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Projector augmented wave calculation of x-ray absorption spectra at the L2,3 edges
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Jussieu, F-75252 Paris, France and Instituto de Ciencia de Materiales de Aragón and Departamento de Fisica de la Materia Condensada;

Universidad de Zaragoza - Consejo Superior de Investigaciones Cientı́ficas, E-50009 Zaragoza, Spain

Matteo Calandra
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We develop a technique based on density functional theory and the projector augmented wave method in
order to obtain the x-ray absorption cross section at a general edge, both in the electric dipole and quadrupole
approximations. The method is a generalization of Taillefumier et al., [Phys. Rev. B 66, 195107 (2002)].
We apply the method to the calculation of the Cu L2,3 edges in fcc copper and cuprite (Cu2O), and to
the S L2,3 edges in molybdenite (2H-MoS2). The role of core-hole effects, modeled in a supercell approach,
as well as the decomposition of the spectrum into different angular momentum channels are studied in detail. In
copper we find that the best agreement with experimental data is obtained when core-hole effects are neglected.
On the contrary, core-hole effects need to be included both in Cu2O and 2H-MoS2. Finally we show that
a non-negligible component of S L2,3 edges in 2H-MoS2 involves transition to states with s character at all
energy scales. The inclusion of this angular momentum channel is mandatory to correctly describe the angular
dependence of the measured spectra. We believe that transitions to s character states are quantitatively significant
at the L2,3 edges of third row elements from Al to Ar.
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I. INTRODUCTION

X-ray absorption near edges structure (XANES) spec-
troscopy is a very powerful tool for condensed matter studies.
Its chemical and spatial selectivity allow solving crystallo-
graphic structures and investigating the properties of materials,
such as magnetism or orbital hybridization. Unambiguous
interpretation of x-ray spectra requires theoretical insight, in
order to determine the origin of spectral features and to under-
stand the effect of the core hole on the measured spectrum.

Several theoretical approaches, either in real space1,2

or based on periodic boundary conditions,3–7 were proven
successful to describe XANES spectra in molecules
and solids at the density functional theory (DFT) level.
All-electron-based implementations,4 the most accurate within
DFT, suffer from significantly larger computational costs than
those required by pseudopotential-based methods.5–7 In this
respect, the advantage of pseudopotential-based methods is
that they allow one to tackle larger systems, e.g., composed
of several hundreds of atoms. In pseudopotential-based
methods the atomic core potential is replaced by a fictitious
one, smoother and less singular, hence requiring a smaller
representation in terms of plane waves and consequently less
computation time. As a consequence, in order to describe
properties that depend on core states, like XANES, one needs
to reconstruct the all-electron wave function of the empty
valence states. This is achieved in the framework of the
projector augmented wave (PAW) method.8

The PAW approach for the calculation of x-ray absorption
spectra has been implemented in some freely available
(for K edge only)5 first-principles codes, commercial code
distributions,6,9 and in other nondistributed software.7,10,11 The
PAW method has been proven successful in interpreting experi-
mental data,7,10,12–20 thanks to its ability to perform the spectral

analysis of the calculated XANES. Most of the applications
of the existing methods involve K-edge calculations, where
usually core hole is reliably modeled in a supercell approach
and electronic excitations are well described by DFT.

PAW studies at L2,3 edges are not numerous.6,21,22 One
of the main reasons is that, contrary to K edges, many-
electron effects are common at L2,3 edges. For instance,
in the case of L2,3 edges of transition elements and M4,5

edges of rare earths, excitations can no longer be treated at
the DFT level, due to the breakdown of the single-particle
picture.23 Consequently, more sophisticated methods based
on time-dependent DFT,24,25 multichannel multiple scattering
theory,26,27 or the Bethe-Salpeter equation28 need to be em-
ployed. However, none of the aforementioned first-principles
methods can rigorously deal with open shells. In this particular
case, the ligand field multiplet theory29 (LFM) can successfully
interpret the spectra, albeit not from first principles.

When the states probed by the spectroscopy are
delocalized—K and L1 edges in general (with the exception
of very light materials), L2,3 and M2,3 edges of elements
belonging to the 4d and 5d series—x-ray absorption spectra
can usually be interpreted in the DFT framework. In these
cases, the final states, mainly of p (K and L1) or d character
(L2,3 and M2,3 edges) show limited correlation effects and, as
a consequence, the structures in a XANES spectrum can be
associated with the Kohn-Sham states.

In this work we focus on the description of L2,3 edges within
DFT and PAW frameworks. The previous work in Ref. 30 is
generalized to the case of a general edge, for a spin-orbit split
core level. In a first step, we validate our method by calculating
Cu L2,3 edges of metallic Cu. We study the convergence of the
spectra with respect to the number of projectors considered in
the reconstruction step, i.e., the completeness of the projector
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basis. It is generally agreed5,30 that at K edges two linearly
independent projectors per angular momentum channel are
sufficient as to ensure an accurate reconstruction of the 1s

state. Albeit a prerequisite for PAW applications, other edges,
and L2,3 in particular, have not benefited from similar studies.

Next, we switch to the more challenging cases of the Cu
L2,3 edges in cuprite (Cu2O) and S L2,3 edges in molybdenite
(2H-MoS2). For both compounds, we perform a detailed
analysis of the electronic origin of the spectral features and
we assess the effect of the 2p core. Concerning Cu2O, we
investigate how the empty states probed by the spectroscopy
are influenced by the inclusion of the Hubbard U term. In
the case of the hexagonal 2H-MoS2 we interpret the effect
of the polarization of the beam, i.e., the x-ray natural linear
dichroism (XNLD), by decomposing the spectra into various
angular moment channels.

