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Experiment and analytical calculations show that the demagnetizing field of a superconductor is a

sensitive probe of quantities otherwise difficult to measure, such as the sample-probe distance in

flux-density imaging experiments and the field of first flux penetration Hp. In particular, the ratio of

the maximum field measured above the superconductor edge and the applied field can be

determined unambiguously so as to define a linear “geometric” susceptibility. The evolution of this

susceptibility with field depends on the regime of flux penetration and can be used as a means to

determine Hp and the effect of a parallel field component in magneto-optical imaging experiments.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4834519]

I. INTRODUCTION

Magnetic imaging of superconductors1 is widely used to

extract parameters such as the superfluid density,2–4 the field

of first flux penetration Hp,5,6 vortex phase transition fields,7

and spatially resolved critical currents.8 Present-day techni-

ques generally measure the magnetic induction component

B? perpendicular to the sample surface and include

magneto-optical imaging (MOI),8–12 Hall array,5–8,13 and

scanning Hall-probe magnetometry,14 scanning

Superconducting Quantum Interference Device magnetome-

try (scanning SQUID),15 and Magnetic Force Microscopy

(MFM).2 While efficient schemes have been devised to

extract information concerning the distribution of current

flow in the superconducting bulk from such experiments,10,16

important limitations remain. Among these are the neglect of

end-effects in thick samples and a general lack of knowledge

of the sample-probe distance, in many cases resulting from

the manual positioning of the specimen. The sample-probe

distance, which has an immediate bearing on the absolute

values of current densities deduced from the experiment, is

usually guessed or inferred from a fitting procedure of the

measured flux profile. Related is the problem of accurately

measuring Hp in type-II superconductors. Since, in the

Meissner state, magnetic flux wraps around the sample edge

due to the demagnetizing effect, a measurement at a given

probe height will yield considerable ambiguity when it

comes to determining whether vortex lines have penetrated

the material or not, especially in the presence of strong flux

pinning. Moreover, the measured Hp and Meissner slope

dB?=dl0Ha depend on the placement of the probe and on

sample geometry (Ha is the applied magnetic field and

l0 ¼ 4p� 10�7 Hm�1). The observation distance above the

surface results in measured flux profiles that are rarely in

agreement with model calculations,19,20 particularly when it

comes to the field distribution near the sample edge, a situa-

tion that complicates the reliable extraction of superconduct-

ing parameters.

Here, we show that the situation can also be put to one’s

advantage. Namely, when imaging the flux distribution

around a superconductor in the Meissner state, the London

penetration depth kLðTÞ can generally be neglected. Thus,

the demagnetizing field, and, specifically, the maximum

value Bpeak
? at the sample edge, depends on the sample geom-

etry, its aspect ratio, and on the distance from the surface,

but not on any parameters characterizing the superconduct-

ing state. Since the sample geometry is known, measurement

of the demagnetizing field peak grants access to the distance

of the probe above the sample surface. Below, the depend-

ence of Bpeak
? on Ha is used to define a linear “geometric sus-

ceptibility” vg. A plot is provided that allows one to simply

read off the probe-to-sample distance using the experimen-

tally determined vg for a specimen of given aspect ratio.

Also, the field dependence of vg reflects whether vortices

have penetrated the material or not. One can thus determine

Hp by a measurement of the flux density at a point above the

superconductor perimeter. Finally, vg can also be used to

estimate the effect of the in–plane magnetic-field component

on the measured luminous intensity in MOI experiments.

In what follows, we first recapitulate on the typical experi-

mental procedure for the imaging of flux density distributions.

Even if, in the present case, the experiment concerns MOI of

the iron-based superconductor Ba(Fe0.925Co0.075)2As2, basic

results are independent of the method and the material. A theo-

retical framework for calculating flux distributions around

superconductors of realistic shape is introduced. Basically rely-

ing on analytical techniques, it presents less computational dif-

ficulties than previous work. The comparison of measurements

with calculations focuses on the relation between Bpeak
? and Ha,

which turns out to be a good alternative indicator of Hp.

