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We present a phenomenological dynamical model describing the force induced melting as respon-
sible for the DNA overstretching transition. The denaturation mechanism is developed under the
framework of the mesoscopic one-dimensional Peyrard-Bishop-Dauxois (PBD) picture which mod-
els the melting features of a polymer chain by means of a Morse potential and the stacking interaction.
We find a good agreement with both the experimental overstretching curve and the asymmetric hys-
teretic properties with different simulation times. The comparison of the standard PBD model with a
modification of the Morse potential which takes into account the interaction with the solvent has been
also successfully investigated. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819263]

I. INTRODUCTION

The development of the experimental techniques at the
nanoscale and even the possibility of visualizing and manipu-
lating single molecules have given a big impulse to the study
and characterization of the mechanical properties of biologi-
cal object.1

One of the most intriguing and only partially clear
phenomena is the so-called overstretching transition of the
DNA,2, 3 which consists in a sudden elongation of the DNA
chain of about 70% more than the native length, when a force
around 70 pN (the overstretching force) is applied. The pres-
ence of this tension-induced overstretching transition reveals
the existence of two structurally different DNA states: the B-
DNA, at low forces, where the base pairs are packed and heli-
coidally twisted in their native state, and another state, present
at high forces, that was first called the S state, where the base
pair (bp) distance is higher by about 70% than that in the B
state.

After more than a decade, the nature of this transition,
as well as the molecular structure of the overstretched state,
remain controversial. Three main mechanisms could be in-
volved in this transition. Two of them involve strand separa-
tion: peeling from nicks in the chain or its free edge, where
one strand retracts from its complementary strand via base-
pair breaking; and inside-strand separation, where the two
complementary tracts of the double stranded DNA (dsDNA)
both remain under tension, but localized openings of denatu-
ration are created throughout the molecule.4–6 This idea was
supported by the dependence of the overstretching force on
parameters that also affects the melting temperature such as
pH and salt concentration. In the stretching dynamics, it has
been observed the presence of an asymmetric hysteresis in the
elongation curve when the force increases or decreases, which
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depends both on temperature and pulling rates. The presence
of this hysteresis, due to the slow recombination kinetics of
the strands in the decreasing of the pull force, would support
the idea of a force induced denaturation of the DNA (melting),
which gives rise to the so-called M-DNA.

In the other mechanism, the two strands remain con-
nected each other, i.e., the base pairs remain bonded,
and the overstretching appears from a cooperative chain
unwinding.2, 3, 7–9 This state is the so-called S-DNA and its
justification appears from the geometrical and the mechanical
properties of DNA.

Recent experiments would show that all these mecha-
nisms can be superimposed depending on DNA topology and
experimental conditions.10–16 S-DNA is favored at low tem-
peratures, high salt concentration, and high Cytosine-Guanine
(CG) pairs content, while, on the contrary, strand separation
is possible at conditions that affect base pair stability. At stan-
dard temperatures and solution concentration both mecha-
nisms can compete.

As a support of the experiments, several simulations re-
producing the overstretching transition have been proposed:
statistical-mechanics models, which mainly follow the WLC
model,7, 8, 17 and take into account stretch-twist coupling.12, 18

Full-atom molecular dynamic simulations19 or mesoscopic
models20–24 have been implemented in order to depict the
different phenomenologies.

The standard melting transition of DNA with the temper-
ature has been widely studied both theoretically and experi-
mentally. One of the most studied models for it is the Peyrard-
Bishop-Dauxois (PBD) mesoscopic model.25 It describes the
stretching of the bonds between the bps through a single vari-
able, which condenses all the atomic coordinates of a bp. It
describes quite well the relative separation of two bases of
double stranded DNA when temperature is increased.