The article is organized as follows. In Sec. II we recall for-
mal aspects of the x-ray cross-section calculation in the PAW
formalism. In Sec. III we give the technical details of the calcu-
lations. Next, in Sec. IV, we present results for the three afore-
mentioned compounds. Finally, in the appendix we include
the full analytical expression of the electric dipole (E1) and
electric quadrupole (E2) matrix elements for a general edge.

II. X-RAY ABSORPTION CROSS SECTION

In the single-particle approximation, the x-ray absorption
cross section reads as follows:31

σ (ω) = 4π2αh̄ω
∑
f,i

|〈ψf |Ô|ψi〉|2 δ(h̄ω − Ef + Ei), (1)

where ψi is the one-particle wave function of the core level
and ψf is the all-electron one-particle (empty) final state. The
corresponding electronic energies are Ei and Ef , h̄ω being
the photon energy and α is the fine structure constant. The
transition operator is taken as

Ô = D̂ + Q̂,

where D̂ = ε̂ · r andQ = i
2 (ε̂ · r)(k · r) are the electric dipole

and quadrupole operators, respectively. The quantities ε̂ and k
are the polarization vector and the wave vector of the incident
x-ray beam, respectively, and r is the position coordinate of
the electron. In this work we only deal with the pure dipolar
absorption term (E1E1). The quadrupolar contribution (E2E2)
is generally negligible at the L2,3 edges of transition elements,
but may become important in rare-earths compounds. E1E2
cross terms appear in optically active materials.

In the next paragraphs we briefly introduce the PAW method
applied to the calculation of the x-ray absorption cross section.
We closely follow Refs. 30 and 5.

In a pseudopotential calculation the pseudo-wave-function
of the crystal |ψ̃f 〉 is obtained at the end of the self-consistent
field run. In order to get the all-electron wave functions |ψf 〉
needed in Eq. (1) all-electron reconstruction8 needs to be
performed. As shown in Refs. 30, 5, and 32 the cross section
may be written as

σ (ω) = 4π2αh̄ω
∑
f,i

|〈ψ̃f |φ̃R0〉|2δ(Ef − Ei − h̄ω), (2)

where

|φ̃R0〉 =
∑

p

|p̃R0,p〉〈φR0,p|Ô|ψi〉. (3)

In Eq. (3), |φR0,p〉 (|φ̃R0,p〉) are the all-electron (pseudo-) partial
waves centered on the absorbing atom. The quantities 〈p̃R0,p|
are a complete set of projector functions, labeled by the index
p. The following conditions are satisfied:

φ̃R,p(R) = φR,p(R) outside 	R, (4)

〈p̃R,p|φ̃R′,p′ 〉 = δRR′ δpp′ inside 	R. (5)

The quantity 	R is the so-called augmentation (or core) region
centered on atomic sites R. In our case, the all-electron partial
waves are chosen to be the solutions of the Schrödinger
equation for the isolated atom.

It is worthwhile recalling that Eq. (2) holds under the
assumption that the initial state is localized on the absorbing
atom, so that the overlap between the state Ô|ψi〉 and |φ̃R〉
can be neglected if R �= R0. Furthermore, while Eq. (3) is in
principle valid for a complete set of projectors, it converges
after a few terms.

In the Appendix (Sec. A) we derive the expression of the
transition matrix element 〈φR0,p|Ô|ψi〉 for a general edge.

The single-particle interpretation of x-ray absorption is
no longer pertinent in the presence of a strong interaction
between the photoelectron and the core hole. For the E1E1
(electric dipole) channel, this is the case when the spin-orbit
splitting of the initial state is small and the adjacent edges
overlap. A notable example are the L2,3 edges of transition
elements25 or M4,5 edges of rare earths, no longer obeying
the statistical branching ratio.23 At K edges, neglecting the
interaction between the photoelectron and the core hole leads
to the overestimation of the energy position of the E2E2
(electric quadrupole) spectral structure.16 Often, the angular
dependence of the E2E2 structure is inappropriately described
in the single-particle picture.14

III. TECHNICAL DETAILS

The calculation of a general edge was implemented in
the XSPECTRA code5 belonging to the Quantum Espresso
distribution.33 The method was applied to the calculation of
x-ray absorption spectra of fcc Cu (L2,3 edges of Cu), Cu2O
(L2,3 edges of Cu), and 2H-MoS2 (L2,3 edges of S).

The experimental lattice parameters are used for all three
systems: a = 3.600 Å for fcc Cu34 (space group Fm3̄m),
a = 4.268 Å for Cu2O35 (space group Pn3̄), and, finally,
a = 3.161 Å and c = 12.295 Å for 2H-MoS2

36 (space group
P63/mmc).

For Cu, Mo, and O, we used ultrasoft pseudopotentials37

including semicore states for Cu and Mo. We use a Troullier-
Martins38 norm-conserving pseudopotential for S. Three,
respectively, two projectors for the l = 2 channel, as well as
one projector for the l = 0 channel were needed for the proper
reconstruction of core states for the absorbing Cu and S atoms.

Cu and Cu2O are described within the generalized gradient
approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE)
parametrization.39 In the case of 2H-MoS2 we used both the
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local density approximation (LDA) via the Perdew-Zunger
(PZ) functional40 and PBE, without any detectable difference.

The kinetic energy cutoff of the wave-function expansion
is chosen as 30 Ry in Cu, 60 Ry in Cu2O, and 50 Ry in
2H-MoS2. The charge density cutoff is set 10 times larger
then the kinetic energy one.

In the case of metallic Cu, integration over electron
momentum is performed by using a uniform 20 × 20 × 20 grid.
In the case of insulating Cu2O and 2H-MoS2 we use 20 × 20
× 20 and 10 × 10 × 5 electron-momentum grids, respectively.

The core hole is described within a static approximation.
A pseudopotential with a core hole is generated for the
absorbing atom. Furthermore, a supercell is used to minimize
the interaction between the absorbing atom and its periodic
images. We use a 3 × 3 × 3 supercell for Cu, a 2 × 2 × 2 one
for Cu2O, and finally a 2 × 2 × 1 supercell for 2H-MoS2.