II. EXPERIMENTAL DETAILS

Optimally doped Ba(Fe0.925Co0.075)2As2 single crystals,

with a critical temperature Tc ¼ 24:5 K, were grown using

the self-flux method.17 Rectangular samples were cut from
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different crystals using a W wire saw (wire diameter 20 lm)

and 1 lm SiC grit suspended in mineral oil. Sample #1 has

length 994 lm, width 2a ¼ 571 lm, and thickness

2b ¼ 32 lm, while sample #2 has length 2200 lm, width

2a ¼ 770 lm and thickness 2b ¼ 75 lm. Magnetic flux pen-

etration into the selected samples was visualized by the MOI

method9,12 by placing a ferrimagnetic garnet indicator film

with in-plane anisotropy directly on top of the sample. The

garnet, of thickness 6 lm, was deposited by liquid-phase epi-

taxy on a 500 lm thick substrate and is covered by a

100 nm-thick Al mirror layer. A non-zero B? induces an

out-of-plane rotation of the garnet magnetization, and,

thereby, a Faraday rotation of the polarization of the light

traversing the garnet. The mirror layer reflects the impinging

light, which is then observed using a polarized light micro-

scope. Regions with non-zero induction show up as bright

when observed through an analyzer, nearly crossed with

respect to the polarization direction of the incoming light.

Measurements of flux penetration were performed at differ-

ent temperatures between 8 and 24 K.

Fig. 1(a) shows an example of the magnetic flux distri-

bution around the Ba(Fe0.925Co0.075)2As2 crystal in the

Meissner phase. The polarizer-analyzer pair was slightly

uncrossed in order to obtain unambiguous results down to

the lowest fields. Calibration of the luminous intensity with

respect to Ha allows one to convert the MO images into

maps of B?ðrÞ.12 Flux density profiles were determined par-

allel to the shorter sample dimension, close the center of the

longer side. Previous measurements confirm that end effects

induced by a finite sample length are irrelevant,18 as long as

this exceeds the width by a factor two.

III. PHYSICAL MODELING

We proceed by modeling the magnetic flux distribution

around a rectangular superconducting parallelepiped, with the

intent of achieving the least mathematical complication and

the widest possible applicability. The situation is considered

in which a uniform magnetic field is applied perpendicularly

to a long, ideally superconducting beam of rectangular cross

section, considered infinite along the z-axis. The magnetic

flux density Bðx; yÞ is evaluated at a small distance above the

surface. For very thin samples, the problem is quasi-one

dimensional (quasi 1D); in this case, the inversion schemes of

Refs. 10, 11, and 16 are satisfactory. However, for samples of

arbitrary thickness 2b k y and length 2c k z, sufficiently large

with respect to the width 2a k x (i.e., double the width), it is

two-dimensional (2D). This situation was previously consid-

ered by Brandt and Mikitik.19 The main findings of Ref. 19

generalize Brandt’s previous work for thin samples.20

In the case of a thin strip, the cross-section of which cor-

responds to a line segment �a � x � a, the Meissner surface

current density is JðxÞ ¼ 2Hax=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

. Inserting this into

Biot-Savart’s law and integrating in the complex plane

(xþ iy � reiu), one gets the flux density map around the

sample. In particular, we obtain

½Bxðx; yÞ;Byðx; yÞ� ¼
l0Haffiffiffi

c
p sinða=2Þ; cosða=2Þ½ �: (1)

Here, we have defined a � tan�1½sin 2u=ðr2 � cos 2uÞ� and

c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r2 cos 2uþ r4

p
=r and give the distances in units

of a.

A similar approach may be applied to long samples of

rectangular cross section (�a � u � a;�b � v � b) based

on the following expressions for the surface current

density:19

Jðu; v ¼ 6bÞ ¼ Hasuffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

u

p ; (2)

