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Abstract 
Gold nanospheres have been manipulated by atomic force microscopy on a rippled glass surface 
produced by ion beam sputtering and coated with an ultrathin (10 nm thick) graphitic layer. This 
substrate is characterized by irregular wavy grooves running parallel to a preferential direction. 
Measurements in ambient conditions show that the motion of the nanoparticles is confined to 
single grooves (‘channels’), along which the particles move till they are trapped by local 
bottlenecks. At this point, the particles cross the ripple pattern in a series of consecutive jumps 
and continue their longitudinal motion along a different channel. Moreover, due to the 
asymmetric shape of the ripple profiles, the jumps occur in the direction of minimum slope, 
resembling a ratchet mechanism. Our results are discussed, extending a collisional model, which 
was recently developed for the manipulation of nanospheres on flat surfaces, to the specific 
geometry of this problem. 
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1. Introduction 
 

Since their invention, scanning probe microscopies (SPMs) have rapidly evolved from 
imaging instruments to operative tools by which individual atoms and molecules can be 
manipulated at will [1, 2]. When applied to larger systems (e.g., nanoclusters or hepitaxially 
grown nanoislands), SPM and, more specifically,  atomic force microscopy (AFM) 
manipulation is a formidable tool not only to build artificial nanostructures, but also to 
investigate the mechanical and chemical interactions at the interface between the nano-objects 
and the substrate. After the pioneering experiments on C60 and MoO3 islands from the middle 
1990s [3, 4], noticeable examples are the controlled manipulation of Au nano-spheres and MoS2 
islands by Ritter et al [5, 6], the series of experiments by Dietzel et al aimed to define the 
conditions of occurrence of superlubricity on the nanoscale [7, 8], and real-time 
nanomanipulation experiments inside a scanning electron microscope [9]. However, controlled 
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manipulation in terms of lateral or vertical displacement of nano-objects one by one is time 
consuming and often requires restricted conditions, such as ultra high vacuum or low 
temperature. In order to fabricate large-scale, functional nanostructures by controlled SPM-
assisted positioning, different strategies need to be explored. Recently, some of us have showed 
that AFM allows us to perform fast and controlled manipulation of nanospheres using standard 
raster scan patterns with variable density of scan lines [10]. Analytical expressions have been 
derived that relate the angle of deflection θ of the spheres to the spacing b between consecutive 
scan lines. This model has been extended to other rigid shapes [11] and supported 
experimentally on nanorods and flower-shaped islands [12, 13]. However, only atomically flat 
substrates have been considered in the aforementioned works. 

In this paper we explore the influence of the substrate morphology on the manipulation 
process. A rippled glass surface characterized by irregular grooves is used as a substrate to 
manipulate Au nanospheres. The spheres, the diameters of which are below the ripple 
periodicity, are found to move parallel to the ripples until they get trapped by local impurities or 
geometric constraints. At this point, a long transverse jump becomes possible. To reduce the 
friction between particles and substrate and to facilitate the manipulation process, the rippled 
glass has been covered with an ultrathin graphitic layer. The experimental results are interpreted 
within our collisional model, extended to the ripple morphology. 
 
 
2. Materials and methods 
 

Self-organized rippled templates were fabricated by ion beam sputtering of low cost 
soda lime microscope glass slides (Pearl). Ion irradiation was performed in a UHV system with 
a defocused Ar+ ion beam (5 N purity) generated from a gridded multiaperture ion source 
(TECTRA) at an energy of 800 eV and at an incidence angle of 35°, measured with respect to 
the surface normal. A biased tungsten filament (Vbias = −13V), providing electrons by 
thermoionic emission, was placed close to the extraction grid in order to compensate surface 
charging due to ion implantation. After  an  ion  dose  of  about 2.8 × 1019 ionscm−2, the 
morphology evolved into a well ordered ripple pattern, which extends uniformly over large 
areas (∼cm2 scale) with a wavevector mainly oriented parallel to the ion beam projection on the 
surface [14]. 

