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Abstract: Ground bearing capacity has become a relevant concept for site-specific 

management that aims to protect soil from the compaction and the rutting produced by the 

indiscriminate use of agricultural and forestry machines. Nevertheless, commonly known 

techniques for its estimation are cumbersome and time-consuming. In order to alleviate  

these difficulties, this paper introduces an innovative sensory system based on Visible-Near 

InfraRed (VIS-NIR), Short-Wave InfraRed (SWIR) and Long-Wave InfraRed (LWIR) 

imagery and a sequential algorithm that combines a registration procedure, a multi-class 

SVM classifier, a K-means clustering and a linear regression for estimating the ground 

bearing capacity. To evaluate the feasibility and capabilities of the presented approach, 

several experimental tests were carried out in a sandy-loam terrain. The proposed solution 

offers notable benefits such as its non-invasiveness to the soil, its spatial coverage without 

the need for exhaustive manual measurements and its real time operation. Therefore, it can 

be very useful in decision making processes that tend to reduce ground damage during 

agricultural and forestry operations. 

Keywords: ground bearing capacity; VIS-NIR; LWIR; SWIR; multispectral; soil moisture; 

optical filters; penetrometer; soil compaction 
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1. Introduction 

The utilisation of wheeled and tracked vehicles is a widespread practice in agriculture and forestry 

applications [1]. However, operations with this kind of heavy machines can cause compaction and 

rutting, producing severe soil damage [2–4]. Soil is one of the most fundamental components for 

supporting life on Earth [5]. When soil is compacted and/or rutted, its porosity decreases, and 

consequently, the amount of oxygen that is required for a healthy function of plant roots [6].  

In addition, if pore diameters become smaller than root tips, roots will have to become thicker to exert 

more force to penetrate soil, what can delay their growth or even make growth cease [7].  

Soil thermal regime, water-air relationship, as well as the microbiological activity may also be drastically 

disturbed by compaction or rutting, significantly reducing the potential for growth and survival of  

plants [8,9]. Estimation of ground bearing capacity becomes then an important factor to be considered 

for achieving efficient and environmental friendly propulsion of both manned and autonomous 

agricultural and forest vehicles. 

Ground bearing capacity can be defined as the ability of the soil to carry a certain weight without 

being damaged [10]. In forestry, ground bearing capacity is usually considered as the maximal allowable 

wheel contact pressure [11]. Nevertheless, the actual wheel contact pressure is difficult to calculate 

because the true contact area depends on tyre and soil properties [12]. For that reason, ground bearing 

capacity is considered, in most situations, as a guideline parameter only, and so far there is no standard 

procedure for its estimation [13]. Penetrometers are the only available instruments for obtaining an 

empirical measure of soil strength that allows comparisons between different soils [14]. The simplest 

penetrometer is a hand-held device that is pushed downward at a constant rate through a specified 

increment of soil depth. The American Association of Agricultural Engineers specified a standard 

penetrometer design that provides a measurement called the cone index, which is calculated by dividing 

the insertion force by the area of the circular cone base [15]. Although standardised, cone penetrometers 

exhibit several drawbacks. A cone penetrometer should be inserted in the terrain at a constant speed, 

which can be difficult to achieve manually. In addition, the measurement is made at a single discrete 

point, being necessary to carry out numerous measurements for mapping an entire field [16]. These facts 

make that the sampling of a terrain with a cone penetrometer turns into a cumbersome and  

time-consuming technique. 

On the other hand, the capability of the soil to bear an specific weight without suffering from 

compaction and/or rutting is predominantly determined by the soil type and the water content [17,18]. 

Since soil water is the only parameter varying over the time, its estimation could contribute significantly 

to make strategic decisions for ground protection during mechanical operations. 

Several techniques have been proposed for measuring the soil water content, including direct, indirect 

and remote sensing methods [19–21]. Direct methods may be regarded as those methods wherein water is 

removed from a soil sample by evaporation, leaching or chemical reaction. The soil water content is then 

determined considering the mass of water removed and the mass of the dry soil [19]. Indirect methods 

comprise measurement of some property of the soil that is modified by soil water content [20]. Remote 

methods rely on the measurement of electromagnetic energy that has either been reflected or emitted 

from the soil surface [21]. 
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The thermogravimetric technique is the oldest established and the only truly direct method for 

determining the total moisture content of soils. The method implies to oven-dry a soil sample of known 

weight at a constant temperature of 105 °C. After that, the sample is cooled and reweighted. The water 

content of the sample is then given by the mass of water per unit mass of dry soil [14,19,21]. 