Jðu ¼ 6a; vÞ ¼ 6Ha

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ms2

v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� s2

vÞ
p : (3)

suðu;mÞ and svðv;mÞ are geometry dependent functions

that may be calculated in terms of a parameter, m,21 that

solely depends on the sample’s aspect ratio b/a. The magnetic

field around the beam can be obtained from Biot-Savart’s

law, by numerical integration over the four beam surfaces.22

Fig. 2 displays the field lines calculated for such super-

conducting beams, in the Meissner state, with different values

FIG. 1. (a) MOI of screening by Ba(Fe0.925Co0.075)2As2 crystal #2, at

l0Ha ¼ 10 mT, after zero-field cooling to 10 K. The rectangular outline of the

crystal is clearly seen. The garnet has been purposely placed obliquely so that

the sample-to-garnet distance is smaller along the top edge than along the bot-

tom edge. (b) Profiles of the perpendicular flux density at successive applied

fields, averaged over the strip between the two red lines in (a), after calibration

of the luminous intensity. The heavy line indicates the first profile after flux

penetration. The abscissa runs from the upper to the lower part of panel (a).
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of the aspect ratio b/a. The simulated flux density distribution

at different heights above the sample such as this would be

imaged, e.g., with MOI, is shown in Fig. 3. Note that the sharp

bending of the field lines around the sample ridges produces

the well-known B?ðxÞ–distribution, with sharp maxima due to

the demagnetizing effect over each edge. The peak becomes

progressively sharper as the observation height and/or sample

thickness diminish. Physically, the condition r� B ¼ 0

above the sample imposes @yBx ¼ @xBy; thus, a more pro-

nounced bending of the field lines (increasing @yBx) is accom-

panied by a growing value of the profile’s slope @xBy. Also,

while the sharpest peaks, measured in intimate contact with

the superconductor, appear right above the edges, the maxima

of the flatter peaks measured at larger height are located

outwards. Finally, asymmetric profiles are found when the

imaging device is oblique with respect to the superconductor

surface, as in Fig. 4 (note that in this case B? 6¼ By). The plot

shows our experimental data together with a least squares fit

profile obtained by minimizing the difference between data

and theory. The heights of the garnet above the left and right

edges are used as optimization parameters.

IV. THE PEAK SUSCEPTIBILITY

To quantify the response of a given sample in a given

experiment, one should consider the dependence of the peak

value Bpeak
? of the magnetic flux density profile on the dis-

tance above the sample edge. Fig. 3 shows the behavior of

the field contributed by the superconductor, in units of the

applied field, i.e., Bs
y=l0Ha � ðBy � l0HaÞ=l0Ha. With the

superconductor in the Meissner state, this quantity depends

only on the geometry of the sample and of the experimental

FIG. 2. Theoretical magnetic field lines surrounding ideal superconducting

beams of rectangular cross section, in the Meissner state. Results are shown for

aspect ratios b=a ¼ 0:001; 1, and 10 and are obtained from Eqs. (2) and (3).

FIG. 3. The distribution of B? across the width of the superconducting

beam, at three different heights y above the surface, such as calculated for

an aspect ratio b=a ¼ 0:1. Different lines correspond to y=a ¼ 0:01

(dashed), 0.05 (continuous), and 0.1 (dotted-dashed). In all cases, a uniform

applied magnetic field ð0;Ha; 0Þ is assumed.

FIG. 4. Measured and calculated flux density profiles when the MO garnet is

placed obliquely over sample #2. The crosses are the experimental points,

while the drawn line denotes the calculation. The latter was carried out using

the optimized distances y ¼ 0:038a (14 lm) and y ¼ 0:15a (58 lm) above

the left and right edges, respectively. In this case, the crystal of aspect ratio

b=a ¼ 0:10 was used. After correction for the in-plane field effect on the

garnet magnetization (Sec. VI) these distances become 10 and 41 lm,

respectively.
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arrangement, and is therefore independent of magnetic field.

Thus, one can define a linear geometric susceptibility
vg � ðdBpeak

? =dl0HaÞ � 1. The fact that this is a purely geo-

metrical quantity is clear from Eqs. (1)–(3). The choice of

the field peak for the definition of vg is preferable over that

of more ambiguous features.

Fig. 5 shows the relation between vg, the aspect ratio

b/a, and the observation height y. Indeed, the plot displays

the more interesting inverse function yðvgÞ since this allows

one to obtain the observation height y in terms of vg. A use-

ful fit of lnðy=aÞ as a function of vg, with a relative quadratic

error of 10�5, is given by

lnðy=aÞ � t v1=2
g þ v v3=2

g þ uvg þ w: (4)

The aspect ratio-dependent parameters t, u, v, and w are

given in the inset of Fig. 5.