In the XANES calculations, electronic integration was
performed on a 30 × 30 × 30 grid for Cu and on a 20 × 20 ×
10 grid for 2H-MoS2. In the case of Cu2O we use the same
grid as in the self-consistent calculation. These grids refer to
the unit cell when no core hole is involved. For supercells the
grids are rescaled, due to the smaller Brillouin zone.

The spin-orbit coupling on the final (valence) states probed
by the spectroscopy is neglected. Although full relativistic
calculations are needed to describe heavy transition elements
of the late 4d and the 5d series, our approximation is reason-
able for the applications presented in this paper. In particular,
the spin-orbit coupling acting on the 3d states of transition
elements subjected to the crystal field is negligible.41,42

However, the description of the spin-orbit coupling for the
core states is mandatory in order to distinguish between related
edges as the L2 (transitions from 2p1/2) and L3 (2p3/2), M2

and M3, or M4 and M5. In the appendix we show the transition
matrix elements calculated accordingly.

The radial parts of the 2p1/2 and 2p3/2 core wave functions
are taken as identical, a very good approximation in the
applications treated in the present paper, as it can be explicitly
verified from a DFT relativistic all electron calculation on the
isolated atom. We account for the spin-orbit splitting of the
2p states by shifting the calculated spectra by the value of
the energy separation between the L3 and the L2 edges. This
value can be either taken from a DFT relativistic all-electron
calculation on the isolated atom or from experiments. The
two choices are equivalent when the core hole can be treated
at a DFT level. On the contrary, strong Coulomb interaction
between the 2p hole and the valence d electrons may lead to an
energy separation between the L3 and the L2 which is different
from the value of the core level spin-orbit splitting.28 In the
absence of spin-orbit coupling on the d states, the L2 and L3

edges have similar structures, while the intensities are related
by a factor of 2 (the statistical branching ratio), according to
the manifold of the initial states.

The occupied states are eliminated from the XANES
spectra by introducing a cutoff, which appears implicitly
in Eq. (1) in the summation on the empty states f . The
cutoff is chosen at the calculated Fermi level or at the lowest
unoccupied band, depending on the metallic character of the
compound. In the presence of a core hole, the self-consistent
calculation is performed on a charged cluster. This means
that the energy cutoff is calculated by assuming that the

0

Γhole

EF Ectr

Γmax

Γ f
 

Ω

FIG. 1. The raw spectrum is convoluted with a Lorentzian of
acrtangentlike, energy-dependent width. EF is the cutoff energy, 
hole

is the spectral width at low energy, above EF , and 
max is the value
at high (infinite) energy. The inflection point is situated at Ectr.

photoelectron does not participate to the screening of the core
hole.

The XANES spectrum being calculated from stationary
Kohn-Sham states, a broadening must be applied in order to
account for the finite lifetime of the electronic levels involved
in the transition:

σ conv(	) =
∫ ∞

EF

dω σ (ω)
1

π


f (	)


f (	)2 + (h̄	 − h̄ω)2
. (6)

The Fermi level or the lowest unoccupied band energy is la-
beled EF . Subsequently, the raw spectrum σ (ω) is convoluted
with a Lorentzian having an energy dependent width 
f :


f (	) =
{

0, h̄	 < EF ,


hole + γ (	), h̄	 > EF .

The first term 
hole is the core-level width, taken as energy
independent since screening is treated statically. In practice
we use the standard, edge-dependent, tabulated values.43 The
second term γ (	) is the spectral width due to the final
state. In general, the spectral structures at the L2 edge are
broader than the ones at L3 due to the presence of an
extra desexcitation channel, the Coster-Krönig effect.44 Hence,
distinct convolution widths are needed at the two edges in
order to reproduce the spectral shape. Furthermore, to account
for inelastic scattering events (e.g., plasmons), a Lorentzian
with a more sophisticated energy dependence is sometimes
preferred to a steplike function. We choose the convolution
with an arctangentlike function, an empirical model close to
the Seah-Dench formalism:45

γ (	) = 
max

(
1

2
+ 1

π
arctan

(
e − 1

e2

))
, (7)

where e = (	 − EF )/(Ectr − EF ). The energy-dependent
broadening is bound between 
hole and 
max, the values at
low and, respectively, high (infinite positive) energies. The
inflection point of the arctangent is situated at Ectr. Figure 1
illustrates the generic form of 
f (	) and the significance of
the above parameters. In this work, the following values of

hole, 
max, and Ectr − EF have been used: 0.35, 4, 6 eV for
Cu; 0.22, 4, 9 eV for Cu2O, and 0.3, 7, 6.5 eV for 2H-MoS2.
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FIG. 2. (Color online) L2,3 absorption edges in metallic Cu.
Experimental data46 (dots) vs calculations: without core hole (thick
solid) and with half core hole (thin solid). The spectra are shifted
vertically for convenience.

IV. RESULTS AND DISCUSSION

A. Cu L2,3 edges in copper

To validate our implementation we first calculate L2,3 edges
for fcc Cu. In fcc Cu, the 3d states of the absorbing atom
are almost entirely occupied (atomic Cu is in nominal 3d10).
XANES at L2,3 edges probes the first empty d states just
above the main 3d occupied band. These states contribute
very weakly to the overall DOS and in a narrow energy
region. For this reason, and in agreement with the result in
Ref. 47, we find that an extremely dense k-point sampling
(electron-momentum grid) is needed to converge the x-ray
spectra (see the technical details section).