Besides the standard form of the model, which makes
use of a Morse potential between the base pairs, a recent
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modification of the potential with a return barrier have also
included the interaction with the solvent with the result of
giving the width of the melting transition, as well as the size
of the thermal bubbles of DNA, closer to the experimental
results.26, 27

PBD model has been also successfully used in describ-
ing some mechanical properties of DNA, like mechanical
unzipping,28, 29 i.e., the separation of the double strand by
pulling one strand far away from the other, and also with the
presence of the barrier and the variation of the potential deep-
ness with the salt concentration in the solution.30

Taking into account the similarities between melting
processes assisted by temperature and force, we propose a
dynamic and mesoscopic model able to reproduce the over-
stretching features focusing on the hypothesis that the over-
stretching is essentially due a force induced melting. This
model is a step forward to a previous investigation22 where
the overstretching transition has been dynamically obtained
in a pure phenomenological approach by means of a double
well potential without reference to any inner mechanism of
the overstretching process. A comparison with the two differ-
ent versions of the PBD model has been also studied here.

II. MODEL AND METHODS

In accordance with a previous model,22 the DNA is mod-
elled here as a three-dimensional chain of N monomers con-
nected by springs. We do not need to investigate again the
results for low and intermediate forces already studied there,
we focus here around the overstretching transition, which oc-
curs when the chain is almost fully stretched. For this reason it
is not necessary to include the terms of bending and Lennard-
Jones energy in principle present in our description,22 but not
influent at that range of forces. In the present model, the po-
tential of consecutive monomers is considered as harmonic, in
formula U = 1

2kU (li − l0)2, where li = |ri+1 − ri | is the sep-
aration between the two monomers, with ris their vector posi-
tion in the space, and l0 is the equilibrium separation between
them.

The overdamped equation of motion is then

ṙi = −∇iU (ri) + F (δi,n − δi,1)�i +
√

2kBT �ξi(t), (1)

where �ξi(t) = (ξx
i (t), ξ y

i (t), ξ z
i (t)) represents the thermal con-

tribution as a Gaussian uncorrelated noise (〈ξα
i (t)ξβ

j (t ′)〉
= δi,j δα,βδ(t − t ′)) with zero mean (〈ξα

i (t)〉 = 0), and the
time t is scaled with the damping γ as t → t/γ . Two forces
F and −F act on the chain in the x direction on the first and
last monomer, respectively, in order to stretch the polymer.
We assume that when the polymer is stretched beyond a value
of force, a separation of some regions of the double strand can
occur. This latter describes the force induced melting process.
The separation of the chain at monomer i is introduced by
means of the dynamical variable di, representing the differ-
ence in the separation of the chain with respect the equilib-
rium value of the relaxed chain. When the value of the vari-
able di exceeds a threshold, the chain undergoes a melting
transition in that region, and the separation between adjacent
monomers increases (see also Fig. 1).

FIG. 1. Schematic model representation. (a) dsDNA structure with some bps
in the B-DNA state (equilibrium separation l̃1) and others in the M-DNA state
(equilibrium separation l̃2). (b) Strand separation at each monomer site. Each
monomer represents several bps. (c) Linear chain and degrees of freedom of
each monomer: li, the distance between two consecutive monomers and di,
the state of opening at each monomer site.

In order to relate the melting and elongation, the equi-
librium separation between monomers has been modeled as
dependent on the melting state of the two neighbors, i.e., l0 =
l0(di, di+1), with the following dependence: if di < d̃1, l0 is the
equilibrium length l̃1 (corresponding to B-DNA state), while
for di > d̃2 the length is l̃2 (corresponding to overstretched
DNA). We use in the interval between the two thresholds a
linear dependence

l0(di, di+1) = l̃1 + 1

2

l̃2 − l̃1

d̃2 − d̃1
[(di+1 − d̃1) + (di − d̃1)]. (2)

The term so written takes into account that the length of the
ith spring, depends on the contribution of the opening state of
two consecutive monomers: the ith and the (i + 1)th.

