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Abstract

Background: Plant recruitment depends among other factors on environmental conditions and their variation at different
spatial scales. Characterizing dispersal in contrasting environments may thus be necessary to understand natural
intraspecific variation in the processes underlying recruitment. Silene ciliata and Armeria caespitosa are two representative
species of cryophilic pastures above the tree line in Mediterranean high mountains. No explicit estimations of dispersal
kernels have been made so far for these or other high-mountain plants. Such data could help to predict their dispersal and
recruitment patterns in a context of changing environments under ongoing global warming.

Methods: We used an inverse modelling approach to analyse effective seed dispersal patterns in five populations of both
Silene ciliata and Armeria caespitosa along an altitudinal gradient in Sierra de Guadarrama (Madrid, Spain). We considered
four commonly employed two-dimensional seedling dispersal kernels exponential-power, 2Dt, WALD and log-normal.

Key Results: No single kernel function provided the best fit across all populations, although estimated mean dispersal
distances were short (,1 m) in all cases. S. ciliata did not exhibit significant among-population variation in mean dispersal
distance, whereas significant differences in mean dispersal distance were found in A. caespitosa. Both S. ciliata and A.
caespitosa exhibited among-population variation in the fecundity parameter and lacked significant variation in kernel shape.

Conclusions: This study illustrates the complexity of intraspecific variation in the processes underlying recruitment, showing
that effective dispersal kernels can remain relatively invariant across populations within particular species, even if there are
strong variations in demographic structure and/or physical environment among populations, while the invariant dispersal
assumption may not hold for other species in the same environment. Our results call for a case-by-case analysis in a wider
range of plant taxa and environments to assess the prevalence and magnitude of intraspecific dispersal variation.
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Introduction

Dispersal has important implications for plant species. It

determines gene flow rates and the spatial distribution of genetic

diversity [1–3], and it influences processes like colonization [4],

range expansion [5], local adaptation [6] and recruitment patterns

[7]. It also affects metapopulation dynamics and species coexis-

tence and diversity [8,9].

Dispersal studies distinguish between primary and effective

dispersal. Primary dispersal is the initial movement of seeds to the

location where they are first deposited, whereas effective dispersal

is the complex result of primary dispersal and the post-dispersal

processes that take place after the seed is deposited on the soil

surface until it is a successfully established seedling [7,10]. Effective

dispersal is more relevant to population dynamics, because it

comprises the environmental factors that are needed for seedling

recruitment [7,10,11].

The fecundity of reproductive adults and the distribution of

dispersal distances are fundamental characteristics of the dispersal

process which have been extensively used as basic descriptors of

this process [7,12–14]. However, in many systems, measuring seed

production and dispersal distances poses a challenge, because

dispersing seeds cannot be tracked easily, and seed or seedling

shadows of neighboring plants typically overlap, making it difficult

to identify mother plants [15]. Inverse modelling is a useful

methodology that allows the fecundity of adult plants and the

shape of the dispersal kernel (the probability density function of

propagule dispersal distances from an individual plant) to be
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estimated without identifying the exact source of each seed or

seedling [12,13,16–18]; reviewed in [19].

Most seed dispersal research, employing inverse modelling or

other methods, has been carried out in single populations,

disregarding potentially relevant environmental variation across

space that could affect the natural processes underlying the

recruitment of particular species [10,19]; but see [5,20]. Hetero-

geneity in environmental conditions and landscape properties (e.g.

intra and interspecific plant density, fragmentation, soil moisture,

wind conditions) may indeed influence the dispersal kernel even

over local geographic scales [10,17,19,21]. However, this variation

is implicitly ignored in spatially unreplicated studies, which may

lead to local results that are unrepresentative of the average

dispersal pattern of the species. Hence, more comparative

empirical studies are needed to test whether effective dispersal

kernels exhibit intraspecific variation across contrasting environ-

ments and to find environmental correlates of potential variation

[10,19,22]. Such studies could assess the validity of kernel-based

approaches that assume a sole kernel for each species [22].

High-mountain habitats have been identified as one of the most

fragile environments in the world, and global warming is thought

to be especially critical for plant populations in mountain systems

[23,24]. The movement of plants to higher elevations tracking

their climatic niche seems to be one of the main responses to

ongoing global warming [25,26], although phenotypic plasticity

and adaptation may also play an important role in their response

[27–29]. Although all these processes are significantly conditioned

by dispersal and recruitment patterns [4–6,10,27], no explicit

measurements of dispersal kernels have been made for high-

mountain plants so far. A better understanding of dispersal and

recruitment patterns of high-mountain plants through the study of

effective dispersal kernels would, therefore, provide greater insight

into high-mountain plant species response to climate warming.