The most common indirect methods for estimating the soil water content are the neutron scattering, 

the use of porous blocks, the dielectric measurements by means of capacity sensors and Time-Domain 

Reflectometry (TDR) [22,23]. The neutron scattering technique estimates the amount of water in a 

volume of soil by measuring the amount of hydrogen present. A radioactive source (241Am) is inserted 

into the soil, from which fast neutrons are emitted. When these particles collide with the hydrogen atoms 

present in the water molecules, they lose energy and slow down. Therefore, the total amount of water in 

the soil is measured taken into account the rate of neutron slowdown [14,21,24]. Porous blocks are made 

of materials such as gypsum, ceramic, nylon and fiberglass. When these blocks are buried in soil, their 

water content comes to potential equilibrium with that of the soil. Then, different properties of the block 

which are affected by its water tension may be measured. Some of the more common types of porous 

block are the electrical resistance blocks and the thermal dissipation blocks. On the former type, the 

resistance is affected by the water content of the block, which is a function of the soil water tension. On 

the latter type, the heat dissipation measured in the soil is correlated to the soil moisture content [24,25]. 

Based on the soil dielectric constant, the soil moisture content may also be determined by measuring the 

capacitance between two electrodes implanted in the soil [26–28]. The TDR determines the dielectric 

constant of the soil by measuring the propagation of an electromagnetic pulse, which is launched along 

a waveguide inserted in the soil. The dielectric constant measured by the TDR constitutes a good 

approximation of the soil water content [29,30]. 

Although non-invasive techniques have attracted a lot of attention in the last decade, they are not well 

established yet. Among these techniques the NIR spectroscopy, the use of Ground Penetrating Radars 

(GPRs) and remote sensing are noteworthy. In [31] a fiber-type visible and NIR spectrophotometer is 

proposed for the on-line measurement of soil water content, taking into consideration the fundamental 

property of water to absorb light energy strongly at NIR bands. The sensor is attached to a subsoiler 

installed in a tractor, and its performance is improved if soil-to-sensor distance variation is minimised. 

In [32] NIR diffuse reflectance spectroscopy is utilised for real-time measurement of the soil water 

content. The device uses a tungsten halogen bulb to illuminate the soil and an optic to direct reflected 

light into a fiber optic for transmission to the spectrometer. Measurements are carried out through a 

sapphire window durable enough to withstand continuous contact with the soil. On the other hand, two 

different approaches are considered for determining the soil surface water content with GPRs. The first 

one derives the soil surface water content from the ground-wave propagation velocity [33,34], while the 

second uses the surface reflection coefficient method [35,36]. Airbone and spaceborne remote-sensing 

based on either passive microwave radiometry or active radar instruments are very promising for 

estimating soil surface water content over large areas, but their major limitations are the unknown  

within-pixel heterogeneity and the usually  resulting poor agreement with calibrating and gravimetric 

sampling [37,38]. It is also worthwhile to mention that in [39], visible, multispectral, SWIR, MidWave 

InfraRed (MWIR), LWIR, polarisation and stereo sensors are experimentally tested and compared for 

mud detection. Authors conclude that none of these passive sensors alone can detect mud in a robust 

manner and recommend the combination of colour, stereo and polarization for achieving the stated 
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purpose. Table 1 summarises the main advantages and drawbacks of the techniques mentioned above 

for measuring the soil water content. 

Table 1. Main advantages and disadvantages of methods for estimating soil water content. 

Techniques Advantages Disadvantages 

Direct 

method 

Thermogravimetric 

technique 

 Inexpensive 

 Simple 

 Highly accurate 

 Not dependent on the soil type 

 Time consuming 

 Destructive to the soil 

 Labour-intensive 

 Difficult in rocky soil 

 Without automation possibilities 

Indirect 

methods 

Neutron scattering 

 Rapid (response time: 1 or 2 min) 

 Accurate 

 Repeatable measurement of soil 

 The use of radioactive material requiring a licensed 

and extensively trained operator 

 The high equipment cost 

 Extensive calibration 

Porous blocks 

 Quick 

 Repeatable 

 Relatively inexpensive 

 The blocks do not work well in coarse-textured or 

saline soils. 

