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ABSTRACT.  A family of tetradecylammonium micas is synthesized using synthetic swelling 18 

micas with high layer charge (NanSi8-nAlnMg6F4O20·XH2O, where n= 2 and 3) exchanged with 19 

tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the 20 

basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the 21 

interlayer space of micas is investigated by IR/FT, 13C, 27Al and 29Si MAS NMR. The structural 22 

arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is 23 

more sensitive to the effect of the mica layer charge at high concentration. The surfactant 24 

arrangement is found to follow the bilayer-paraffin model for all values of layer charge and 25 

surfactant concentration. However, at initial concentration below the mica CEC a lateral 26 

monolayer is also observed. The amount of ordered conformation all-trans is directly 27 

proportional of the layer charge and surfactant concentration. 28 

 29 

  30 



 3

INTRODUCTION 31 

The term organoclays (OC) denotes a family of hydrophobic materials, obtained by modifying 32 

clays and clay minerals with various organic compounds through intercalation processes and 33 

surface grafting.1,2,3,4,5 Organoclays have important practical applications, notably as adsorbents 34 

of organic pollutants6,7,8,9 and as components in the formation of clay polymer 35 

nanocomposites2,10,11,12. A large volume of literature has been accumulated over the past two 36 

decades on various aspects of OC research, including i) synthesis and characterization4,13,14; ii) 37 

surface properties and stability4,13,14; iii) production of clay-based nanocomposites10,11,12,15; and 38 

iv) synthesis of novel materials using the OC as precursors16,17. 39 

A more recent development that has attracted much interest is the organo-functionalization of a 40 

new family of swelling high-charged micas.18,19,20 Those synthetic micas have a charge density 41 

similar to brittle micas but with a higher swelling capacity, higher crystallinity and controllable 42 

composition.21,22,23 In this way, those synthetic micas overcome some limitations of the natural 43 

clay minerals to be used as host materials. 44 

Dodecylammonium and octadecylammonium have been successfully intercalated in the 45 

interlayer space of a whole family of synthetic high-charge mica. In all case, a paraffin-type 46 

bilayer structure was observed with a tilt angle between 51º and 65º.19,20 However, the structural 47 

arrange of alkylammonium in the interlayer space for the lowest chain length (12 vs 18 carbon 48 

atoms) was more sensitive to the mica charge because the adsorbed amount of alkylammonium 49 

was slightly less than the cation exchange capacity of mica. In the case of the highest chain 50 

length (18 vs 12 carbon atoms), alkylammonium was adsorbed by: exchange reaction and on the 51 

surface by hydrophobic interaction.20  52 
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Many studies have been performed to analyze the effect of alkyl chain length,24,25,26,27 the 53 

species of cationic surfactant28,29, and its concentration30,31,32 on the d-spacing and the alkyl chain 54 

arrangements on organoclays. Among them, the most important factor was found to be the 55 

surfactant concentration. Lagaly33 reported that the surfactant package on clay minerals changes 56 

from a lateral monolayer to a lateral bilayer, and, finally to a pseudotrimolecular layer or a 57 

paraffin-type monolayer depending on the nature of surfactant and layered silicate. Later on, also 58 

the d-spacing was found to increase with the increment on the surfactant concentration, allowing 59 

the alkyl chains to adopt a paraffin-type bilayer with a tilting angle of 35° at a surfactant 60 

concentration higher than its exchange capacity (CEC).34 Moreover, this alkyl chain arrangement 61 

but with a larger tilting angle (60°) has also been reported in KNiAsO4.
35 However, the effect of 62 

surfactant concentration on the hydrophobicity, d-spacing and alkyl chain arrangement of 63 

modified swelling high-charged micas has not been analyzed yet.  64 

Thus, the aim of this work is to evaluate the arrangement and interlayer properties of different 65 

swelling high charge micas, Na-Mica-n (n is the layer charge; n=2 and 3), as a function of 66 

alkylammonium concentration and mica layer charge. Based on our previous work,20 67 

tetradecylammonium has been chosen, it has an carbon chain length between the 12 and 18 as 68 