We used an inverse modelling approach to measure the net

reproductive rate and effective dispersal kernel parameters along

an altitudinal gradient in a threatened Mediterranean high-

mountain pasture community in central Spain. Analyses were

performed on five populations of each of two representative

species of the community: Silene ciliata Poiret and Armeria caespitosa

(Gómez Ortega) Boiss. in DC. Previous studies carried out on

these species showed that the altitudinal gradient is associated with

an environmental stress gradient, with the lowest population

experiencing the most stressful conditions, constraining seedling

establishment and reproductive performance [30–34]. We expect-

ed that variation in population structure and physical environment

along the altitudinal gradient could modify the spatial recruitment

pattern and dispersal distance of the species. Specifically, we

addressed two main questions: (1) What is the spatial range of

effective seed dispersal in these two high-mountain species? (2) Do

effective seed dispersal and fecundity parameters vary among

populations at different altitudes?

Methods

Ethics Statement
All necessary permits were obtained for the described field

studies. Mr. Juan Antonio Vielva from the Administration Bureau

of the Natural Park of Cumbres, Circo y Lagunas de Peñalara and

Mr. Antonio Sanz from the Administration Bureau of the

Regional Park of Cuenca Alta del Manzanares gave their

permission to work in the protected natural areas. Field studies

did not involve any endangered or protected species.

Study Site and Species
The study was carried out in the orophyllous cryophilic pastures

of Sierra de Guadarrama, a mountain range located in central

Spain. Mean annual precipitation, measured at the Navacerrada

Pass (40u 469N, 4u 199W; 1860 m a.s.l.), is 1330 mm with a

pronounced dry season (,10% of total annual rainfall) from May

to October. Mean annual temperature is 6.3uC, with mean

monthly temperatures ranging from 21uC in January to 16uC in

July (www.aemet.es). Dry cryophilic pastures occur in the higher

summits above the tree line between 1900 and 2430 m.a.s.l and

are dominated by Festuca curvifolia Lag. ex Lange and other

perennial plants interspersed in a shrub matrix characterized by

Cytisus oromediterraneus Rivas Mart. et al. and Juniperus communis

subsp. alpina (Suter) Čelak.

Silene ciliata Poiret (Caryophyllaceae) is a chamaephytic cushion

perennial plant that occurs in the Mediterranean mountain ranges

of southern Europe [35]. One of its southernmost distribution

limits is found in Sierra de Guadarrama at altitudes from 1900 to

2430 m, where it grows in dry cryophilic pastures dominated by

Festuca curvifolia. It blooms in late summer, with a peak in early

August [36]. Flowering stems reach 15 cm in height and have 1–5

flowers. Fruit capsules have up to 100 seeds which are wind

dispersed in August-September. Silene ciliata seeds have an average

mass of 0.59 mg and their diameter ranges between 1.1 and

1.5 mm [37]. The species is essentially barochorous (seeds lack any

specific structure to promote dispersal) and is pollinated by syrphid

flies, bumblebees and moth species [38]. It is self-compatible,

although autogamy is restricted by pronounced protandry [39]. In

Sierra de Guadarrama, genetic diversity is quite homogeneous

across S. ciliata populations, which show significant levels of

inbreeding [39].

Armeria caespitosa (Gómez Ortega) Boiss. in DC. is a high-

mountain dwarf chamaephytic cushion plant, endemic to the

mountains of central Spain (Sierra de Guadarrama, Ayllón and

East Gredos), which occurs at altitudes from 1600 to 2430 m. It

grows in the same dry cryophilic pastures dominated by Festuca

curvifolia, although isolated individuals have also been found on the

ledges of granite and gneiss rocks. Its flowers are grouped in short-

scaped flowerheads with 1968 flowers each. Each flower has a

single ovule, which yields one seed that remains enclosed in the

papyraceous calyx. Average seed mass is 1.18 mg and its diameter

ranges between 2.0 and 4.7 mm [30]. The papyraceous calyx may

facilitate seed dispersal by wind [30]. A. caespitosa is self-

incompatible [31] and pollinated by bees, bumblebees and syrphid

flies [31]. Previous studies on the population genetics of the species

revealed relatively low genetic differentiation and a complex

genetic structure among populations [40,41].

Field Data
In August and September 2010, we established 10610 m plots

in five populations of both S. ciliata and A. caespitosa distributed

along an altitudinal gradient at the study site (Table 1). For each

plot, we estimated a set of climate variables for the growing season

(April-September). We calculated mean, minimum and maximum

rainfall and temperature for each population using the Digital

Climatic Atlas of Spain of the Spanish Ministry of Environment

[42] (Table 1), and mean wind speed at 80 m height using the

Spanish Wind Energy Atlas of the Spanish Ministry of Industry

(http://atlaseolico.idae.es, Table 1).