 They are destructive to the soil. 

 Accuracy is poor.  

 The blocks need to be soaked in water for several 

hours before installing them in the field. 

 Response time: 2 or 3 h 

Capacity sensors  Instantaneous  Intense calibration is required. 

TDR 

 Independent of soil texture, 

temperature, and salt content 

 Possible to perform long-term 

in situ measurements 

 No calibration is needed 

 Can be automated 

 Costly 

 Destructive to the soil. 

Remote 

methods 

NIR spectroscopy 
 Real time 

 Non-invasive 
 Dependence on surface roughness 

GPRs 

 Real time 

 Non-invasive 

 High resolution 

 High speed data acquisition 

 No limitations because of 

ambient conditions 

 Non-destructive method 

 The most significant performance limitation of GPR 

is in high-conductivity materials such as clay soils 

and soils that are salt contaminated. 

 Interpretation of radargrams is  

generally non-intuitive. 

 Considerable expertise is necessary to effectively 

design, conduct, and interpret GPR surveys. 

 Relatively high energy consumption can be 

problematic for extensive field surveys. 

Microwave 

 Real time 

 No disturbance of site 

 No calibrations are required 

 Not as accurate as direct methods 

 Susceptible to surface roughness and vegetation 

 Complex equipment 

 Costly 

This paper proposes an arrangement composed of a SWIR camera, a LWIR camera and a VIS-NIR 

system that allows interchanging two band-pass optical filters with centre wavelengths of 624 nm and 
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950 nm and an associated algorithm for the estimation of the ground bearing capacity. The presented 

approach represents a non-contact method that enables to acquire measurements before traversing the 

field. In this way, no disturbance of the site will be produced and ground damages can be significantly 

reduced. The rest of the paper is organised as follows: Section 2 presents the sensory system that has 

been designed and tested, as well as the algorithm implemented for the estimation of the ground bearing 

capacity. Section 3 describes the results obtained from the different experimental tests that have been 

carried out. Section 4 discusses the main results, while Section 5 summarises major conclusions and 

future research directions. 

2. Materials and Methods 

The proposed solution is based on the combination of a P25 LWIR camera (FLIR, Wilsonville, OR, 

USA) a GoldEye P-032 SWIR camera (Allied Vision, Stradtroda, Germany) and a VIS-NIR system that 

comprises an Allied Vision AVT Prosilica GC2450 high resolution monochrome camera, a custom-made 

filter wheel, and a servomotor that allows interchanging two band-pass optical filters with centre 

wavelengths of 624 nm and 950 nm (see Figure 1). The FLIR P25 LWIR camera has a spectral range 

that goes from 7.5 to 13 μm, a storage temperature range that goes from −40 °C to 70 °C, a thermal 

sensitivity of 0.08 °C at 30 °C and a resolution of 320 × 240 pixels. The GoldEye P-032 SWIR camera 

has a spectral response from 900 nm to 1700 nm thanks to its InGaAs sensor of 636 × 508 pixels. The 

AVT Prosilica GC2450 monochrome camera, which features the high quality ICX-625 CCD image 

sensor (Sony, Tokyo, Japan), has a frame rate of up to 15 fps at 2448 × 2050 pixels resolution. 

 

Figure 1. Proposed multisensory system. 

Band-pass optical filters with centre wavelengths of 624 nm and 950 nm are selected to enable 

discrimination between vegetation and ground. It is well documented that all photosynthetic plants  

are characterised by a low reflectance in red wavelengths (600 nm–700 nm) because chlorophylls  

(and related pigments) absorb much of the incident energy for photosynthesis. Meanwhile, in the  

near-infrared wavelengths (700 nm–1300 nm) photosynthesising plants reflect large proportions of the 
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incident sunlight [40,41]. Therefore, processing of these images acquired with the aforementioned filters 

will allow us to focus only on those pixels of the scene that belong to the ground and that are required 

for further analysis [42]. Table 2 summarises technical specifications of the selected filters. 

Table 2. Technical specifications of the selected filters. 