previously analyzed, to satisfy the 0.5-10 CEC of the micas.   69 

 70 

EXPERIMENTAL DETAILS 71 

a. Materials. Na-Mica-n (n=2 and 3) were synthesized using the NaCl-melt method following 72 

a similar procedure to that described by Alba et al.23 Their structural formulae are Nan[Si8-73 

nAln]Mg6O20F4·zH2O, where n represent the charge per unit cell (n=2 and 3) and z is the number 74 

of water molecules. The starting materials employed were SiO2 (Sigma; CAS no. 112945-52-5, 75 
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99.8% purity), Al(OH)3 (Riedel-de Haën; CAS no. 21645-51-2, 99% purity), MgF2 (Aldrich; 76 

CAS no. 20831-0, 98% purity), and NaCl (Panreac; CAS no. 131659, 99.5% purity). 77 

Stoichiometric proportions of reactants were weighed and mixed in an agate mortar. The molar 78 

ratio between the reactants were (8-n)SiO2:(n/2)Al2O3:6MgF2:(2n)NaCl. It was added twice the 79 

amount of NaCl to ensure the complete charge balance with Na+ cation into the interlayer 80 

space.36 The optimal amount of mixture reaction for grinding was up to 2 g per batch during 30 81 

min for ensuring the homogeneity of the mixture in an agate mortar. The heat treatments were 82 

carried out in a closed Pt crucibles at 900 ºC during 15 h using a heating rate of 10 ºC·min-1. The 83 

product was washed with distilled water and the solid was separated by filtration, dried at room 84 

temperature and then ground in the agate mortar. 85 

b. Preparation of tetradecylammonium micas. The organomicas were prepared by a cation-86 

exchange reaction between the micas and variable concentration of tetradecylammonium salt to 87 

satisfy the 0.5, 1, 2, 3 or 10 times the cation exchange capacity (CEC) of Na-Mica-n. Thus, the 88 

primary amine was dissolved in an equivalent amount of HCl (0.1 M) and the resulting mixture 89 

stirred for 3 h at 80 °C. The tetradecylammonium dispersion was then mixed with 0.6 g of Na-90 

Mica-n and stirred for 3 h at 80 °C. After adding hot deionized water, the mixture was stirred for 91 

30 min at 50 °C and then the dispersion was centrifuged at 10,000 r.p.m. for 20 minutes. The 92 

product was dissolved in a hot ethanol-water mixture (1:1) and stirred for 1 h at 50 ºC and then 93 

centrifuged.13 The precipitate was dried at room temperature. The sample will be named as C14-94 

Mica-n-m; where n is the interlayer charge 2 or 3 and m is the initial concentration of the 95 

tetradecylammonium salt (m=0, 0.5, 1, 2, 3 and 10 CEC). The samples C14-Mica-n-0 96 

corresponds to the as-synthesized sample Na-Mica-n. 97 
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c. Techniques. Simultaneous TG/DTA measurements were performed at the Departamento de 98 

Cristalografía, Mineralogía y Química Agrícola (University of Seville, Spain) using a NETZSCH 99 

(STA 409 PC/PG) instrument which is equipped with a Pt/Pt-Rh thermocouple for direct 100 

measurement of the temperature at the sample/reference crucible from room temperature up to 101 

900 °C (heating rate: 10 °C·min–1) in an atmosphere of N2. Approximately 150 mg of sample 102 

was used and the DTA reference was pure aluminum oxide.   103 

X-ray diffraction (XRD) patterns were obtained at the CITIUS X-ray laboratory (University of 104 

Seville, Spain) on a Bruker D8 Advance instrument equipped with a Cu K radiation source 105 

operating at 40 kV and 40 mA. Diffractograms were obtained in the 2 range of 1–70° with a 106 

step size of 0.05° and a step time of 3.0 s. 107 

FTIR spectra were recorded in the range 4000–300 cm–1 by the Spectroscopy Service of the 108 