As concern the already presented melting distance di, we
modelled its behavior, in the context of the PBD model, as a
dynamic variable subject to an independent stochastic equa-
tion,

ḋi = −∇iV (di) − ∇iW (di, di−1) +
√

2kBT ζi(t), (3)

with the noise satisfying the usual properties 〈ζ i(t)〉 = 0, and
〈ζ i(t)〉ζ j(t′)〉 = δi, jδ(t − t′). The potential bonding energy of
the nucleotides of every base is given by both the Morse po-
tential V (di) and the staking interaction W (di, di−1). We use
here not only the standard form for the Morse potential V , but
also a modified version recently used in Ref. 26, in the form
applied in Ref. 27 in order of sharpening the melting tran-
sition with the temperature. In this latter version, a Gaussian
barrier is added for describing the interaction between the two
nucleotides with the solvent once the base is already open. In
this case the contribution of the solvent makes the recombi-
nation of the two nucleotides more difficult, and the potential
presents a barrier in the closure path of the nucleotides, i.e.,
for decreasing values of the variable di. The two versions of
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the potential are shown in Fig. 2, and the analytic expression
is

V (di) = D(e−αdi − 1)2 + Ge−(di−y0)2/b. (4)

The first term in the sum is the usual form of the Morse poten-
tial, where the D is the depth of the potential which represents
the energy needed to dissociate the strands at each monomer
site, and α is the width of the well. The second term in the sum
is the Gaussian barrier, whose height, width, and position are
given by G, b, and y0, respectively. The standard form of the
potential is recovered by setting G = 0.

The stacking interaction has the shape

W (di, di−1) = 1

2
kW (1 + ρe−δ(di+di−1))(di − di−1)2. (5)

The effect of the exponential term, whose intensity is gov-
erned by ρ, is to change the effective coupling constant from
kW (1 + ρ) to kW when one of the bps is displaced far away
from its equilibrium position. The parameter δ in the expo-
nential function sets the scale length of this action. This po-
tential takes into account the recoil force contribution given
by the adjacent nucleotides in the single DNA strand once
the base is separated in the melting process. For simplicity we
will consider first the stacking interaction to be harmonic, i.e.,
ρ = 0. The effect of anharmonicity will be studied at the end
of the paper.

The melting transition is a cooperative process where the
bases open when increasing the temperature. If kBT/D � 1,
the bases remain closed. As this ratio approaches 1, bases sep-
aration increases and the melting of the chain occurs. How-
ever, stretching experiments on DNA are conducted at con-
stant temperature and below melting transition temperature
(which occurs at zero applied forces). For this reason, with
the purpose to induce melting in the system, we infer that D
decreases when increasing the stretching force. Also consid-
ering the not completely abrupt behavior of the OS transi-
tion, we suppose for D the sigmoidal dependence shown in the
inset of Fig. 2:

D = D(F ) = D0 − h

1 + e−p(F−Fos )
, (6)
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FIG. 2. Morse potential without barrier (G = 0) and with barrier (G = 1.25).
d̃1 and d̃2 are the threshold values for the change of l0 with d. (Inset) Depen-
dence of parameter D with the applied force F.

where Fos is the overstretching force, D0 is the value of the
depth of the Morse potential at zero applied forces, and h and
p are two parameters indicating the depth and the width of the
variation of D, respectively. The presence of this phenomeno-
logical term allows the force induced melting occurring at
large forces, leaving the low ones practically unperturbed.

The model units are the same than in Ref. 22. We set the
units of energy and length to be Eu = 4.1 pN nm (thermal
energy at room temperature) and lu = 5.3 nm, respectively.
With these units the parameters used in the simulations are
kBT = Eu, kU = 1500Eu/l2

u, l̃1 = lu, l̃2 = 1.67lu. For the PBD
model we use α = 4l−1

u and kW = 0.14Eu/l2
u. Following

Ref. 27, we set y0 = 2/α and b = 1/2α2. Parameters for
the dependence of D on F are: D0 = 6.5Eu, h = 5.5Eu, and
p = 0.5lu/Eu.

If we compare the magnitude of our PBD parameter val-
ues with those used for melting transition in Ref. 25, we
note some differences, due to the fact that the original PBD
model has been proposed to describe interactions between
nucleotides of a single bp, while here a single monomer is
compound by several bps. As a consequence, the dissociation
energy D is larger, because it represents the energy needed to
separate several nucleotides, and, at the same way, the stack-
ing interaction can be regarded as springs connecting consec-
utive bps. In this case the coupling constant kW for consecu-
tive monomers is the equivalent of several serially connected
springs, and its value is lower than that one of each individual
spring (see also Ref. 31).

