conclusion derived from this calcula-

tion is that the nature of such peak is well described by the

set of QNMs. There is no need to explore for other type of

Maxwell’s solutions to describe its nature, like, for example,

surface modes.

With the QNMs expansion, it is possible to get approxi-

mately the contribution of each mode to the absorption

spectrum. In Fig. 2(b), we depict by colored lines the contri-

bution of the 0�m� 4. The left-most peak gets naturally

described by the m¼ 0 order resonance. Although the coeffi-

cient of the m¼ 0 mode appears as a Lorentzian-like func-

tion [see Eq. (5)] like any of the other modes (m 6¼ 0),

its shape in the absorption spectrum appears as an over-

damped peak. This results from the fact that the limit of

L! 0 physically forces R! 0 and T! 1, hence the absorp-

tion must be zero. In addition, for m¼ 0, it can be easily veri-

fied the overdamped condition from Eq. (2), Reð~x0Þ=Imð~x0Þ
� 2j=n� 1.29 The position of the resonance is indeed given

by Reð~x0Þ � 0; however, it is of little interest given that the

absorption maximum is notably displaced from this point. In

Fig. 1(c), we show that the position of the absorption maxi-

mum is given by Imð~x0Þ. Such finding results from the fact

that the resonance is close to the x� 0. As the absorption

must be zero there, the dominant contribution takes place at

the right side of the peak. The peak width is given by

2Imð~x0Þ. Hence, the maximum results to be located at

Reð~x0Þ þ Imð~x0Þ � Imð~x0Þ. Thus, a spectral maximum

position given by the imaginary part of the resonance fre-

quency instead of its real part is a result certainly

unexpected.

H€agglund et al. provide additional particularities of this

absorption maximum by analysing the denominator of the

transmission and reflection coefficients.5 They look for the

value of the refractive index which maximizes the absorption

value. Their analysis complements our findings; it is not only

possible to determine the peak position but also the material

properties which maximize the absorption. Moreover,

FIG. 2. (a) Comparison of the exact absorption spectrum to approximate sol-

utions. Absorption from a linear expansion of the fields (red solid line) and

coupled mode theory (blue dashed line). (b) Absorption spectrum obtained

by computing the transmission with Eq. (5) and approximating the reflection

with the value of ~Eðx;xÞ at x/L¼ 0.01. The coloured lines represent the

absorption considering only the QNM m. The shaded region is the exact

solution.
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H€agglund et al. show that the maximum is located at n � j.

In this limit, the permittivity is �0 ¼ n2 � j2 � 0, a regime

characterized by a flat reflectivity and absorption. Only the

zero-frequency mode survives for L=k� 1.

Tayloring the position of the zero-frecuency peak is rel-

evant for ultra-thin film solar cells,30,31 because the absorp-

tion limits the photocurrent and hence the efficiency. We

have calculated the ultimate efficiency32 to illustrate the

impact of the zero-frequency mode on a solar cell. We con-

sider it as a single slab of a-Si. The results as a function of

the slab thickness are shown in Fig. 3. The efficiency suffers

a steep decrease as a result of the thinning of the slab. At

very small thicknesses (<20 nm), a maximum appears. Such

maximum can also be reproduced for the case of a non-

dispersive slab of refractive index N¼ 4þ i0.35. It appears

because of the spectral tuning of the zero-frequency peak

maximum to the maximum of the solar irradiance AM 1.5.

We also show in Fig. 3 the ultimate efficiency resulting from

the computation of the absorption by the CMT. The contri-

bution of such mode is certainly notable in this regime and

must be accurately incorporated in any approximate solution

employed for designing devices based on light absorption. In

Fig. 3(b), we show the absorption spectra for thicknesses

L< 20 nm on top of the AM 1.5 solar spectrum. As the thick-

ness increases, the maximum redshifts. It results in a transi-

tion from a spectral match to a large detuning. For the actual

a-Si material, such detuning is not obvious to identify [see

Fig. 3(c)] as a result of the material dispersion. In particular,

j in a-Si takes a high value at short wavelengths and dimin-

ishes monotonically towards longer wavelengths. It is, how-

ever, still possible to note the change in the slope of the

absorption spectra as L grows, which is related to the redshift

of the peak maximum.

In summary, we have identified an absorption peak max-

imum which behaves differently from the well know Fabry-

Perot resonances. It is not linked to a maximum in transmis-

sion and exhibits an asymmetric lineshape. We have pre-

sented three different methods to explore the absorption

spectrum based on the structure of leaky modes or

QNMs. Only the fully rigorous theory of QNMs was able to

reproduce such maximum and explain its nature. Its position

can be determined from the imaginary part of the zero-order

QNMs frequency, which contrast with the common belief

that only the real part contains information on peak posi-

tions. Finally, we have shown that for extremely thin slabs,

such maximum is responsible of an increase in the ultimate

efficiency making it roughly equal to that of a doubly thicker

slab. When combined with other strategies for boosting the

absorption in solar cells, e.g., light-trapping structures, it will

contribute to increase the total efficiency of the device.
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