FILTER 1 FILTER 2 

Centre wavelength CWL (nm) 624.00 Centre wavelength CWL (nm) 950.00 
Bandwidth (nm) 40.00 CWL Tolerance (nm) ±10 

Transmitted Wavefront, RMS (λ) ¼ Full Width-Half Max (nm) 50 
Bandwidth Tolerance (nm) ±6.24 Full Width-Half Max Tolerance (nm) ±15 

Minimum Transmission (%) 90 Minimum Transmission (%) 55 
Optical density OD >6.0 Optical density OD >3.0 

Once these areas of interest have been isolated, they are analysed on SWIR and LWIR images in 

order to study the surface soil moisture. Water strongly absorbs light in the SWIR wavelengths. This is 

due to overtones and fundamentals of the three vibration frequencies of H2O; symmetric and asymmetric 

O–H stretching and O–H bending [43,44]. Thus, the reflectance on SWIR images decreases with 

increasing soil moisture. LWIR thermal images, for its part, show a decrease in temperature in moist 

soil, in comparison with dry soil [39] due mainly to the evaporation that dissipates heat and the high heat 

capacity of the water. Nevertheless, there are several factors that can influence soil temperature such as 

the angle to the sun and the time of day. For that reason, LWIR information is just utilised for 

determining if the ground exhibits either a heterogeneous or a homogeneous moisture distribution. 

It is also important to mention that during the design phase several measurements were carried out 

not only with the proposed sensory rig, but also with a penetrometer, so that the soil penetration 

resistance acquired with the penetrometer could be associated with the normalised reflectance value of 

the SWIR images. The M06.01 penetrometer (Eijkelkamp, Giesbeek, The Netherlands) utilised during 

these tests for the acquisition of training data is shown in Figure 2. It is composed of a steel rod fitted 

with a conical tip, a device to monitor the force, and several marks to locate some predefined positions 

of the cone. The cone has 60° angle, and the basal area is equal to 1 cm2. For each test the cone was 

pushed into the soil at constant velocity and the penetration resistance was read at certain depths. 

Thus, the algorithm proposed for estimating the ground bearing capacity combines: 

• A registration procedure. VIS-NIR, SWIR and LWIR images come from cameras that exhibit 

different field of view and different pixel array. To overcome this problem, the random sample 

consensus (RANSAC) algorithm [45] is adopted for registering the images acquired with the 

different cameras that compose the sensory rig, in such way that a direct correspondence between 

the pixels of the different images is obtained [42]. This enables that following processing steps 

can be conducted at pixel level. 

• A multi-class Support Vector Machine (SVM) classifier that is applied to registered 

monochrome, 624 nm and 950 nm images and trained to label the pixels of these images into 

three classes that are: soil, vegetation and others. Two SVMs are executed sequentially, each one 

for detecting a class against the rest, as described in [42]. The resulting pixel-based classification 
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map is then utilised for generating a mask that will allows us to work only with those pixels that 

belong to the soil class in the next processing steps and discard the rest of them. 

• The masking of the registered SWIR and LWIR images by using the pixel-based classification 

map obtained in the previous step. 

• A K-means clustering that is applied to the soil pixels of the masked thermal image with the aim 

of partitioning soil pixels into three effective clusters. These three clusters are then utilised for 

delimiting the areas where the mean temperatures and the mean reflectance values will be 

calculated from the thermal and the normalised SWIR images, respectively. Next, the absolute 

differences from the mean values of the clustered areas are calculated and compared with certain 

predefined thresholds that will help us to determine if the soil sample has a homogeneous bearing 

capacity, or if on the contrary, the soil is heterogeneous. If soil is homogeneous a unique mean 

reflectance value is calculated from the soil pixels of the normalised SWIR image. If the soil is 

heterogeneous, a mean reflectance value is calculated for each area of the normalised SWIR 

image. Delimitation of these areas is given by the clusters obtained from the masked thermal 

image after applying the K-means clustering. 

• A linear regression that is applied for modelling the relationship between the soil penetration 

resistance and the mean reflectance value of the areas of interest from the corresponding 

normalised SWIR image. For accomplish this linear regression, numerous experimental tests 

were carried out, where the penetration resistance was measured with the penetrometer and the 

corresponding mean reflectance value was calculated from the normalised SWIR image acquired 

for the same scenario. Therefore, mean reflectance values obtained in the previous step are used 

for the final estimation of the ground bearing capacity. 

 

Figure 2. Penetrometer utilised during the experimental tests. 