In Fig. 2 the calculated x-ray absorption (XAS) spectra
are compared to experimental data.46 The effect of the core
hole at the Cu L2,3 edges in fcc Cu was thoroughly tested. We
find that the best agreement between theory and experiment is
achieved by neglecting core-hole effects. The global intensity
mismatch at the L2 edge (the calculated intensities are less than
the measured one) is most probably due to the background
subtraction in the experimental spectrum. The inclusion of the
full core hole (not shown) shifts the weight of the d states at
several eV below the Fermi level and significantly decreases
their contribution above the Fermi level. Even with half core
hole, we find that the agreement with the experiment is worse
than in the case without core hole, with the first peak at the L3

being less intense than the second one (see Fig. 2).
Our analysis is in partial agreement with the previous

interpretation of XANES data on fcc Cu in Ref. 48, based
on the Korringa-Kohn-Rostoker method of band structure
calculation. The only notable difference between the two
calculations is that Ref. 48 produces full relativistic results.
In both calculations, the core hole was not included explicitly.
While the positions of the spectral structures agree in the two
calculations, it is no longer the case for the intensity of the
leading L3 peak. More precisely, the ratio between the leading
peak and the second L3 structure in the spectrum of Ref. 48 is
1.5 larger than in our calculations.

The reason for this disagreement is very likely
related to the procedure adopted to eliminate the occupied
states from the calculation. We find that the intensity of the
first peak in the spectrum strongly depends on this factor,
which is often a problem in metallic systems, due to the
absence of the gap in the electronic spectrum. As such, the
disagreement between the two calculations is not due to
fundamental methodological differences in the calculation.

Another difference with Ref. 48 concerns the estimate of
the magnitude of transitions from 2p to s states. In Ref. 48
it was estimated to be 5% of the total intensity, whereas
they are completely negligible according to our results. The
discrepancy may come from treatment of relativistic effects.

Note that the analysis of electron energy loss near edge
structure spectroscopy (ELNES) data,47,49 carried out with a
similar formalism to the one used in XANES, leads to the
conclusion that a partial half core-hole screening is necessary
to explain the experimental data. This apparent disagreement is
mostly due to the differences in the experimental XANES and
ELNES spectra, and not to our calculation, which actually
agrees fairly well with the ones featured in Refs. 47 and
49. Indeed, the first peak L3 peak in ELNES spectra47,49 is
smaller than the second one, opposite to XANES experimental
data46,48 (see, for instance, Fig. 2).

The fact that we achieve a very good description of the
experimental data by completely neglecting the core-hole
should be interpreted carefully. While one might be tempted
to say that in metallic systems the core hole is almost entirely
screened, we recall that at K edges this is not the case.5,50 It has
already been pointed out51 that it is unlikely to predict whether
a XANES calculation with core hole will agree better to the
experiment than the one without hole, due to the inadequacy
of the description of the core hole in the single-particle
approximation. Nevertheless, one can say that the 2p hole is
less profound than the 1s one and consequently less screened.
Therefore partial screening is more likely to be needed for the
description of L2,3 edges than at K edges.
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Cu L2,3 edges
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FIG. 3. Two distinct models for the convolution of spectra.
(Lower panel) Energy-independent (dashes) and arctangentlike
Lorentzian width (thin solid). (Upper panel) The corresponding
convoluted spectra for Cu L2,3 absorption edges: at constant width
(dashes) and arctangentlike (thick solid).
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FIG. 4. (Color online) Dependence of the calculated Cu L2 edges
on the core-level reconstruction: one (dashes), two (thin solid), and
three (thick solid) projectors for the l = 2 channel.

Figure 3 features the effect of the convolution procedure on
the shape of the L2,3 edge of Cu [see Eq. (7)]. The inclusion of
an energy-dependent convolution improves the agreement with
the experiment at the L2 edge. Indeed, a Lorentzian of constant
width (
hole) overestimates the resolution at high energies,
whereas the arctangentlike energy-dependent Lorentzian can
reproduce the correct broadening.

We recall that the sum in Eq. (3) formally involves an
infinite number of terms. However, experience demonstrated
that at K edges, two linearly independent projectors for the
l = 1 channel are enough in order to converge the E1E1
calculated XANES within the first ≈50 eV above the edge.5

The description of the E2E2 contribution sometimes requires
three projectors for the l = 2 channel, particularly when the
energy of the first projector is set at the one of the semicore
states. It is then not obvious that two l = 2 projectors are
sufficient for calculations of L2,3 edges, where the sampled
states have mostly d character.

Figure 4 shows the convergence of the L2 spectrum
with respect to the number of projectors with d character
considered. In particular, we set the first projector at the
energy of the DFT all-electron 3d states of atomic Cu in
neutral configuration. The second and third projector are at
2.5 Ry and 10.0 Ry higher energies. This choice leads to
linearly independent projectors. As shown in Fig. 4, the use of
a single projector underestimate the XANES cross section
already at energies just above the main L2 edge. The use
of additional projectors increases the calculated L2 XANES
at higher energies. Three projectors are by far sufficient to
describe the full L2 spectrum 50 eV above the edge.

In Ref. 6 the authors recall that Eq. (2) is not necessarily
exact for the 2p core level. Indeed, should the 2p wave function
no longer be confined within the augmentation region, Eq. (2)
is to be replaced with its more general form [see, for instance,
Eq. (5) in Ref. 30]. However, we find that in the case of Cu both
1s and the 2p core wave functions are well localized within
the augmentation region, hence the reconstruction according
to Eq. (2) is undoubtedly correct, provided that (i) a sufficient
number of projectors is included and (ii) the radius of the

-1.0

0.0

1.0

2.0

Γ X M Γ

E
n

er
g

y 
(e

V
)

0 1 2

DOS (states/eV/u.c.)

PBE
PBE+U

FIG. 5. (Color online) Electronic structure of Cu2O: PBE
(crosses) and PBE + U (circles) with U = 8 eV. In the right panel,
the electronic DOS is plotted: PBE (thin solid) and PBE + U (thick
solid). Positive energies are associated with empty states.

augmentation region 	R0 is large enough to confine the 2p

radial function.