A thin amorphous carbon layer with a thickness of 10 nm was grown on the ripple 
template by sputter deposition in a home set-up vacuum chamber. A graphite foil (0.25 mm 
thick, Mateck), attached on a target and placed in front of the sputter gun (TECTRA), was 
sputtered with an Ar+ ion beam at the energy of 4 keV. In this condition, a constant flux of about 
0.42 nmmin−1, monitored by a quartz microbalance, is deposited on the sample. The AFM 
topography of the template coated with the carbon layer (figure 1(a)) shows that the ripples have 
a typical length in the range of 4–5 μm and a mean height of 50 nm. The lateral periodicity λ, as 
obtained from the two-dimensional (2D) autocorrelation function in figures 1(b) and (c), is 
about 158 nm. 
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Figure 1. (a) Topography image (5.9 × 5.9 μm2) and (b) corresponding 2D autocorrelation pattern. (c) 
Cross-section of (b) used to estimate the ripples periodicity. 
 

On such a modified substrate, a drop of diluted solution of Au nanospheres was 
deposited in ambient conditions. The spheres had a diameter of about 110 nm, as measured by 
transmission electron microscopy (TEM). After 15 min, the drop was blown off, using dry 
nitrogen. The manipulation experiments were performed using a Multimode III AFM from 
Bruker, USA. All measurements were carried out at room temperature and a relative humidity 
of 25–40%. SNL- 10D AFM probes from Bruker with nominal resonant frequency f = 18 kHz 
and spring constant kN = 0.06 N/m were used for imaging and nanomanipulation. The 
manipulation was performed in contact mode, following a zig-zag scan pattern. Data post-
processing was performed using the WSxM [15] and Gwyddion [16] software. 
 
 
3. Results 
 

As seen in figure 1(a), the anisotropic ripple pattern forms an intriguing system of 
potential channels, similar to river tributaries or railway nodes with bottlenecks and ‘dead ends.’ 
In some regions, the channels remain perfectly parallel at distances as long as several μm. The 
Au nanoparticles deposited on the surface are found to settle exactly in the ripple valleys to 
minimize their surface energy. No particle was found on the top of the rims separating two 
consecutive grooves. In figure 2, topography and lateral force maps of the substrate are 
compared. From the height profile it is seen that the ripple profiles are asymmetric, with a slope 
of one facet almost twice as large as the other one (β = 24° and β′ = 43° respectively). Due to 
the anisotropy of the topography profile, forward and backward lateral force sections are not 
symmetric. Indeed, in both scan directions the lateral force peaks up at the ripples edges, and the 
peak amplitude is much larger when the edge is reached from the steeper side. From the 
curvature of the topography profile on the edge, we estimate a radius of curvature of the tip apex 
in the order of 7–8 nm. These features are important in the interpretation of the measurements 
discussed below. 
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Figure 2. Left panel: AFM topography and corresponding lateral force images (set point FN = 3 nN). 
Right panel: Height profile and lateral force signals corresponding to the marked lines. 
 

Nanomanipulation was performed, increasing the normal force FN on the probing tip 
until a critical value Fc was reached, and the Au nanospheres started to move. A representative 
series of topography images acquired when a sphere was manipulated using a setpoint above Fc 
is shown in figure 3. Here, the fast scan direction (corresponding to the x axis) was chosen 
almost perpendicular to the ripple orientation (from left to right), and the surface was scanned at 
a speed of 2.3 μms−1. The slow scan direction (y axis) was oriented bottom-up, and the distance 
between consecutive scan lines was set to b = 4.5 nm. These images clearly reveal the 
channeling of the nanoparticle during manipulation. Note that the trajectory of the nanoparticle 
is discontinuous, indicating a stick-slip motion of the sphere along the grooves. This can be 
attributed to irregular features or impurities in the channel, not resolved by the AFM, which 
temporarily trapped the particle. In figure 3(a) the nanosphere moved from its initial position up 
to a crosspoint, where two channels merged into one. In figure 3(c) the sphere continued its 
longitudinal motion along the main channel till an obstacle (a narrowing point or a surface 
impurity) was encountered. At this point, the sphere was shifted, crossing four ripple edges to 
the right, and resumed the previously observed type of motion along a different channel. As 
shown by the topography profiles corresponding to consecutive scan lines before and after the 
lateral displacement (figure 4(a)), the particle was displaced transversally by the tip in a series of 
four consecutive ‘jumps’ (one per scan line), and not in a single shot. Note that the height 
difference between the consecutive profiles is com- parable to the sphere diameter, meaning that 
the tip was almost on top of the particle while manipulating it across the ripples. As seen in 
figure 4(b), the onset of the particle motion across the grooves is accompanied by a lateral force 
peak. The peak is much larger at the onset of the first transverse jump (line 2), where the particle 
is detached from the bottleneck, and adhesion is larger. 
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Figure 3. A series of consecutive topography images (2.3 × 2.3 μm2) showing the nanomanipulation of 
two gold nanoparticles. The distance between consecutive scan lines in the zig-zag scan pattern is 4 nm, 
and the set point FN = 3 nN. The arrows indicate the direction of motion of the particles, as inferred from 
the lateral force images in the insets. The rectangle refers to a region magnified in figure 4, corresponding 
to multiple jumps of the particle across the ripple pattern. 
 