III. RESULTS

A. Morse potential (G = 0)

We explore the shape of the stretching curves using
Eq. (3) without barrier, i.e., G = 0 with an overstretching
force Fos = 67.3 pN. In the experiments the ends of the chain
are maintained fixed to some device. For this reason we set
in all simulations d1 = 0 and dN = 0. In order to make sure
that equilibrium conditions are reached we chose a simula-
tion time such that the forward and backward curves coincide.
Thus, a time of 15 × 106 steps is used for equilibrium sim-
ulations. Simulations are then averaged over 10 different re-
alizations of the trajectories. The computer simulations have
been done with a Runge-Kutta stochastic algorithm using
dt = 0.01.

The main plot of Fig. 3 shows the length of the stretched
DNA with respect its contour length (Lx/Lc) as a function of
the applied force F. A good correspondence between the sim-
ulation and experimental data is visible. The right inset shows
the surface plot of the mean distance between the two strands
of the DNA chain (〈di〉), as a function of both the index of
the monomer i, and the applied force F. The value 〈di〉 is de-
fined as the time average of the separation between monomer
during the simulation, averaged once more on 10 different re-
alizations 〈di〉 = 1

10
1
ts

∑10
j=1

∫
ts

dj (t)dt . The homogeneity of
the color level along the various monomers indicates that
a good saturation values is reached in the simulations. The
same information is evident from the left inset, where 〈di〉 is
shown for three applied forces (before, during, and after the
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FIG. 3. DNA length vs applied force F with the Morse potential without
barrier (G = 0). (Right inset) Mean displacement 〈di〉 of every monomer
(x-axis), and for the different applied forces (y-axis). (Left inset) A section
of 〈di〉 as a function of the monomer index i for three selected values of the
force. The values of 〈di〉 for the forces F = 64 pN and F = 68 pN have been
scaled with a factor ×10, and 5, respectively.

transition) showing a reasonable smooth distribution between
the distances. It is worth to note that the melting here simu-
lated is not total, as the two edges of the chain are maintained
at the equilibrium distances, this implies that the two strand
cannot separate undefinitely, and an equilibrium configuration
of the chain is thus reached. The probability distribution for
the distance between two adjacent monomers li and for the
melting variable di have been also evaluated for different val-
ues of the applied force (see Fig. 4).

One important feature that has been commonly associ-
ated to the melting mechanisms involved in the strand sepa-
ration is the existence of a clear hysteresis in the DNA elon-
gation curve if measured when the chain is stretched and the
force F is progressively increased, or, on the contrary, when
the force is progressively decreased. The two curves built
that way can show different hysteretic paths.4, 5, 32, 33 How-
ever, in a recent experiment15 it has been shown that hys-
teretic behavior is present when strand separation is due to
unpeeling while non-hysteretic is obtained for a mere melting
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FIG. 4. Probability distribution of the monomer distance li and of the melting
variable di for different values of the applied force F.
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FIG. 5. Transition with different simulation times. Upper panels: Forward
direction (pulling). Lower panels: Backward direction (releasing).

mechanism. One possible explanation of the presence of hys-
teresis without rupture of the strands can be due to the re-
laxation time of the system.7, 22 The idea that the recombi-
nation of the two strands after the melting can give rise to
asymmetric hysteresis can be reasonable by considering the
different times necessary for the chain getting molten with
respect to that one taken by its recombination when decreas-
ing the force. In fact, hysteresis can appear when no enough
time for reaching the equilibrium is used, and in this sense
numerical experiments can easily reproduce the experimental
outcomes, taking also into account that the time necessary for
reaching the equilibrium can depend on the specific kind of
mechanism.

For the simulation time used previously, no hysteresis is
observed when the equilibrium is successfully reached. When
decreasing the simulation time ts, which is equivalent to in-
crease the pulling rate in both forward and backward exper-
iment, the curves shown in Fig. 5 are obtained. Upper insets
report the pulling for increasing forces and the lowers for de-
creasing forces, respectively, for different values of ts. Differ-
ently from the previous symmetrical model,22 the observed
hysteresis is here asymmetrical, due to the implicit asymme-
try of the Morse potential describing the melting features of
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DNA. In fact, the recombination of the chain after the melting
(i.e., for decreasing forces, see lower panels of Fig. 5) takes
more time to be achieved, and so the backward paths can be
very different from the forward ones, and increase their dif-
ference by reducing the ts values.