B. Cu L2,3 edges in cuprite (Cu2O)

Having validated our implementation on fcc Cu, we switch
to the more complex case of Cu2O. Cu2O is a nonmagnetic
insulator where copper is nominally in a Cu+1, 3d10 valence
state. Density functional theory (DFT) succeeds in capturing
the insulating ground state of Cu2O, albeit with a smaller gap
than the one detected in experiments. Our PBE calculations
predict a 0.36-eV direct gap, in agreement with previous
calculations,52–54 to be compared to the much larger exper-
imental value, ranging from 2.02 to 2.4 ± 0.3 eV (see Ref. 55
and references therein).

A way to improve the description of the gap is to include the
Hubbard U in the calculations, via the DFT + U scheme. While
this has been achieved in Ref. 56, the question of whether it
improves the description of the empty states seen in the x-ray
absorption spectroscopy is still open.

Figure 5 features the band structure over selected high-
symmetry directions in the Brillouin zone, for U = 8 eV. One
can see a small opening of the gap, from 0.36 in PBE to 0.43
eV in PBE + U. The reason for the small gap opening has
been explained in Ref. 56, where the authors acknowledge
that both DFT and DFT + U overestimate the amount of s-d
hybridization.

While the gap increase is very small, the empty states
are substantially shifted to higher energy after inclusion
of the U term (Fig. 5). This will significantly affect the
shape of the calculated XANES spectra, which can be
safely interpreted within the single-particle picture, given
the (nominally) closed-shell configuration. Furthermore, by
direct comparison with the experiment one can assess whether
the DFT + U approximation is appropriate to the description
of Cu2O.

In order to see the qualitative effect of the Hubbard term,
we choose the value of U = 8 eV that is (i) a realistic value
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for Cu-based oxides5,18 and (ii) allows a substantial shift of
spectral features to judge the effect of U in this system.

Cu2O crystallizes in a cubic structure with four equivalent
Cu atoms per unit cell. To calculate the absorption signal,
one should consider the contribution of all Cu atoms (one
calculation for each absorber). However, given that the four
Cu atoms in the unit cell are equivalent, the problem can be
simplified by making use of symmetry considerations. Let the
atomic E1E1 absorption tensor d defined by

σ =
∑

i

∑
αβ

εα d
(i)
αβ εβ,

where α,β = x,y,z and i = 1,2,3,4 runs over the four equiv-
alent atoms. The matrix d (i) is Hermitian and obeys the point
group symmetry of the specific atom site. In the case of the
Cu atom located at ( 1

4
1
4

1
4 ) in reduced crystal coordinates (first

conventional origin choice for Pn3̄), the corresponding tensor
is (S6 point group symmetry)

d (1) =

⎛
⎜⎝

a b b

b∗ a b

b∗ b∗ a

⎞
⎟⎠ ,

with a �= b real. The remainder d (j ) with j = 2,3,4 can be
obtained by

d (j ) = R†
ij d (i) Rij ,

where Rij is the 3 × 3 Cartesian rotation matrix associated
with the symmetry operation relating the prototypical atom i

to its equivalent j . In our case the ( 1
4

1
4

1
4 ) Cu atom is related

by C3 rotations to the other Cu atoms. The crystal absorption
tensor D can be obtained as the average over all the atomic
tensors:

Dαβ = 1

4

4∑
i=1

d
(i)
αβ. (8)

In matrix form,

D =

⎛
⎜⎝

a 0 0

0 a 0

0 0 a

⎞
⎟⎠ . (9)

Note that D is isotropic, which was to be expected for the
absorption tensor of a crystal described by a cubic space
group. On the contrary, the atomic absorption tensors d (i) are
not isotropic, a consequence of the S6 point group symmetry.
Hence we calculate the total E1E1 absorption signal per Cu
atom as the absorption of the prototypical ( 1

4
1
4

1
4 ) Cu atom in

the (100) direction.
Similar to the case of Cu, we performed XANES cal-

culations with three distinct screening schemes: with core
hole, with half core hole, and without core hole. The results
are shown, with or without the inclusion of the Hubbard
U , in Figs. 6 (U = 0 eV) and 7 (U = 8 eV), respectively.
Calculations were normalized to the edge jump at high energies
and aligned to match the experimental peak at 934 eV.
Similarly to the case of Cu, we find that the inclusion of
a full core hole (not shown) shifts the d states completely
below the Fermi level and hence yields unphysical results. In
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FIG. 6. (Color online) Calculated XANES spectra (solid) at the
Cu L2,3 edges in Cu2O and comparison with experimental data from
Ref. 57 (dots): PBE with no core hole (top) and with half core hole
(bottom).

Fig. 7 we show that the inclusion of the Hubbard U term in
the description of the d states of Cu in Cu2O gives a very
poor agreement with the experimental data, independently of
the screening, contrary to what has been observed in other
oxides.16 We thus bring supplemental evidence to the finding
in Ref. 56 according to which GGA + U does not contain the
proper physics to describe Cu2O.

The inclusion of a half core hole is enough in order to
explain the measured XANES at the L2,3 edges of Cu. In
Fig. 6, we show that calculations without core hole at U = 0 eV
overestimate the L3 structure at 931 eV. On the contrary, a good
agreement with the experiments is achieved with a partial
screening (half hole). Indeed, the white line at the L3 edge
is well reproduced in terms of shape and intensity, as well
as the positions of the 934, 936, and 943 eV structures. The
only remaining source of disagreement with the experiment is
related to the underestimation of the background between the
two edges.