The methodology proposed for estimating the ground bearing capacity is summarised in Figure 3. 
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Figure 3. Proposed methodology for estimating the ground bearing capacity. 

3. Experimental Section 

Data acquisition was conducted in several campaigns that took place between March and July  

of 2014, in Madrid, Spain. Sites include CSIC premises and two field stations owned by CSIC at Arganda 

del Rey (lat. 40°18′48.9″N; long. 03°28′54.8″W), totalling an extension of 64 ha on a typical xerofluvent 

soil with a sandy-loam texture in the first 0.5 m and increasingly sandy texture below. For a better 

comprehension, the description of the experimental stage is divided into four main phases that are 

detailed below. 

The first phase of the experimental stage was devoted to the acquisition of images for implementing 

the registration procedure. Although the VIS-NIR, LWIR and SWIR cameras that constitute the 

proposed multisensory system are utilised for acquiring images from the same scene, resulting images 

are taken from slightly different viewpoints, with a different field of view and different resolution. Thus, 

this procedure aims to obtain a direct correspondence between the pixels of the different images before 

continuing with further processing steps for estimating the ground bearing capacity. The dataset acquired 

in this first phase included monochrome, LWIR and SWIR images. A chessboard pattern was utilised 

for facilitating the process of finding the point correspondences. Figure 4 shows an example of the 

monochrome, LWIR and SWIR images utilised as inputs for the registration procedure, whereas  

Figure 5 displays the resulting outputs of the aforementioned procedure. 

Since in natural scenarios soil is merged with vegetation and other elements, the purpose of the second 

phase of the experimentation stage was to train and evaluate the multi-class SVM classifier for 

discriminating the soil from the rest of the scene elements. In this way, only pixels belonging to soil are 

analysed in LWIR and SWIR imaging during the other processing steps of the proposed algorithm. 
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(a) (b) (c) 

Figure 4. Images utilised as inputs for the registration procedure. (a) Monochrome image 

acquired by the AVT Prosilica GC2450; (b) SWIR image; (c) LWIR thermal image. 

(a) (b) (c) 

Figure 5. Registered images. (a) Registered monochrome image; (b) Registered SWIR 

image; (c) Registered LWIR image. 

For training the SVMs, three acquired dataset were randomly picked. Each dataset acquired in  

this phase included a monochrome image and two images with band-pass filters that have centre 

wavelengths of 624 nm and 950 nm. From these monochrome and filtered images, representative regions 

of interest of different sizes were selected for each desired class. Then, the mean reflectance values of 

these regions were treated as training samples and were manually labelled in three semantic classes: soil, 

vegetation and others elements of the scene. With the obtained set of 30 samples per class, the SVMs of 

the proposed algorithm were trained to classify the pixels of the images. Figure 6 shows an example of 

the monochrome and the filtered images acquired with the multisensory system for evaluating the 

proposed multi-class SVM classifier, as well as the resulting classification map. In the classification 

map, brown, green and white colours are utilised to visualize pixels classified as soil, vegetation and 

other elements, respectively. 

The third phase of the experimental stage was carried out with the aim of finding out a relationship 

between the data acquired with the SWIR camera and the measurements obtained with the penetrometer. 

Datasets included LWIR and SWIR images acquired in scenarios with dry and wet soil. Moreover, in 

each of the conducted experiments, several measures were also carried out with a penetrometer, so that 

the soil penetration resistance information can be associated with the corresponding mean reflectance 

value of the SWIR image acquired with the sensory rig, and in this way, be subsequently used for training 

the algorithms responsible of estimating the ground bearing capacity. An example of the data obtained 
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in this phase is presented on Figures 7 and 8. Figure 7a shows the normalised image acquired with the 

SWIR camera, while Figure 7b illustrates the corresponding LWIR image. Note that upper parts of these 

images correspond to wet soil and bottom parts to dry soil. Red boxes displayed on Figure 7a indicate 

the dry and wet areas of the soil that were selected not only for the calculation of the mean reflectance 

percentages but also for the measurement of the penetration resistances by using the penetrometer. 

Resulting mean reflectance percentages for the selected areas are also displayed in yellow. Figure 8 

gathers the measurements acquired with the penetrometer for this test. Black and blue lines represent the 

penetration resistances measured at different depths when the soil is dry and wet, respectively. 