B. Morse potential with G �= 0

The inclusion of the barrier makes the overstretching
transition sharper, as also seen in the melting temperature
studied in Refs. 26 and 27. For this reason, we used here a dif-
ferent value of the overstretching force (Fos = 68 pN), which
gives a better fit in this version of the model. The results of
the simulation are drawn in Fig. 6. On the other hand, a higher
stability of the chain length after the transition is obtained in
this case.

Figure 7 shows an equivalent qualitative behavior of
the probability distribution than the G = 0 case. More in-
teresting is the hysteretic behavior shown in Fig. 8. We
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FIG. 8. Transition with different simulation time in the case G 	= 0. Upper
panel: Forward. Lower panel: Backward.

can see that reducing the simulation times ts the forward
curves maintain quite well, and even improve, their agreement
with the experimental data (see, for example, the curve with
ts = 5 × 105), but the backward paths present bigger hys-
teresis than the simple Morse potential case, which increases
by decreasing the values of ts. This because the “open” state
of the strands is more stable for the presence of the barrier
that makes more difficult the recombination of the two single
strands of the DNA in a one dsDNA.

C. The role of the temperature

One interesting topic in the overstretching transition is
the role played by the temperature. Some experimental data
have been reported in Ref. 5, where the authors also develop
a statistical calculation in order to evaluate a possible analytic
law giving the transition force as a function of the temper-
ature. Our model is not able to reproduce the experimental
data under the change of T. The reason can be due to the pres-
ence of the overstretching force Fos as a parameter that control
the depth of the Morse potential reported in Eq. (6), where
the overstretching force is put by hand in order to give the
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experimental curve. For this reason we need to include ex-
plicitly the dependence of Fos with temperature. The formula
found by Wenner et al. in Ref. 5 seems not to give some phys-
ical predictions when extrapolated for low temperatures. For
our purpose, and in the range of the temperature we want
to test, it is enough to evaluate the dependence of the over-
stretching force with the temperature just adopting a simple
quadratic fit of their experimental data in the form y = ax2

+ bx + c, whose plots are shown in Fig. 9 for the two models
(with and without barrier of the Morse potential). We can ob-
serve that the fit works very well in this limited range of tem-
peratures. The presence or absence of the barrier gives rise to
different scaling of the room temperatures, generated by the
different values of the overstretching forces Fos value deter-
mined in our model in the two cases. This different values are
indicated by the two single points in the plots of the figure.

The calculated curves are reported in Fig. 10 for differ-
ent temperatures T. It is possible to see there that they main-
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FIG. 10. Stretching at different temperatures with G = 0 (left panel), and
G 	= 0 (right panel), by changing Fos with temperature according to the fit of
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With G 	= 0. (Insets) Values and the evaluated fits of the Fos vs T.

tain the same slope shown in Subsections III A–III B. The
only difference is that the curves are shifted to recover the
given overstretched force. As in Sec. III B, we investigated
the effect on the elongation curve in forward and backward
experiments, and found again a similar behavior than the one
depicted above (not shown), just translated the amount of the
overstretching force Fos(T) evaluated at that temperature by
means of the fit procedure shown in the insets of Fig. 9 for the
two cases G = 0 and G 	= 0.

In these calculation Fos(T) changes as a function of T.
Conversely, if we maintain fixed the value of Fos in the model
for the depth of the potential D as evaluated for the case of
room temperature, we find, by changing T, the results shown
in Fig. 11. The two panels show the G = 0 and G = 1.25 cases,
respectively. The insets of the two panels show the curves pre-
dicted for the overstretching force Fos vs T. In both cases they
do not reproduce the experimental values reported in Fig. 9.
However, it seems important to remark that the two trends are
not equivalent. We can notice that the case with G = 1.25
maintains at least the correct concavity of the Fos vs T depen-
dence, and this would constitute a support toward the possi-
bility that the presence of the maximum in the potential better
represents the nucleotide interaction than the standard Morse
potential.26, 27

The explicit insertion of Fos(T) as an experimental pa-
rameter in the depth of the Morse potential may represent a
limitation of the model. Nevertheless, this limitation is some-
how justified by the fact that this picture only takes into ac-
count melting properties, detached from other mechanisms
that can in principle contribute to the overstretching phe-
nomenon. We argue that a more extended model could take
it into account in a proper way.