ICMS (CSIC-US, Seville, Spain), as KBr pellets, using a Nicolet spectrometer (model 510P) 109 

with a nominal resolution of 4 cm–1.  110 

Single-pulse (SP) MAS-NMR experiments were recorded on the samples where the 111 

tetradecylammonium concentration were the lowest and the highest because they should exhibit 112 

appreciable differences at short-range order, C14-Mica-n-m (n=2 and 3; m=0.5 and 10 CEC), the 113 

C14-Mica-n-2 was also measured for comparison with previous works19,20. The measurements 114 

were carried out on the Spectroscopy Service of the ICMS (CSIC-US, Seville, Spain) using a 115 

Bruker DRX400 spectrometer equipped with a multinuclear probe. Powdered samples were 116 

packed into 4-mm zirconia rotors and spun at 10 kHz. 27Al MAS NMR spectra were acquired at 117 

a frequency of 104.26 MHz, using a pulse width of 0.92 μs (π/2 pulse length = 9.2 μs) and a 118 

delay time of 0.1 s. 23Na MAS NMR spectra were recorded at 105.84 MHz with pulse widths of 119 

2.0 μs (π/2 pulse length=12.0 μs) and a delay time of 0.1 s. 29Si MAS NMR spectra were 120 
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acquired at a frequency of 79.49 MHz, using a pulse width of 2.7 μs (π/2 pulse length = 7.1 μs) 121 

and a delay time of 3 s. 13C MAS NMR spectra were recorded at 104.26 MHz with proton 122 

decoupling, a pulse width of 2.5 μs (π/2 pulse length = 7.5 μs) and a delay time of 2 s. The 123 

chemical shift values are reported in ppm with respect to 0.1 M AlCl3 solution for 27Al, 0.5 M 124 

NaCl solution for 23Na and tetramethylsilane for 29Si and 13C. 125 

 126 

RESULTS AND DISCUSSIONS 127 

a. Adsorption in the interlayer space of organomicas: Hydrophobicity and stability. To 128 

investigate the structure and properties of the tetradecylammonium molecules adsorbed onto Na-129 

Mica-n, the adsorbed amount of the organic cations are monitored by TG.37,38,39  Table 1 shows 130 

the content of water and surfactant obtained from the analysis of the TG curves, where the 131 

amount of interlayer water is determined from the weight loss in the temperature range of 25–132 

170 °C and the amount of the adsorbed tetradecylammonium molecules is determined from the 133 

weight loss between 170 and 900 °C.40 134 

The amount of adsorbed tetradecylammonium is higher in C14-Mica-3 than in C14-Mica-2, 135 

thus, the main adsorption may occur by cation exchange, and this adsorption is proportional to 136 

the initial concentration of alkylammonium. In C14-Mica-n-m (m<2), tetradecylammonium is 137 

adsorbed in less amount than their CEC (ca. 0.60 CEC for m=0.5 and ca. 0.95 CEC for m=1). At 138 

m≥2 the alkylammonium cations adsorption exceeds the mica exchange capacity and this excess 139 

is stabilized by van der Waals interactions between alkyl chains. 41,42,43,44  This excess is only 140 

slightly higher than the CEC for C14-Mica-3-m, for m=2 and 3, but is five time higher than CEC 141 

for m=10. The alkylammonium concentration necessary to satisfy the layer charge is higher for 142 
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C14-Mica-3 and, thus, the packing density is higher and the van der Waals interactions between 143 

alkyl chains are favored.  144 

DTG analysis (Figure 1) suggests two distinct states for the intercalated surfactant molecules: 145 

(i) the first one is associated to the thermal decomposition of intercalated alkylammonium, with 146 

stronger interaction, and, thus, requires a higher temperature (442 ºC) to decompose45,46, and, (ii) 147 

the second one is due to the presence of ion-pair alkylammonium ions,20 with weaker interaction, 148 

whose decomposition temperature is slightly lower (ca. 350 ºC). For m=0.5 only the 149 

decomposition at the higher temperature is observed and agrees with the adsorption of surfactant 150 

of ca. 60 % of their CEC (Table 1). As the initial concentration of alkylammonium increases the 151 

decomposition at lower temperature is more relevant and becoming the dominant process for 152 