To determine the sample-to-probe distance, one should

proceed in the following manner: (i) determine the aspect ra-

tio of the sample; (ii) perform the measurement of the flux

density distribution, ensuring a good accuracy, especially at

low fields (Ha < Hp). In MOI, this entails uncrossing the po-

larizer and analyzer by a small angle a during the measure-

ment; (iii) compute vg from a linear fit of the low-field

dependence of the maximum of B?ðxÞ � l0Ha (ideally, this

coincides with the value of the peak itself); and (iv) use Eq.

(4) and the graphical determination of the aspect-ratio de-

pendent parameters (Fig. 5) in order to determine y. Note

that the above analysis relies on the linearity of the response

of the superconductor as function of the applied magnetic

field Ha, and therefore can be applied only for Ha < Hp.

V. THE FIELD OF FIRST FLUX PENETRATION

On the contrary, a deviation from linearity can be used

as a criterion for determining Hp. The determination of Hp

by means of magnetic imaging is usually a somewhat time-

consuming task, typically based on the detection of the mini-

mum field that produces flux trapping in cyclic measure-

ments.23 Also, the detection of the first vortices to enter the

superconductor is clearly position-dependent. Our results

suggest an alternative method. Below Hp, the magnetic flux

is fully expelled from the sample, and the behavior of vg is

determined by the geometry of the experiment only. On the

other hand, the evolution of Bpeak
? beyond Hp will not be lin-

ear in Ha anymore because it will reflect the flux pinning

properties of the superconductor. This is explicitly shown in

Fig. 6. For fields lower than Hp, the demagnetization peak

above the sample edge can be superposed by a simple rescal-

ing by the value of the applied field. Beyond Hp, this scaling

property is lost.

VI. EFFECT OF AN IN-PLANE FIELD COMPONENT
IN MOI

The use of garnet indicators with in-plane anisotropy for

the imaging of field distributions9–11 has the drawback that a

magnetic-field component Bx parallel to the indicator plane

diminishes the Faraday rotation of the garnet magnetization.

The magnitude of the effect increases as the screening cur-

rent in the underlying superconductor increases, leading to a

downward deviation from linearity of the Bpeak
? ðHaÞ–relation

even in the Meissner phase, thereby complicating the deter-

mination of vg and Hp.

However, the linearity of the electromagnetic response

in the Meissner state allows one to correct for the in–plane

field effect in a relatively simple manner. The measured lu-

minous intensity depends on the perpendicular field compo-

nent B? as10

I ¼ I0 sin2 VMs
B?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðBx þ BKÞ2 þ B2
?

q þ a

0
@

1
A; (5)

where I0 is the impinging intensity, Ms and BK are, respec-

tively, the saturation magnetization and the anisotropy field

FIG. 5. Relation between the distance y above the sample surface (in terms

of the sample width a) and vg. The curves, from left to right, correspond to

aspect ratios b=a ¼ 1; 0:2; 0:1; 0:05; 0:025; 0:01; 0:005; 0:0025, and 0.001.

The continuous lines are obtained by numerical integration of Biot-Savart’s

law, combined with Eqs. (2) and (3). Symbols correspond to the fit given by

Eq. (4). Inset: the aspect ratio-dependent parameters t, u, v, and w.

FIG. 6. Renormalized flux profiles over Ba(Fe0.0925Co0.075)2As2 crystal #2,

for 4:14 < l0Ha < 30:95 mT, at T ¼ 11 K.
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of the garnet, and V is a constant. Neglecting the influence of

Bx leads to the determination of an experimental

BMOI
? ¼ BKB?

Bx þ BK
(6)

rather than the real perpendicular field component B?.24

Writing B? ¼ Bs
? þ l0Ha ¼ l0Haðvg þ 1Þ as the sum of the

magnetic induction contributions coming from the supercon-

ductor and from the applied field, respectively, we can solve

for Bs
?. Namely, not only is the non-zero in-plane field com-

ponent determined solely by the presence of the supercon-

ductor, the linear response in the Meissner state implies that

for a given value of x it can be written as

Bx ¼ gðb=a; y=aÞBs
?. Here, we have calculated the propor-

tionality constant gðb=a; y=aÞ relating the in–plane and per-

pendicular field components above the position x at which

Bs
? is maximum. Apparently, this quantity depends on aspect

ratio and sample-probe distance, but as long as Ha < Hp, not

on the magnetic field. Solving Eq. (6), we obtain

vg ¼
vMOI

g

1� gð1þ vMOI
g ÞBa=BK

: (7)