D. Anharmonic stacking interaction

The nonlinear stacking interaction is included in the PBD
model to obtain a sharper transition when temperature in-
creases. The stacking contribution represents a cooperative
term which is related to the recoil force given by the adjacent
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FIG. 12. Dependence of the overstretching transition with the parameters ρ

and δ of the Peyrard cooperative term W in Eq. (5). The panels on the left
are calculated with ρ = 3 and various values of δ. Panels on the right are
calculated with δ = 1 and different values of ρ. Upper panels: Model with
G = 0. Lower panels: Model with G 	= 0.

nucleotides of the single DNA strands, which become relevant
when the bond with the complementary strand gets weaker,
and the adjacent monomers of the same strand tend to avoid
the separation of the monomers. The anharmonic contribution
(with ρ 	= 0) increases this effect at short relative distances
of the monomers of the same chain, increasing their cooper-
ative effect. Thus, its inclusion, while keeping fixed the rest
of the parameter, it is expected to lead to a sharper over-
stretched transition.

Figure 12 shows the results of the simulations for both
the cases G = 0 and G 	= 0, confirming that expectation. The
curves plotted are calculated with different values of the pa-
rameters δ, giving the mean distance of that amplification, and
ρ, giving the corresponding amplitude.

In both the potentials large values of parameter ρ and
small values of δ make the transition sharper, similar to the
melting transition with temperature. Our ansatz is that these
parameters, as well as the parameters of the Morse potential,
can be associated with experimental conditions as pH, salt
concentration, etc., that has been probed to affect overstretch-
ing transition.

IV. CONCLUDING REMARKS

DNA overstretching transition is one of the most in-
triguing phenomena among the mechanical properties of this
molecule. It is hard to properly model the full interactions
that could influence the transition. Then, it makes sense to
adopt a minimalist approach to the problem by analyzing
only those interactions that hopefully contribute to the phe-
nomenon. In this paper, we have focused on the effect of
force induced melting in the overstretching transition. For that
we have used the well known PBD model which relates, in a
very simple way, both mechanical and thermal properties of
DNA.26 In order to couple the melting degrees of freedom
with the stretched polymer we have proposed a phenomeno-
logical dependence of PBD parameter on the external force.
In this sense, by using the equations Eqs. (1)–(5), we are
able to fairly reproduce the basic experimental outcomes. In
particular, the overstretching transition is reproduced with a
reasonable approximation. The basic idea of this work is to
join melting variables with the mechanical deformation of the
chain, following that way the commonly recognized idea that
consider melting as responsible of the DNA overstretching
transition. Although the model oversimplifies the DNA struc-
ture, it still contains the main ingredients of the molecule dy-
namics, especially the phenomena related to non-equilibrium
properties. For instance, an important feature of the model is
the ability to reproduce the hysteretic behavior of the transi-
tion. In our model this is a purely dynamical effect due to the
differences in the relaxation times between the pulling and the
releasing force application. This fact is enhanced by the pres-
ence of the barrier in the modified PBD model, which takes
into account solvent interaction.26, 27 For this reason, we can
conjecture that the presence of a barrier in the base interac-
tion can constitute a more realistic ingredient in the descrip-
tion of the DNA melting/stretching phenomenon. Beside of
presenting clear advantages, as the reduced number of vari-
ables by using a coarse-grained description and the usage of
simple dynamical equations, the model presents some limita-
tions, i.e., the bad reproduction of the behavior of overstretch-
ing force with temperature without its explicit introduction in
the model as an additional parameter. However, the model can
be easily extended to include other aspects not present in this
description, such as torsion or a more microscopic picture,
that hopefully could account for this kind of behaviors.
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