 
(a) (b) 

 
(c) (d) 

Figure 6. (a) Monochrome image; (b) 624 nm image; (c) 950 nm image; (d) Classification map. 

From the results obtained in all the tests carried out on this third phase it is possible to confirm that 

the mean reflectance values of the areas of interest belonging to the soil on normalised SWIR images 

decrease with increasing soil moisture, as it was expected, since water strongly absorbs light in the SWIR 

wavelengths. Thermal images also confirm a decrease in the temperature through the day when the 

ground is wet, in comparison with the dry soil. However, as we stated in the previous section,  

the direct utilisation of thermal information is discarded for the estimation of the ground bearing 

capacity, since there are several factors that influence soil temperature, including angle to the sun, 

weather conditions and the time of day. Even so, thermal information is very useful for other 
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intermediate processing steps that help us to identify areas that are considerably wetter than the rest, 

providing automatic delineation of areas for the calculation of the mean reflectance values on normalised 

SWIR images. On the other hand, penetrometer measurements reinforce the idea that the penetration 

resistance, and therefore, the bearing capacity, decrease when the soil is moist. Taking into account these 

results, a linear regression approach is applied for modelling the relationship between the soil penetration 

resistance (at a depth of 0.1 m) and the corresponding mean reflectance value of this region of interest 

on a normalised SWIR image. Figure 9 illustrates the linear regression carried out with the data obtained 

from the experimental tests. 

(a) (b) 

Figure 7. (a) Normalised SWIR image; (b) LWIR thermal image. 

 

Figure 8. Soil penetration resistances acquired with the penetrometer. 

Final set of experiments were intended to evaluate the whole system proposed for the estimation of 

the ground bearing capacity. Acquired datasets included LWIR thermal, SWIR and monochrome 

images, as well as two filtered images acquired with band-pass filters that have centre wavelengths of 

624 nm and 950 nm. Results of these experiments are described in next Section. 
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Figure 9. Relationship between soil penetration resistance and normalised SWIR reflectance. 

4. Results and Discussion 

In order to validate the capabilities of the proposed system, a total of 10 scenes with variable soil 

water content conditions were acquired, processed and evaluated. Ground truth data was carefully 

collected with a penetrometer for each scene in order to carry out a quantitative assessment of  

the proposed solution. Figures 10–15 illustrate most of the intermediate results obtained from the 

different steps that make up the algorithm proposed for the estimation of the ground bearing capacity. 

Figures 10 and 11 display the dataset of a scene acquired with the proposed multisensory system.  

This dataset includes a monochrome image, two filtered images acquired with band-pass filters whose 

centre wavelength are 624 and 950 nm, a normalised SWIR image and a LWIR thermal image. 

(a) (b) (c) 

Figure 10. (a) Monochrome image; (b) 624 nm image; (c) 950 nm image. 

Figure 12 shows the resulting images after applying the registration procedure. This pre-processing 

step allows us to have a direct correspondence between the images acquired with the different cameras, 

enabling the ground bearing estimation algorithm to operate at pixel level. 
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(a) (b) 

Figure 11. (a) Normalised SWIR image; (b) LWIR thermal image. 

(a) (b) (c) 

(d)      (e) 

Figure 12. Registered images. (a) Registered monochrome image; (b) Registered  

624 nm image; (c) Registered 950 nm image; (d) Registered SWIR image; (e) Registered 

LWIR image. 

The pixel-based classification map resulting from applying the multi-class SVM classifier to the 

images presented in Figure 12a–c is shown in Figure 13a. Note that in spite of the challenging scene, the 

multi-class SVM classifier exhibits a very successful performance. This map is then utilised for 

generating a mask, in such a way that only pixels classified as soil are considered on thermal and 

normalised SWIR images for the further processing steps. Thus, Figure 13b displays the mask generated 

from the classification map and after the application of some morphological procedures to fill holes and 

remove small objects. 
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(a) (b) 

Figure 13. (a) Classification map; (b) Mask generated from the classification map. 

(a) (b) (c) 

Figure 14. Effective clusters resulting from the K-means procedure. (a) First cluster, named C1; 

(b) Second cluster; (c) Third cluster. 

(a) (b) (c) 

Figure 15. Delimited areas and mean reflectance percentages on the normalised SWIR 

image. (a) First cluster; (b) Second cluster; (c) Third cluster. 