 
Figure 4. (a) Zoom-in of the rectangular area in figure 3(c) and topography profiles before (1), during (2–
5), and after (6) the multiple jump across the ripple pattern. (b) Corresponding lateral force map and 
profiles. 
 
 

Other examples are given in figure 5. Here, three dif- ferent particles were found to 
jump across seven, one, and two edges, respectively. The total length of these displace- ments 
was completely uncontrolled. We have also inverted both slow and fast scan directions (right to 
left and/or top- down, respectively) without changing the orientation of the ripples and, in all 
cases, the particles were found to jump along the direction of minimum slope, resembling a 
ratchet mechanism [17]. 
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Figure 5. Other examples of nanomanipulation across the ripple pattern. The slow scan direction was 
oriented (a) upwards, and (b) downwards. 
 
 
4. Discussion 
 

The motion of the nanoparticles can be interpreted by a careful geometric analysis. We 
distinguish two cases: (i) the particle adheres weakly to the substrate and is displaced along the 
groove, and (ii) the particle sticks to the substrate and is displaced across the groove only after 
several impacts along consecutive scan lines. 

If a nanosphere adheres only weakly to the substrate, we can gain quantitative insight, 
extending the model introduced in [10]. There we have proven that, if the sphere lies on a flat 
surface, its center O advances within one scan line on a distance 
 

∆𝑥𝑥 =  −(𝑅𝑅1 + 𝑅𝑅2) �cos 𝛼𝛼0 + log 𝑡𝑡𝑡𝑡𝑡𝑡 𝛼𝛼0
2

�   (1) 
 

In equation (1), α0 is the impact angle (i.e., the angle between the x axis and the line 
joining the centers of tip and particle), R1 = Rp (1 + sin γ) tan γ, and R2 = Rp cos γ, where Rp = 
55 nm is the radius of the nanosphere and γ = 22.5° is the half-angle of the conical tip. (We 
neglect the tip radius, which, in the present case, is much smaller than Rp.) This model is based 
on three assumptions: (i) the transfer of momentum between tip and particle occurs only along 
the line connecting their centers, (ii) the friction between particle and substrate is so high as to 
prevent further displacement once the particle has lost contact with the tip, and (iii) adhesion 
between tip and particle is negligible. Following Dietzel et al [18], we assume that these 
conditions are also verified in contact mode, although an experimental confirmation of the first 
hypothesis (equivalent to perfect balance of the momentum transferred along the sphere profile 
by the static friction between tip and particle) is made difficult by the spherical shape of the 
particles. Note that, according to equation (1), Δx = 0 when the tip hits the lower part of the 
particle tangentially (α0 = 90°) and Δx → ∞ in a frontal collision (α0 = 0°).  

In the present problem the x axis is replaced by an axis x′ tilted by an angle β. As seen 
from the geometry in figure 6, the sphere will reach the top of the ripple if the displacement Δx′ 
along x′ is larger than  
 

∆𝑥𝑥𝑐𝑐
′ =  𝜆𝜆

sin 𝛽𝛽′
sin(𝛽𝛽 + 𝛽𝛽′)

− 𝑅𝑅𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡
𝛽𝛽 + 𝛽𝛽′

2
≈ 80.7 𝑛𝑛𝑛𝑛, 

 
where λ is the periodicity of the ripples. 
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Figure 6. Ripple profile with the nanosphere displaced over it. 

 
Suppose now that the tip hits the sphere after completing its descent along the steepest 

side of the ripple and starting its rise along the other side. In this case, as shown in the appendix, 
equation (1) is replaced by 

 
∆𝑥𝑥′ = 𝑅𝑅𝑝𝑝 ∫ (1 + sin (𝛽𝛽+γ)tan  γ +cos (𝛽𝛽" +𝜋𝜋/2

𝛼𝛼0
𝛾𝛾)) 𝑐𝑐𝑐𝑐𝑐𝑐2𝛼𝛼

sin 𝛼𝛼
𝑑𝑑𝑑𝑑,  (2) 

 
Where 
 

𝛽𝛽″(𝛼𝛼)  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 ·  𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽). 
 