C14-Mica-3-10. 153 

Mica surface properties can be altered from hydrophilic to organophilic by the exchange of the 154 

hydrated Na+ interlayer cation by an organic one,47 and consequently causing a drastic 155 

diminishing of the water content. Thus, whereas the water content on Na-Mica-n-0 is found to be 156 

between 3.17 and 3.63 molecules per unit cell; it decreases on C14-Mica-n-m due to the 157 

replacement of Na+ for the organic cations favoring the hydrophobic character of the interlayer 158 

space (Table 1). For m≤1, a gradual decrease of interlayer water with alkylammonium 159 

concentration is observed, being in concordance with an increasing in the exchange of inorganic 160 

cations by the organic ones. However, for m≥2, the amount of water slightly increases with 161 

alkylammonium concentration due to that is adsorbed not only by cation exchange reaction but 162 

also by ionic pair which could adsorb some water molecules in the hydrophilic head of the 163 

cationic surfactant.  164 
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The hydrophilic character of the interlayer space after the adsorption of different 165 

concentrations of tetradecylammonium can be explained from the analysis of the 23Na MAS 166 

NMR spectra (Figure 2). The 23Na MAS NMR spectra of C14-Mica-n-0 (Na-Mica-n) is 167 

characterized by two signals one at 3.7 ppm due to sodalite48, and other at -10.1 ppm due to fully 168 

hydrated exchangeable sodium49,50. When the initial concentration of the alkylammonium 169 

increases the signal of interlayer sodium decreases, this effect is more evident as the layer charge 170 

increases. It corroborates the increasing hydrophopic character of the interlayer space and that 171 

the slightly increasing of water content observed for m≥2 (see Table 1) is due to water associated 172 

at ionic pair tetradecylammonium. The interlayer sodium is completely replaced in C14-Mica-3-173 

10 in good agreement with the extremely high content of adsorbed tetradecylammonium (Table 174 

1). 175 

b. Tetradecylammonium package on organomicas. The analysis of the 00l reflections of the 176 

XRD patterns (Figure 3) can be shed a light on the long-range structural order of the 177 

organomicas. The basal spacing of Na-Mica-n is 1.20 nm, which corresponds to Na+ in the 178 

interlayer space surrounded by one water pseudomonolayer.23 The exchange reaction between 179 

Na+ and the tetradecylammonium cation causes an increase in the basal spacing (d001). An unique 180 

and well-ordered sequence of the 00l reflections is only observed for the C14-Mica-3-10, and that 181 

corresponds to a basal spacing of 4.02 nm, an interlayer gallery height of 3.08 nm (Table 2), 182 

compatible with paraffinic bilayer -type structures.51,52,53 Paul et al.54 observed that the surfactant 183 

molecules adopt an arrangement that allow them to pack efficiently; therefore, the maximum 184 

concentration of adsorbed tetradecylammonium in C14-Mica-3-10 could favor a high and ordered 185 

packing which is reflected in a well-ordered sequence of the 00l reflections. However, in the 186 

other C14-Mica-n-m, at least two 00l reflections sequences are observed. The splitting of the 00l 187 
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reflections cannot be explained by inhomogeneity of the charge distribution, which is not 188 

expected as the starting material is the same for all the micas, and in C14-Mica-3-10, a unique 00l 189 

sequence is observed. 190 

In C14-Mica-n-0.5, the most intense 001 reflection corresponds to a basal spacing of 2.48 nm 191 