A deeper analysis of the spectrum reveals that, as expected,
the transitions occur to the states formed by the hybridization
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FIG. 7. (Color online) Calculated XANES spectra (solid) at the
Cu L2,3 edges in Cu2O and comparison with experimental data from
Ref. 57 (dots): PBE + U with no core hole (top) and with half core
hole (bottom)

between the eg of Cu and the p states of O. Although the s

states of Cu and O lie in the same energy range as the empty
3d states, they are not seen at the Cu L2,3 edges. Indeed we
find that transitions to states with s character yield a negligible
contribution to the spectrum.

C. S L2,3 edges in molybdenite (2H-MoS2)

The 2H polytype of MoS2 (2H-MoS2) is a layered com-
pound which crystallizes in a hexagonal structure. Each layer
is composed of a MoS2 unit and there are two layers per cell
(6 atoms). Layers are bound together by weak Van der Waals
interactions.

While isotropic in the case of cubic compounds as Cu
and Cu2O, the E1E1 x-ray absorption signal depends on the
orientation of the polarization in the case of 2H-MoS2. We
calculated the two independent XANES spectra corresponding
to incident light polarized along the principal axis directions, in
the plane and parallel to the c axis, at the L2,3 edges of S. Once
again, two distinct sets of calculations have been performed,
with and without core hole.
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FIG. 8. (Color online) X-ray linear dichroism at S L2,3 edges in
2H-MoS2: calculations with (thick solid) and without (thin solid)
core hole vs experimental data from Ref. 58 (dots). The orientation
of the polarization ε̂ with respect to the c axis is indicated in each
panel. Calculations with core hole were shifted with 1.5 eV to higher
energies, with respect to those without hole. Calculations with and
without hole were scaled independently to match the experimental
data.

The comparison with experimental data58 for the two
orientations of the incident beam polarization is shown in
Fig. 8. The experimental spectrum at ε̂ || c was deduced
from the two orientations published in Ref. 58. Calculations
including the core hole are in better agreement with the
experiment than the ones without hole, at both orientations.
The agreement with the experiment is good, with the position
and spectral width of peaks being reproduced at least at the
main edge. We note nevertheless that the energy position of
the pre-edge peak is slightly overestimated in the theoretical
spectra by 1–1.5 eV. Second, the intensity of the pre-edge peak
is underestimated by the calculation. We believe that both
disagreements are a consequence of the interedge mixing,25

due to the fact the S L2,3 edges are very close in energy
(1.1 eV). Third, the intensity of the spectral features above
180 eV is significantly overestimated by the calculations, at
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FIG. 9. (Color online) Decomposition of calculated XANES at
the S L2,3 edges in 2H-MoS2 into angular channels. The total spectrum
with core hole (thick solid) is decomposed into transitions with
�l = +1 (thin solid) and �l = −1 (dashes). The orientation of
the polarization ε̂ with respect to the c axis is indicated in each
panel. The �l = −1 channel is isotropic. The �l = +1 and �l = −1
contributions do not sum up to the total spectrum, the remainder being
due to cross terms.

both orientations, albeit the energy-dependent convolution. We
have currently no explanation for this disagreement.

In order to reproduce the quantitative XNLD at the S L2,3

edges in 2H-MoS2, effects of both 2p → s (�l = −1) and
2p → d (�l = +1) transitions need to be included in the eval-
uation of the cross section (Fig. 9). Figure 9 shows the decom-
position of the L2,3 absorption into the two angular momenta
channels, for the two polarization directions. Contrary to the
common assumption that at L2,3 edges transitions to s states
are negligible, Fig. 9 proves they have a significant weight in a
wide range of energies, albeit lesser than the one of the 2p → d

transitions. This behavior is a consequence of the significant
E1 matrix element between the core 2p and valence s states.
We expect it to be a general feature of L2,3 edges of elements
belonging to the third period (Al to Ar), as suggested from
weighted s and d DOS calculations compared with Si L2,3

edges in ELNES/XANES spectra of silicon59 and silicates,60

as well as from calculations of ELNES at the L2,3 edges of
Ga in GaN.21 In particular, transitions to s states have been
reported previously for XANES at the S L3 edge in In2S3,61

based on an analysis of DOS.
While the difference between the two sets of curves featured

in Fig. 9 is due to transitions to s states, one can see that
the aforementioned difference depends on the polarization
direction albeit the spherical character of the s states. This
apparent inconsistency can be understood by noting that, while
the �l = −1 transitions are indeed isotropic (Fig. 9), the total
spectrum also contains cross (with respect to the selection
rule), non-negligible d-s terms which do have an angular
dependence. From Figs. 8 and 9 it is clear that the latter are an
essential ingredient for describing the XNLD: In the absence
of the cross term, the angular dependence of the 173- and
176-eV structures would nearly disappear.

We draw the attention on a fundamental difference between
K and higher rank edges. At K edges, the intensity of XANES
structures is directly proportional to the corresponding l

projection of the local DOS seen in the spectroscopy—the
p-DOS (d-DOS) in the case of E1E1 (E2E2) transitions. This
is no longer the case at L2,3 edges, in the presence of d-s cross
terms, when the spectra can no longer be interpreted in terms of
pure l-DOS. Note that in the isotropic limit, the d-s interference
term is strictly zero.62 In this sense, the methodology of
interpreting polarized XANES spectra in noncubic samples
by confronting them to weighted DOS is not justified.

In this respect, a challenge for the calculation is to
disentangle a particular aspect of the spectroscopy, i.e., the
interference between the �l = 1 and �l = −1 channels, from
the electronic properties of the material itself. One can recover
information about the l-DOS from the spectroscopy calculation
and group theory. To begin with, in the following argument we
consider for simplicity that (i) there is no spin-orbit coupling on
the 2p state and (ii) the local point symmetry at the absorbing
S site is described by an Abelian group, with real characters.