In the appendix we have also estimated that, when b = 4.5 nm, the value of the impact 
angle α0 ⩾ 71.9°. Note that we assumed a raster scan pattern. With a zig-zag scan pattern we can 
assume that the formulas are approximately valid in the center of a scan line [10], where the 
particle manipulated in figure 3 is located. Substituting α0 = 71.9° in equation (2), we conclude 
that Δx′ = 1.2 nm, which is well below Δxc′. For larger values of α0, Δx′ will be even smaller. 
Thus, the sphere is only slightly displaced by the tip, and it possibly comes back to the bottom 
(to minimize the surface energy) when the tip moves forward to the next valley. 

A different situation is observed if the particle cannot move along the channel. In this 
case, a large part of the sphere will be imaged by the tip. The first impact between tip and 
particle will occur at increasing height along each scan line and, most importantly, at decreasing 
values of α0. Since the tip can hit the sphere while descending the steeper side of the ripple, or 
even when ascending the previous slope, the formulas derived in the appendix are no longer 
valid. Although a precise estimation of the critical impact angle in this case requires introducing 
the AFM feedback in the model, it is not difficult to see that, when the collision tends to be 
frontal (when almost half of the sphere has been imaged), Δx′ will reach the critical value Δxc′ so 
that the particle will overcome the barrier and end up in the next channel.  

The ratchet mechanism can be also qualitatively understood using figure 6. Assuming 
that the force exerted by the tip along the x axis is the same while scanning forward and 
backward, a larger normal force (and, consequently, a larger friction force) will appear when 
climbing the steepest slope. This means that the value of static friction required to set the 
particle into motion will be first overcome on the other slope. 

It is also interesting to compare our results with the manipulation experiments on 
similar particles by Paolicelli et al [19]. In that case, the Au nanospheres were found to follow 
the step edges of a graphite surface or to remain pinned by them. However, no motion across the 
edges was observed, meaning that the upward and downward directions were essentially 
equivalent. In our case, the much larger height of the geometric obstacles, comparable to the 
particles, size, results in two contact areas with different orientations, given by the angles β and 
β′. The two scan directions are no longer equivalent, and the motion across the ripple pattern, 
although rare, is only seen along the profile with a lower slope. 
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5. Conclusions 

 
Here, we have conducted an experimental and theoretical analysis on AFM 

manipulation of gold nanoparticles deposited on a rippled glass surface in ambient conditions. If 
the ripples are oriented perpendicular to the fast scan direction, the motion of the particles is 
confined to individual channels unless the displacement is blocked by impurities or geometric 
constaints. In this case, the particle can cross the ripple pattern transversally and continue its 
longitudinal motion in a different channel. The total length of the transverse jump is difficult to 
control, but we observe that a long jump is fractioned in a series of single shift events, each one 
corresponding to a consecutive scan line. The nanomanipulation process is discussed in terms of 
a collisional model adapted to the geometry of the problem. A major difficulty that we had to 
overcome is the variable slope of the line connecting the center of the sphere to the contact point 
with the tip. With careful geometric modelling of the problem, we have been able to derive a 
formula which relates the transverse displacement of the sphere in a scan line to the scan pattern 
and the slope of the ripple. The sphere will not jump if this displacement is less than the width 
of the ripple side with the lower slope, which is always the case unless the sphere gets trapped 
by a defect. The method that we have introduced could be extended to other substrates with 
different morphologies. The ultimate goal is to model the motion of the particles on arbitrarily 
patterned surfaces using AFM manipulation and to define the best scan path to arrange them in a 
desired order. 
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Appendix A. Appendix 
 
 
A.1. Manipulation on an inclined plane 
 

Suppose that a nanosphere is pushed by a conical tip along a plane inclined by an angle 
β″. Here we assume that the tip is hitting the sphere exactly along the direction of maximum 
slope so that a cross section of the problem appears as in figure 7(a). The half-angle of the cone 
is γ, and the radius of curvature of the tip apex is negligible. Figure 7(c) shows the elliptical 
intersection between the tip and the plane inclined by an angle β passing through the contact 
point P between tip and sphere. The major semi-axis of the ellipse can be estimated from the 
sine law applied to the triangle VPP′ as 