Next, the K-means clustering is applied to the pixels of the LWIR thermal image that remain  

after conducting the masking, with the aim of partitioning these pixels into four exclusive clusters. Every 

pixel in the image is labelled in accordance with the cluster index assigned by the K-means procedure. 

Cluster corresponding to white pixels is disregarded, since it does not belong to the soil class. Figure 14 

shows the three effective clusters resulting from the K-means procedure. These three effective clusters 

are then utilised for delimiting the areas that are employed for calculating the mean temperatures and the 
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mean reflectance values on the thermal and the normalised SWIR images, respectively. Figure 15 

displays the corresponding delimited areas on the normalised SWIR image. 

The comparison of the absolute differences obtained from the different clusters with certain 

predefined values, will help us to determine if the soil sample has a homogeneous bearing capacity,  

or if on the contrary, the soil is heterogeneous, exhibiting areas with significantly different bearing 

capacities (for instance, due to an area with a greater water content). This last case is clearly observed in 

Figures 14 and 15, where the first cluster, named C1, presents a mean temperature (Figure 14a) and a 

mean reflectance value (Figure 15a) notably different from the other clusters. It is important to mention 

that on the proposed algorithm two conditions have to be fulfilled simultaneously so that two clusters 

can be considered as independent: the absolute difference of the mean temperatures must be greater than 

one degree and the absolute difference of the mean reflectance percentages must be greater than five 

points. These thresholds have been empirically defined. Therefore, in the stated example, the ground 

bearing capacity is estimated for two areas: the first one provided by the C1 cluster, and the second one 

provided by the two other clusters. 

Then, taking into account these estimations, the model obtained from the linear regression presented 

in Figure 9 is applied, resulting in a ground bearing capacity of 2.22 MPa for the region provided by the 

cluster C1 and 3.92 MPa for the area provided by the other two clusters. Ground truth data obtained with 

the penetrometer indicated a ground bearing capacity of 2.4 MPa for the first region and 4 MPa for the 

second one, resulting in a mean relative error of 4.75% in the estimation of the ground bearing capacity 

for this test. 

Figures 16–21 depict the same intermediate steps and results described above for an additional scene 

characterised for exhibiting a different behaviour of the ground bearing capacity. Figures 16 and 17 

display the dataset of the scene acquired with the proposed multisensory system. This dataset includes a 

monochrome image, two filtered images acquired with band-pass filters whose centre wavelength are 

624 and 950 nm, a normalised SWIR image and a thermal image. 

(a) (b) (c) 

Figure 16. (a) Monochrome image; (b) 624 nm image; (c) 950 nm image. 

Figure 18 shows the images obtained after applying the registration procedure. Figure 19 presents the 

map resulting from the multi-class SVM classifier and the mask generated from this classification map. 



Sensors 2015, 15 14009 

 

 

(a) (b) 

Figure 17. (a) Normalised SWIR image; (b) LWIR thermal image. 

(a) (b) (c) 

(d)       (e) 

Figure 18. Registered images. (a) Registered monochrome image; (b) Registered  

624 nm image; (c) Registered 950 nm image; (d) Registered SWIR image; (e) Registered 

LWIR image. 

Next, Figure 20 shows the three effective clusters resulting from the K-means procedure, while  

Figure 21 displays the corresponding delimited areas on the normalised SWIR image. Since in this case 

the absolute differences of the mean temperatures of the clusters are less than or equal to one degree, 

they are considered as a unique cluster with a homogeneous ground bearing capacity. Then the proposed 

algorithm recalculates the mean reflectance percentage for the whole area and provides an estimated 

ground bearing capacity of 4.3 MPa. Ground truth data obtained with the penetrometer indicated a mean 
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ground bearing capacity of 4.0 MPa for this region of interest, resulting in a mean relative error of 7.5% 

in the estimation of the ground bearing capacity for this test. 

(a) (b) 

Figure 19. (a) Classification map; (b) Mask generated from the classification map. 

(a) (b) (c) 

Figure 20. Effective clusters resulting from the K-means procedure. (a) First cluster;  

(b) Second cluster; (c) Third cluster. 

(a) (b) (c) 

Figure 21. Delimited areas and mean reflectance percentages on the normalised SWIR 

image. (a) First cluster; (b) Second cluster; (c) Third cluster. 