(for n=2) and 3.50 nm (for n=3), which could be compatible with a paraffin conformation but a 192 

small 001 reflection due to a basal spacing of 1.43 and 1.34 nm (for n=2 and 3, respectively) is 193 

also observed and is compatible with a monolayer conformation (Table 2).55 Hydrocarbon chains 194 

lying flatly on the surface would make the clay hydrophobic even at low surface coverage and it 195 

can explain the decreases in the interlayer space water content although only the 60 % of CEC 196 

was satisfied in C14-Mica-2-0.5. 197 

The arrangement of a lateral monolayer of the alkyl chains evolves to a paraffin-type bilayer in 198 

the interlayer of micas with the increase in surfactant concentration.33 The reason is that the 199 

interlayer alkylammonium molecules cannot form parallel layer arrangements in the interlayer 200 

space of the mica when the interlayer cation density is higher than 1.94.20 201 

The d-spacing of the main 001 reflection increases with the increase surfactant concentration 202 

and the layer charge, as previously reported in montmorillonites. ¡Error! Marcador no definido.,56 Mainly, 203 

the alkyl chains take the arrangement of a paraffin-type bilayer with a tilting angle ranging 204 

between 24º and 59º (Table 2). 205 

IR/FT spectroscopy is used to support the evidence of compaction of the surface film on the 206 

clay minerals. The IR/FT absorption bands at 1450–1480 cm-1 (Figure 4) can be ascribed to the 207 

methylene scissoring mode. They have been found to be sensitive to the interchain interactions 208 

and consequently, can be used as a probe of the packing arrangements in alkyl chain 209 

assemblies.57,58 When the methylene groups are found in an all parallel arrangement, a triclinic 210 
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subcell, a sharp and narrow singlet at 1472 cm-1 is observed.58 However, when they are displayed 211 

in a hexagonal phase, the band position moves up to 1468 cm-1 and when they conform an 212 

orthorhombic subcell, the bands change to a doublet at 1462 and 1473 cm-1.58 With the exception 213 

of C14-Mica-3-10, in all the samples (Figure 4) the band is a singlet located at 1468 ± 1 cm−1, 214 

reflecting that the surfactant surface is arranged in a hexagonal phase.59 For C14-Mica-3-10, 215 

where the interlayer Na+ is completely replaced by tetradecylammonium, a doublet at 1462 and 216 

1475 cm-1 is observed indicating an orthorhombic cell with intermolecular interaction between 217 

the two adjacent hydrocarbon chains.57 Those interactions are favored by the high adsorption of 218 

tetradecylammonium, ca. 500 % of its CEC (Table 1). 219 

The CH2 stretching bands are generally the strongest bands and the frequency of these ʋas and 220 

ʋs bands are sensitive to the gauche/trans conformer ratio of the hydrocarbon chains. A shift 221 

from low frequencies characteristic of highly ordered, all-trans conformations, to higher 222 

frequencies and increased width is accompanied as the number of gauche conformers (the 223 

"disorder" of the chain) increases.59 Independently of the initial tetradecylammonium 224 

concentration, those bands are centered at 2919 ± 1 cm-1 and 2849 ± 1 cm-1, for ʋas and ʋs 225 

vibrational modes respectively, (Figure S1) which denotes a high proportion of all-trans 226 

arrangement.60  227 

Substantial information of the tetradecylammonium structure can be obtained from the 13C 228 

MAS NMR analysis (Figure S2). In general, the spectra are similar to those previously reported 229 

for Cx-Mica-n (n=2, 3 or 4; and x=12 or 18).19,20  As previously reported,19,20 the spectra show a 230 

set of narrowed signals (marked with asterisk in Figure S2) that is likely corresponds to 231 

tetradecylammonium with a different package in good agreement with the various 001  232 

reflections families observed by XRD. It is also remarkable a narrow and intense peak at ca. 15 233 
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ppm from the terminal peak in C14-Mica-3-10 where tetradecylammonium was adsorbed in an 234 

amount over the 500 % of CEC. Among the signals, the resonances at 30-33 ppm, internal 235 

methylene (Figure 5), are important to be analyzed since information on the chain configuration 236 

can be obtained.61 That signal is the convolution of two peaks at ca. 30 ppm (mixed gauche and 237 

trans, disordered configuration) and at ca. 33 ppm (all-trans, ordered configuration).62,63 When 238 

the interlayer tetradecylammonium concentration increases, the proportion of disordered 239 

configuration diminishes as the alkyl chain freedom decreases. These data are consistent with 240 

results reported in the literature, where He et al.64 observed that the all-trans conformer is 241 

favored at high amine concentration. The high proportion of C14-Mica-3-0.5 in disordered 242 

configuration may be explained by its high available volume per tetradecylammonium cations 243 

