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Looking for Signatures of QG today

- To test proposals for Quantum Gravity we need

i) predictions

i1) experimental data encoding QG effects

- QG scales out of reach of experiments on earth

- One of most promising windows: COSMOLOGY
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Looking for Signatures of QG today

- Evidence of early Universe physics imprinted onto the CMB

“# WMAP, Planck, ... BICEP2
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Looking for Signatures of QG today

- Have QG signatures really survived from the early Universe
all the way to our current era?

- If so, how strong are they?

- Will it be possible to validate or falsify different QG proposals
by looking at the data?

We explore a simple way, based on a toy model, to
assess the strength of the quantum signatures of the
early Universe that might be observed nowadays
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- We will analyze Gibbons-Hawking effect :
Creation of particles measured by a particle

detector due to cosmological expansion when i
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the surrounding matter fields are in vacuum . 3 Cag
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- We will analyze Gibbons-Hawking effect :
Creation of particles measured by a particle
detector due to cosmological expansion when
the surrounding matter fields are in vacuum

Setting

2 - L=

- Particle detector coupled to matter fields from the early stages of the
Universe until today:

Would the detector conserve any
information from the time when
it witnessed the very early
Universe dynamics?




Early Universe dynamics

- Flat FRW with T3 topology and matter source a massless scalar ¢ i <;':"'~',1

- We will compare the response of the detector evolving under two
different Universe dynamics which disagree only during the short
time when matter-energy densities are of the order the Planck scale




Early Universe dynamics

- Flat FRW with T3 topology and matter source a massless scalar ¢

- We will compare the response of the detector evolving under two
different Universe dynamics which disagree only during the short
time when matter-energy densities are of the order the Planck scale

GR vs Effective LQC

1/6

127G\ °
=) 1

[ ~ quantum of length




I T S i SRR e
[ J ([ J
Gibbons-Hawking effect
- We consider a massless scalar field ¢ in the conformal vacuum Fi
e

- The proper time of comoving observers (who see an isotropic
expansion) does not coincide with the conformal time
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Hi(t) = A x(t) (o e + o7 ™ )g[To, n(1)]

t proper time of the detector (comoving)
A coupling strength
x(t)  switching function

2o, 77(15)] world-line of the detector (stationary)
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Probability of excitation

- 1p : field in the conformal vacuum and detector in its ground state ] ‘

- Transition probability for the detector to be excited at time 7' :

At leading order (A small enough)

Po(To, T AQZ\L To, T))* + O(X*)

I:(To, T) = / g X o
To a(t)\/ QwﬁLS



Probabilities: GR vs effective LQC

- Difference of probabilities AP, (Ty,T) = P(Ty,T) — PS(Ty,T)

- We split the integrals

I%(T(%T) — I%(T()?Tm) T [%(T?TM T) nq(Tm> ~ 77(:(T’m) + 6

IL(Ty, T) = I4(To, Trn) + 7P IS(T,,, T)
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Probabilities: GR vs effective LQC

- Difference of probabilities AP, (Ty,T) = P(Ty,T) — PS(Ty,T)

- We split the integrals
I%(T(%T) — I%(T()va) +I%(Tm7T) nq(Tm> ~ 77(:(T’m) + 0

IL(Ty, T) = I4(To, Trn) + 7P IS(T,,, T)

n

FAR(TT) = XY 1140, L) = |15(T0, T
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—|—2Re(l,,%*(Tm, T) [e—wwﬁfg(To, T,.) — IS(To, Tm)} )]
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‘4 The relative difference on the detector's particle counting in
?m both scenarios will be appreciably different even for long 1’
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Sensitivity with the quantum parameter

- Any observations we may make on particle detectors will be averaged

in time over many Planck times
1 (T
(Pe(Tp, T)). = = Py (Tp, T dT’ T > 1°/(12rG)

- Sub-Planckian detector Q) < 127G/1°

- Estimator to study sensitivity with quantum of length:
Meanrelative difference between probabilities of excitation averaged
over a long interval in thelate time regime
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Exponential with the size of the spacetime quantum

- Cosmological observations could put stringent upper bounds to [
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Transmission of information

- Combination of cosmology and quantum information

- Transmission and recovery of information propagated through
cosmological catastrophes (big-bang, inflation, quantum bounce, ...)

- Setting: two detectors A and B on LQC dynamics, before and after the

bounce
debector B
debector A
' FUTURE
i 4— LIGHT CONE

detector A
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Transmission of information

- Combination of cosmology and quantum information

- Transmission and recovery of information propagated through
cosmological catastrophes (big-bang, inflation, quantum bounce, ...)

- Setting: two detectors A and B on LQC dynamics, before and after the
bounce

® Mutual information

(it measures the information that A and B share)

® Signalling
(it measures whether B knows about the existence of A)

® Channel capacity
(upper bound on the rate of reliable transmitted information)

— WORK IN PROGRESS —
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Conclussions

- Although this is a toy model, it captures the essence of a key
phenomenon: Quantum field fluctuations are extremely sensitive to
the physics of the early Universe.

- The signatures of these fluctuations survive in the current era with
a possible significant strength.

s - We showed how the existence (or not) of a quantum bounce leaves 1
pie 1 a trace in the background quantum noise that is not damped and
b o < . £
o that may be non-negligible even nowadays. &
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