Defining 〈ψf | = 〈s| + 〈d|, and |ψi〉 = |pi〉 where 〈s| and
〈d| are the s and d components of the empty valence states
(p being forbidden by the E1 selection rule) and |pi〉 with
i = x,y,z is the core state, the E1 matrix element in Eq. (1) is

|〈ψf |D̂|ψi〉|2 = |〈s|D̂|pi〉|2 + |〈d|D̂|pi〉|2
+ 2〈d|D̂|pi〉〈pi |D̂|s〉. (10)

We focus on the last term in Eq. (10) that represents the d-s
interference. It is worthwhile to recall that a term of the form,

〈d|rα|pi〉〈pi |rα|s〉, (11)

with α = x,y,z is zero under the above assumptions unless
(i) α = i and (ii) d and s belong to the same irreducible
representation. This can be understood by noting that pi and ri

being in the same (one-dimensional) irreducible representation
γ , γ × γ is the totally symmetric irreducible representation
A1. The term in Eq. (11) is nonzero if and only if it contains
the irreducible representation A1, which only occurs (under
the above assumptions) if (i) and (ii) hold.

The point group of the S site in 2H-MoS2 is C3v . In its
Abelian subgroup Cs , s, on one hand, and dz2 , dx2−y2 , and
dxy orbitals on the other hand, belong to the same irreducible
representation and, as argued in the previous paragraph, can
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FIG. 10. (Color online) Assignment of the main XNLD structures
to the d-s cross terms. (Top panel) The cross terms for the two
orientations, along c (thick solid) and in the plane (thin solid). (Middle
panel) The linear dichroism of the d-s cross terms, taken as the
difference of the curves above. (Bottom panel) Calculated XNLD
spectrum, obtained by the subtraction of the spectra corresponding to
the polarization along c and perpendicular to the c axis, respectively.
The three panels share the same scale. The comparison between
the middle and bottom panels proves that the XNLD measures the
anisotropy of the d states, via the mixing. The dichroic signal at
173 eV is mainly due to the dz2 -s channel, whereas the structure at
178 eV comes from the dxy-s and dx2−y2 -s terms.

mix. One can easily see that in the ε̂ || c direction the cross
term is dz2 -s, while for the ε̂ ⊥ c orientation the cross term
is due to dx2−y2 -s and dxy-s contributions. This conclusion
remains valid if one considers the spin-orbit coupling on the
2p level. Under these circumstances, while the dyz-s and
dxz-s contributions are not explicitly forbidden by symmetry,
their contribution cancels after summation on the initial states
belonging to the 2p1/2 or 2p1/2 manifold.

The difference between the d-s interference in the two
directions (the linear dichroism) is related to the anisotropy
of the d orbitals. More specifically, the linear dichroism of
the d-s channel probes the difference between the dz2 -s term,
on one hand, and the joint contribution of dx2−y2 -s and dxy-s,
on the other hand. This conclusion is equally valid had we
considered the true C3v symmetry.

We have already seen in Fig. 9 that the main dichroic effects
at 173 and 176 eV are due to the angular dependence of the
cross terms. In Fig. 10 we continue the analysis by comparing
the calculated XNLD (bottom panel), taken as the difference
between the ε̂ || c and ε̂ ⊥ c spectra, to the cross d-s term in the
two orientations (top panel) and its linear dichroism (middle
panel). The three insets sharing the same scale, it becomes clear
that the XNLD can be safely interpreted in terms of d-s in-
terference. Surprisingly, the pure �l = 1 channel has no clear
signature in the XNLD, except around 183 eV. While we have
shown that the linear dichroism of the cross terms measures the
d states anisotropy in 2H-MoS2, according to Fig. 10 (middle
and bottom panels) this is also the case for the XNLD spectra.
One can therefore assign the dichroic feature at 173 eV to dz2 -s
interference, while the feature at 176 eV is attributed to dx2−y2 -

s and dxy-s mixing. In spite of the peculiar interference effect,
XNLD still measures in-plane/out-of-plane d anisotropy.

On the basis of the angular dependence, the authors of
Ref. 58 assign the pre-edge peak and the shoulder at 170 eV to
transitions to s states. The decomposition in Fig. 9 contradicts
this conclusion. While there exists a contribution of the s states,
it is definitely not dominating. A careful analysis of the DOS
(not shown) shows that at the energies corresponding to the
pre-edge peak the s states of S hybridize with the d orbitals of
Mo. Altogether this proves the importance of calculations in
order to accurately interpret the spectroscopic data.

We recall that the interpretation of L2,3 x-ray absorption
spectra in terms of single-particle s and d orbitals is not exact
in the presence of interedge mixing. However, we do not expect
it to dramatically affect the main edge, where the probed
d states are rather delocalized. This, together with the fact
that the agreement with the experimental data is satisfactory,
reconfirms the choice of our methodology.

The d-s cross term has also been depicted at the L2,3

edges of Ag in magnetic multilayers,63 albeit not in the
XANES spectra but in the x-ray magnetic circular dichroism
(XMCD). This suggests that a correct description of the
cross term is equally important for magnetic spectroscopy.
The spectroscopic interpretation would be even richer in the
magnetic case, due to the exchange splitting within the 2p1/2

and 2p3/2 manifold.

V. CONCLUSIONS

In this work we have developed a technique based on
DFT and on the PAW formalism in order to obtain the x-ray
absorption cross section at a general edge, in both E1 and E2
approximations. We applied the method to the calculation of
Cu L2,3 edges in fcc Cu and Cu2O, as well as to S L2,3 edges
in 2H-MoS2. In metallic Cu we find a good agreement with
experimental data without having to include a core hole. On
the contrary core-hole effects are relevant in insulating Cu2O
and 2H-MoS2, where their inclusion is essential in order to
obtain a good description of the experimental data.

In the case of Cu L2,3 edges in Cu2O we equally study the
effect of the Hubbard U term on the x-ray absorption spectra.
In contrast to results on other oxides, we find that inclusion of
U worsens the agreement with experimental data.