(0.66 nm3/mol in C14-Mica-3-0.5 compared to 0.10 nm3/mol in C14-Mica-3-10). 244 

c. Analysis of organomicas framework.  The short-range framework structural order of the 245 

organomicas is analyzed by 29Si and 27Al MAS NMR. 246 

The 29Si MAS NMR spectra (Figure 6) is characterized by a set of bands in the range between 247 

δ = –70 to –95 ppm, consistent with the existence of four Q3(qAl) (0 ≤ q ≤ 3) environments.65 248 

While the spectra of C14-Mica-n-0 is consistent with those previously reported for these micas,19 249 

the Q3(3Al) signals of C14-Mica-n-m (m≥0.5) are shifted up to ca. 2.1 and 2.5 ppm, for n= 2 and 250 

3 respectively, towards lower frequencies. A similar shift has already been observed in the 29Si 251 

frequencies of high charge swelling silicates, and was attributed to the formation of inner sphere 252 

complexes between the interlayer cations and the basal oxygen of the silicate tetrahedral layer. 66  253 

In the same manner, and according to the high tilt angle observed by XRD (Table 2), the 29Si 254 

signal shifts in C14-Mica-n is caused by the inclusion of the NH3
+ into the pseudohexagonal hole 255 

of the silicate framework. The above results reinforce the proposed bi-layer structure with alkyl 256 
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chains in an all-trans configuration, and that the polar part of the surfactant is close to the basal 257 

oxygen plane.  258 

All the 29Si MAS NMR spectra of C14-Mica-n-m (m≥0.5) show similar relative peak intensities 259 

in comparison with C14-Mica-n-0. The 27Al MAS NMR spectra of C14-Mica-n-0 (Figure S3) are 260 

characterized by a signal at ca. 60 ppm typical of tetrahedral aluminum. Not additional signals 261 

due to a different Al coordination number after tetradecylammonium adsorption is observed. 262 

Therefore, the exchange process does not alter the Si and Al distribution. 263 

 264 

CONCLUSIONS 265 

Tetradecylammonium has been intercalated in the interlayer space of synthetic swelling high-266 

charge micas. Both the interlayer charge of mica and the initial concentration of 267 

tetradecylammonium determine the adsorbed amount and, therefore, the arrangement of the 268 

organic cations in the interlayer space.  269 

The effect of the mica layer charge is more evident at high concentration. The molecular 270 

arrangement of the surfactant is found to follow the bilayer-paraffin model for all values of layer 271 

charge and surfactant concentration. However, at initial concentration below the mica CEC, a 272 

lateral monolayer is also observed.  273 

The alkyl chain of the tetradecylammonium adopts a configuration that is a mixture between 274 

ordered (all-trans) and disordered (mixed gauche-trans); the amount of the disordered 275 

arrangement being higher in C14-Mica-n-0.5 where the CEC of the mica is not satisfied. 276 

For a high adsorbed tetradecylammonium, C14-Mica-3-10, a unique family of 00l plane and a 277 

change from hexagonal phase to orthorhombic cell is observed. 278 

 279 
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Table 1. Water  and tetradecylammonium contents of 
the C14-Mica-n-m (n=2 and 3) 
 

n m 

25º-170º C 170º-900º C 

% 
mol H2O/ 

mol 
mica[b] 

%[a] 
mol C14/ 

mol 
mica[b] 

%CEC 

2 0 6.6 3.17 0.9 - -- 
0.5 2.2 1.30 24.7 1.20 60.0 
1 0.1 0.07 34.7 1.90 95.0 
2 0.3 0.21 39.4 2.30 114.8 
3 0.4 0.28 40.2 2.36 118.2 