LWIR thermal images acquired during the experimental tests demonstrated that under nominal 

weather conditions, wet soil is cooler than dry soil through the day. At both high and low temperatures, 

there was still a notably thermal difference between the dry and wet soil. For that reason, K-means 
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clustering applied to the masked thermal images resulted to be a suitable option to delimit areas with 

different temperatures, and consequently, areas that are candidates to present different water content. 

However, temperature values are disregarded for the direct estimation of the ground bearing capacity 

due to its high variability depending on several external factors. Results from the clustering procedure 

are also applied to the normalized SWIR images. This is a great advantage, since although mean 

reflectance values on normalized SWIR images diminish with increasing soil water content, differences in 

a heterogeneous terrain can be difficult to detect. On the other hand, the multi-class SVM classifier 

applied to the VIS-NIR images also demonstrated to be very useful for discriminating soil from other 

elements of the scene. Discarding those pixels that belong to other elements of the scene different from 

soil contributes to reduce estimation errors during the calculation of the mean reflectance values from 

the SWIR images. Despite of the successful performance of the classifier, a closer observation of the 

results shown in Figures 13a and 19a brings into relief that some common misclassification errors can 

be produced due to shadows and white bright pixels from overexposed areas. However, the effects of 

these misclassifications are minimised thanks to the subsequent steps of the proposed algorithm.  

For instance, white bright pixels are usually classified as other elements of the scene. Therefore,  

these pixels will be discarded for further analysis, contributing in this way to reduce ground bearing 

capacity estimation errors. The same happens if shadowed pixels are classified as vegetation or as other 

elements of the scene. On the contrary, if shadowed pixels are classified as belonging to the class soil, a 

more complex analysis is required to determine its influence in the estimation of the ground bearing 

capacity. Nevertheless, in the worst case, the proposed approach is still quite conservative, since shadows 

would produce areas with low reflectance values in SWIR imagery that would tend to decrease the 

magnitude of the ground bearing capacity. This result is still beneficial from the point of view of the soil 

protection. Thus, combination of LWIR, SWIR and VIS-NIR imagery through the proposed algorithm 

minimises the disadvantages and maximises the strengths of each independent system, resulting in an 

effective and non-invasive solution for estimating the ground bearing capacity. 

Gathering the results obtained from the 10 evaluated scenes, it is possible to highlight that the 

proposed approach showed a capability of 79.3% for predicting correctly the ground bearing capacity 

from the mean reflectance value of the normalized SWIR images, with a mean prediction error of 20.7%. 

Despite the high level of correctness attained by the proposed solution when it comes to estimating the 

ground bearing capacity, it should be taken into account that the prediction model obtained from the 

linear regression mainly relies on experimental data. Therefore, in order to guarantee a robust estimation 

of the ground bearing capacity, data acquisition should be extended to different types of terrains. Even, 

it could be desired to count with one predictive model for each type of terrain. 

The presented approach can be also very useful for helping decision making systems in selecting 

those areas that tend to minimize ground damage during mechanical operation with wheeled mobile 

robots or vehicles. 

5. Conclusions and Future Research Directions 

This paper proposes a multisensory system based on VIS-NIR, SWIR and LWIR imagery and a 

sequential algorithm that combines a registration procedure, a multi-class SVM classifier, a K-means 

clustering and a linear regression for estimating the ground bearing capacity. The presented solution can 
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be utilized in natural scenarios, in real-time and in a non-destructive manner. Therefore, the sensory rig 

and the cited algorithm can be installed on-board a mobile robot or vehicle for estimating ground 

conditions before traversing the field, avoiding disturbances of the site and significantly reducing  

ground damages. 

An extensive experimental campaign was carried out not only for acquiring the data required for the 

design phase but also for assessing the capabilities of the proposed approach. Experimental results have 

shown that both the multisensory system and the sequential algorithm exhibit a satisfactory performance. 

Comparison of ground bearing capacity estimations resulting from the experimental tests with the 

ground truth data obtained with the penetrometer shows the feasibility and the potential of the proposed 

method. Future work should be directed to enhancing the prediction model obtained from the linear 

regression. For that, a more widespread experimental study should be conducted in order to include 

different types of soils that contribute to guarantee a robust estimation of the ground bearing capacity. 
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