Finally in the case of S L2,3 edges in 2H-MoS2, we show
that transitions to s states yield a non-negligible contribution
to the S L2,3 spectra in 2H-MoS2, in a wide range of energies.
We believe that this is a general property of L2,3 edges of
third row elements from Al to Ar. We equally point out that
when cross d-s terms are significant, the L2,3 spectra are no
longer to be interpreted in terms of projections of the DOS.
The mixing is essential as to interpret the XNLD at S L2,3

edges in 2H-MoS2. In such a case it is of utmost importance
to disentangle the two channels, which can only be achieved
via first-principles calculations.

We have proven that single-particle approaches can be
very useful for the interpretation of L2,3 edges when the
interedge mixing is negligible. In this case ab initio XANES
calculation can assign spectral structures to various angular
moment channels, and explore their possible interference.
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APPENDIX: THE E1 AND E2 TRANSITION MATRIX
ELEMENTS

For completeness we provide the full analytical expressions
of the transition matrix element 〈φRp|Ô|ψi〉, at a general edge,
as it was implemented in the XSPECTRA module of the Quantum
Espresso distribution.

By considering the spin-orbit coupling, the initial state (the
core level) |ψi〉 is written as

ψnili jmj
(r) =

li∑
mi=−li

s∑
ms=−s

〈limi,sms |jmj 〉Rnilims
(r)Ymi

l (r̂)χs
ms

,

(A1)

where ni , li , mi , s = 1/2, and ms are the usual notations
for the quantum numbers associated with the initial (core)
state in the uncoupled basis and 〈limi,sms |jmj 〉 the Clebsch-
Gordan coefficients, whose tabulated values can be found in
Ref. 64. The functions Rnilims

(r) and Ym
l (r̂) are the radial

and angular (complex spherical harmonics) parts, respectively,
of the atomic wave function. χs

ms
is the ms component of

the spinor of spin s. The total momentum quantum numbers
j = li − s,...li + s, and mj = −j,...,j define the core level in
the l · s coupled basis. The Clebsch-Gordan coefficients are
zero unless the following holds:

mj = ms + mi. (A2)

The all-electron partial waves φRp(r) are chosen as solu-
tions of the Schrödinger equation of the isolated atom. As such
they are written as

φRp(r) =
∑
lm

∑
σ

Rplσ (r) Ym
l (r̂) χs

σ , (A3)

where p labels the radial wave function at a given energy and
n,l,m,s,σ are angular and spin quantum numbers associated
with the partial wave.

The electric dipole transition operator can be expanded in
the spherical harmonics basis as

D = ε̂ · r = 4π

3
r

1∑
μ=−1

(−1)μ Y
μ

1 (r̂)Y−μ

1 (ε̂), (A4)

with the E1 transition matrix element becoming

〈φRp|D|ψnili jmj
〉

= 4π

3

li∑
mi=−li

s∑
ms=−s

δmj ,mi+ms
〈limj − σ,sσ |jmj 〉

×
1∑

μ=−1

(−1)μ
∑

σ

∑
lm

Y
−μ

1 (ε̂) χs
ms

χs∗
σ

×
∫

dr̂ Y
mi

li
(r̂) Y

μ

1 (r̂) Ym∗
l (r̂)

×
∫

dr r3 Rnilims
(r) Rplσ (r). (A5)

By using the orthogonality of the spin functions,∑
ms

∑
σ

χs
ms

χs ∗
σ =

∑
ms

∑
σ

δσms
, (A6)

and the expression for the Gaunt coefficients (the integral is
over the solid angle),

G lm
limi ,1μ =

∫
dr̂ Ym ∗

l (r̂) Y
mi

li
(r̂) Y

μ

1 (r̂), (A7)

the E1 transition matrix element finally gives

〈φRp|D|ψnili jmj
〉 = 4π

3

∑
σ

〈limj − σ,sσ |jmj 〉

×
1∑

μ=−1

(−1)μ Y
−μ

1 (ε̂)
∑
lm

G lm
li mj −σ,1μ

×
∫

	R

dr r3 Rniliσ (r) Rplσ (r), (A8)

where 	R is the augmentation region.
The electric quadrupole transition operator can be written

as

Q = i

2
(ε̂ · r)(k · r)

= i

2
k

(
4π

3
r

)2 1∑
μ=−1

Y
μ

1 (r̂)Yμ∗
1 (ε̂)

1∑
λ=−1

Yλ∗
1 (r̂)Yλ

1 (k̂),

(A9)

so that the E2 transition matrix element is

〈φRp|Q|ψnili jmj
〉

= i

2

(
4π

3

)2 ∑
μ

∑
λ

Y
μ∗
1 (ε̂) Yλ

1 (k̂)

×
∑
lmσ

〈limj − σ,sσ |jmj 〉 Ym
l (r̂) G

li mj −σ,1μ

lm,1λ

×
∫ R

0
dr r4 Rniliσ (r) Rplσ (r). (A10)

The generalized Gaunt coefficients are defined as

G
l2m2,l4m4
l1m1,l3m3

=
∫

d	 Y
m1∗
l1

(	) Y
m2
l2

(	) Y
m3∗
l3

(	) Y
m4
l4

(	),

(A11)

205105-10



PROJECTOR AUGMENTED WAVE CALCULATION OF X-RAY . . . PHYSICAL REVIEW B 87, 205105 (2013)

and the following relation holds

G
l1m1,l3m3
l2m2,l4m4

=
∑
lm

G lm
l2m2,l1m1

G lm
l3m3,l4m4

. (A12)

Note that to calculate the cross section in Eq. (2), the contri-
bution from each initial state ψi from the 2p1/2 (2p3/2) must
be evaluated independently. Initial states with distinct jmj

quantum numbers do not cross in the single-particle picture.
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