10 0.3 0.23 44.9 2.83 141.6 
3 0 7.3 3.63 1.2 - -- 

0.5 3.5 2.40 34.1 1.90 63.4 
1 0.0 0.00 44.3 2.84 94.7 
2 0.3 0.26 51.2 3.65 121.7 
3 0.3 0.25 50.7 3.59 119.5 

10 0.7 1.46 87.1 15.18 506.1
[a] % weight loss of the dry samples 
[b] It has been calculated taking into account the unit cell 
formulae (C14)mNan-m(Si8-nAln)Mg6O20F4; n=2 or 3 
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Table 2. Geometrical and Package Parameters of the C14-Mica-n-m (n=2 and 3) 
 

 C14-Mica-2 C14-Mica-3 
m 0.5 1 2 3 10 0.5 1 2 3 10 

d001  
(nm) 

3.51i 

2.48ii* 

1.43iii 

4.08i 

2.65ii* 
4.19i 

3.06ii* 
4.06i

3.14ii* 
4.18i*

3.63ii* 

3.13iii 

2.40iv 

3.50i*

2.56ii 

1.34iii 

4.05i*

2.99ii 

2.66iii 

4.18i*

3.06ii 
4.05i* 

3.49ii 

3.01iii 

4.02 

h[a]  
(nm) 

2.57 
1.54* 

0.49 

3.14 
1.71* 

3.25 
2.12* 

3.12 
2.20* 

3.24*

2.69* 

2.19 
1.46 

2.56*

1.62 
0.40 

3.11*

2.05 
1.72 

3.24*

2.12 
3.11* 

2.55 
2.07 

3.08 

V[b]  
(nm3) 

1.27 
0.76* 

0.24 

1.55 
0.84* 

1.61 
1.05* 

1.54 
1.09* 

1.60*

1.33* 

1.08 
0.72 

1.26*

0.80 
0.20 

1.54* 
1.01 
0.85 

1.60*

1.05 
1.54* 

1.26 
1.02 

1.52 

α[c]  
(º) 

42.70    
23.97* 

-- 

55.94    
26.82* 

59.04    
34.01* 

55.41 
35.48* 

58.75*

45.22* 

35.30 
22.66 

42.49*

25.31 
-- 

55.14*

32.74 
26.99 

58.75*

34.01 
55.14* 

42.29 
33.10 

54.36 

[i-iv] from the [00l]i-iv planes of Figure 3 
* from the most intense 00l reflection 
[a] h=d001-0.94 and it is the high of interlayer gallery 
[b] V=h·a·b  (a=0.534 nm, b=0.925 nm) and it is the interlayer volume 
[c] h=2·[(nc-1)·0.126+0.131]·sinα; where α is the tilt angle of the alkylchain and nc is the number of carbon atoms 
in the alkyl chain (nc=14) 
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FIGURE CAPTIONS 
 
Figure 1. DTG curves of the C14-Mica-n-m (n=2 or 3 and m=0.5, 1, 2, 3 and 10 CEC) in the 

tetradecylammonium decomposition temperature range. 

Figure 2. 23Na MAS NMR spectra of the C14-Mica-n-m (n=2 or 3 and m=0, 0.5, 1, 2, 3 and 10 

CEC). 

Figure 3. XRD patterns of the C14-Mica-n-m (n=2 or 3 and m=0, 0.5, 1, 2, 3 and 10 CEC). 

Figure  4. The methylene scissoring vibrational region of the IR/FT spectra of the C14-Mica-n-m 

(n=2 or 3 and m=0.5, 1, 2, 3 and 10 CEC).  

Figure 5. Internal methylene groups region of the 13C MAS NMR raw spectra (left) and 

deconvoluted spectra (right) of the C14-Mica-n-m (n=2 or 3 and m=0.5, 2 and 10 CEC). The light 

grey area corresponds to the trans configuration contribution (It) and the dashed light grey area 

corresponds to the trans-gauche configuration contribution (It-g). 

Figure 6. 29Si MAS NMR spectra of the C14-Mica-n-m (n=2 or 3 and m=0, 0.5, 2 and 10 CEC). 

Dashed line indicates the Q3(qAl) environments. 
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