vMOI
g is the apparent geometrical susceptibility such as deter-

mined from the MOI experiment. The function gðb=a; y=aÞ
has been evaluated as the ratio of the superconductor’s con-

tribution to the in–plane and perpendicular field components

such as calculated in Sec. III and is shown in Fig. 7 for the

readers’ reference. Once the sample aspect ratio and the ani-

sotropy field of the garnet indicator are known, the effect of

the in-plane field can be determined by estimating

gðb=a; y=aÞ from Fig. 7 using lnðy=aÞ read from Fig. 5 and

calculating a refined geometric susceptibility from Eq. (7).

VII. APPLICATION TO Ba(Fe0.925Co0.075)2As2

Fig. 8 summarizes the application of the above ideas to

a Ba(Fe0.925Co0.075)2As2 crystal. Panel (a) shows the evolu-

tion of the demagnetizing field maximum Bpeak
? for several

temperatures; these curves allow for the extraction of the

geometrical susceptibility in (c), which in turn indicates the

effective probe-to-sample distance to be 12 lm—rather

larger than what is expected from the sole MO garnet thick-

ness. However, applying the above mentioned correction for

the in-plane field yields a more realistic distance of 9 lm,

implying a gap of approximately 3 lm between the sample

edge and the garnet surface. The temperature–dependent

penetration field, extracted from the deviation from

linearity, is shown in (d). Applying the aspect-ratio depend-

ent relation between Hp and Hc1 ¼ U0=4pl0k
2lnðk=nÞ

measured on samples of similar shape,18 one obtains the

indicated Hc1–values, consistent with kð5 KÞ ¼ 245 nm

(Ref. 3) and a coherence length n ¼ 3:5 nm (the flux quan-

tum U0 ¼ h=2e).

Drawbacks of the method include the need for a strictly

rigorous calibration of the magnetic induction in order to

obtain the correct curvature of the curves in Figs. 8(a) and

8(c) and a high density of points in order to reliably extract

vg. Nevertheless, the measurement at different locations on

the sample boundary, or using an inclined MO indicator

(Fig. 8(b)) gives different slopes of the Bpeak
? ðHaÞ–curve and

different vg, but the same penetration field Hp.

FIG. 7. The function gðy=a; b=aÞ relating the in–plane and perpendicular

field components, i.e., Bx and Bs
? at the position, where Bs

? is maximum

above the superconducting beam (see text). It is plotted as function of the

sample-to-probe distance y/a for different aspect ratios b/a. Drawn lines cor-

respond to the different values of b/a considered in Fig. 5 as labelled. The

thick line comes from the application of Eq. (1) for the thin sample limit.

FIG. 8. Magnitude of the demagnetizing field peak at the edge of the

Ba(Fe0.925Co0.075)2As2 crystal, measured with an aligned (a) and an oblique

MO indicator (at 10 K (b)). The upper and lower curves in (b) correspond to

the right-hand and left-hand peak in Fig. 4. Panel (c) shows the geometrical

susceptibility extracted from (a), and (d) shows the temperature dependence

of the extracted penetration field Hp.
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VIII. CONCLUSION

In conclusion, the measurement of the applied field de-

pendence of the demagnetizing field, and its expression in

terms of a geometrical susceptibility, can be used to deter-

mine the sample-to-probe distance in magnetic imaging

experiments on superconductors of finite thickness. The

measurement also offers an alternative means to determine

the field of first flux penetration.

A mathematical treatment of full flux expulsion by the

superconductor yields analytical expressions that allow one

to describe the Meissner response of rectangular thick sam-

ples. Although not shown here, validation of the theory

against finite element calculations was performed in the

complete range of aspect ratios.

Anomalously low demagnetizing field peaks measured

near the sample rims, and improbably large sample-to-probe

distances such as these are obtained from magneto-optical

imaging experiments can be explained through the effect of

the in-plane field component induced by the superconductor

on the indicator garnet magnetization. Based on our calcula-

tions, we propose a straightforward method to correct for the

in-plane field effect.
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