 
𝑎𝑎 = 𝑉𝑉𝑃𝑃′ sin 𝛾𝛾  cos 𝛾𝛾

cos(𝛽𝛽"+𝛾𝛾)
,     (A.1) 

 
where 
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𝑉𝑉𝑃𝑃′ = 𝑅𝑅𝑃𝑃

1+sin(𝛽𝛽+𝛾𝛾)
cos(𝛽𝛽"+𝛾𝛾)

.     (A.2) 
 
The minor semi-axis b can be obtained from figure 7(d) usingthe notations in figure 

7(b) (C is the center of the ellipse, at a distance q from the axis of the cone, and p is the radius 
of the circular section of the cone passing through C and parallel to the xy plane): 

 
𝑏𝑏 =  �(𝑝𝑝 +  𝑞𝑞)(𝑝𝑝 −  𝑞𝑞) , 

 
where p and q are obtained from figure 7(b) as 
 

𝑞𝑞 = 𝑎𝑎 cos 𝛽𝛽"  − 𝑉𝑉𝑃𝑃′ sin 𝛾𝛾, 
𝑝𝑝 = 𝑉𝑉𝑃𝑃′ sin 𝛾𝛾 + 𝑎𝑎 sin 𝛽𝛽" tan 𝛾𝛾.    (A.3) 

 
 
The minor radius of curvature of the ellipse R1″ = b2/a plays the role of ‘tip’ radius in 

the manipulation of the sphere along the x′y′ plane. Using equations (A.1)–(A.3) after some 
simplifications, we get 

 
𝑅𝑅1

" =  𝑅𝑅𝑃𝑃 (1 +  𝑠𝑠𝑠𝑠𝑠𝑠 (𝛽𝛽″ +  𝛾𝛾)) 𝑡𝑡𝑡𝑡𝑡𝑡 𝛾𝛾,    (A.4) 
 

whereas the relation 
 

𝑅𝑅2
"  =  𝑅𝑅𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐 (𝛽𝛽″ +  𝛾𝛾)     (A.5) 

 
for the effective sphere radius in the planar problem is simply obtained from figure 7(a). 

 
Figure 7. Side view of a conical tip pushing a nanosphere up an inclined plane. 
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As a next step, we need to find a relation between β″ and the angle of inclination β of 
the plane with respect to the x axis. From figure 8 it can be seen that β″ depends on the impact 
angle α, as 

 
𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽″ =  𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽.      (A.6) 

 
The infinitesimal variation of the coordinate x′ of the sphere center, when the angle of 

contact between tip and sphere, α, increases by dα is [10]: 
 

𝑑𝑑𝑥𝑥′ = 𝑅𝑅
cos 𝛼𝛼
tan 𝛼𝛼

𝑑𝑑𝑑𝑑, 
 
leading to the expression (2) in the main text. 
 

 
Figure 8. Geometric relation between the angles β, β″, and α defined in the text. 

 
 

A.2. Minimum impact angle 
 

The minimum value of the impact angle α0 is obtained as follows. Figure 9(a) shows a 
situation in which the tip almost touches the sphere while moving along the x′ axis. In the next 
scan line, at a distance b along y′, the tip will touch the sphere with the minimum possible value 
of α0. In figure 9(a) we define the length 

 
𝑐𝑐 = 𝑅𝑅𝑃𝑃

tan(45°−𝛾𝛾/2)
− 𝑏𝑏 = 𝑅𝑅𝑃𝑃

1 + tan(𝛾𝛾/2)
1 − tan(𝛾𝛾/2)

− 𝑏𝑏. 
 
This length can be related to α0 using figure 9(b): 

𝑐𝑐 =  (𝑅𝑅1
" +  𝑅𝑅2

" ) 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼0 
so that 

 �𝑅𝑅1
" + 𝑅𝑅2

" � sin 𝛼𝛼0 =  𝑅𝑅𝑃𝑃
1 + tan(𝛾𝛾/2)
1 − tan(𝛾𝛾/2)

− 𝑏𝑏    (A.7) 
Combining equation (A.7) with the relations (A.4), (A.5), and (A.6), one can estimate 

α0 numerically. With the values of β, γ, Rp, and b of our problem, we obtain α0 = 71.9°. 
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Figure 9. (a) Front view and (b) top view used to determine the minimum impact angle between tip and 
sphere (in the x′y′ plane). 
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