We mapped every S. ciliata and A. caespitosa reproductive plant

and seedling in each study plot using two high-resolution

Differential Global Navigation Satellite System (DGNSS) receivers

(Viva GS15, Leica, Switzerland) with an accuracy of 5 cm for x

and y coordinates. We also measured plant diameter and the
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number of inflorescences of each reproductive plant. To account

for potential seedling sources outside the study area, we also

recorded the location, diameter and number of inflorescences of

reproductive plants in a buffer zone of two meters around the

plots. The seedling stage in S. ciliata and A. caespitosa includes up to

one-year individuals (i.e. plants that had germinated in fall or

spring and had survived their first full summer), because the

seedlings that survive a second growth period grow into the

reproductive stage [43,44]. Summer is critical to the survival of

Mediterranean plants due to the incidence of severe droughts

[45,46]. This is also the case in Mediterranean high-mountain

plants [47] such as S. ciliata and A. caespitosa [30,35]. Within this

framework, we included all critical stages of effective dispersal:

seed dispersal, seed germination and seedling survival.

The dataset used for this study is available from the institutional

repository of Rey Juan Carlos University (BURJC-Digital, http://

eciencia.urjc.es/handle/10115/11835).

Statistical Analysis
We used inverse modelling to estimate seedling dispersal kernel

parameters for each population of each species and to test for

dispersal parameter variation among populations within species.

Following Ribbens et al. [13], the expected number of seedling

recruits ŝj at a given plot or trap j of area Aj (ŝj) equals the sum of

the seedling shadows across this plot of all m maternal plants, in the

form:

ŝsj(b,rj; b,d,u)~

Xm

i~1

Q(bi; b)

ð
Aj

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi{xj)

2z(yi{yj)
2

q
; d,u

� �
dxjdyj

ð1aÞ

where b and rj are, respectively, m-length vectors of individual

plant size measurements bi and spatial distances rij between the

spatial coordinates (xj, yj) of plant i, and the coordinates of plot j (xi,

yi), Q is an allometric function with parameter b yielding the

number of seedlings produced by a single plant, and f is a two-

dimensional isotropic seedling dispersal probability density func-

tion (dispersal kernel) as a function of dispersal distance

rij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi{xj)

2z(yi{yj)
2

q
with mean d and shape parameter u.

The integral in eqn. 1a provides the exact probability of dispersal

from plant i into the whole surface Aj of plot j. All the studies we

are aware of have assumed that the probability of dispersal from

any given plant to any of the points lying within area Aj of each

plot is constant, yielding the usual simplified expression:

ŝsj(b,rj; b,d,u)~
Xm

i~1

Q(bi; b)f (rij ; d,u)Aj , ð1bÞ

where rij is the spatial distance between plant i and the centre of

plot j. The approximation in eqn 1b will be closer to the exact

values predicted by eqn. 1a the smaller the seedling plot areas and

the longer the distance between maternal plants and seedling plots.

We assumed a linear relationship between seedling production

and plant diameter, Qi = bbi, because previous studies have shown

that plant size is linearly related to seed production in both species

[31,33]. Furthermore, as found in previous studies [14,48],

alternative allometric functions worsened inverse modelling fits,

including those using the number of inflorescences (results not

shown).

For each population of each species, we divided the 100-m2

study area into c = 100L22 equal adjacent cells of area L2, and for

each cell j, we computed observed (sj) and predicted (ŝj) seedling

densities. We used equations 1a and 1b to estimate ŝj, as cell areas

were relatively large compared to some of the mother-cell pairwise

distances (occasionally with maternal plants lying within the target

cell), and it was not obvious a priori that the approximation in

equation 1b would be sufficiently accurate. However, virtually

identical dispersal and fecundity estimates were obtained for all

populations and assumed kernels using each equation (results not

shown). Thus, we only present the results for the latter, whose

computational efficiency enabled us to calculate confidence

intervals and conduct hypothesis tests (see below) in a reasonable

number of CPU hours. We also tested the effect of three different

values for cell side length, L = 0.125, 0.25 and 0.50 m, on

parameter estimates, with lower and upper values approximating

DGNSS accuracy and dispersal range, respectively. Distribution of

seedling densities across cells exhibited overdispersion relative to a

Table 1. Description of A. caespitosa and S. ciliata sampling sites.

Population UTM Coordinates (x,y) m Altitude m Pm (min, max) mm Tm (min, max) 6C Ws m/s Seedling Reproductive

Silene ciliata

Peñalara 419427.30 4522814.15 2405 82.50 (32, 149) 8.77 (0.2, 14.1) 10.62 469 1068

Cabezas de Hierro 421169.50 4516859.61 2305 85.17 (34, 151) 8.37 (0.2, 13.7) 10.87 243 1085

Nevero 428863.74 4537167.57 2190 71.00 (30, 121) 9.67 (2.1, 14.6) 8.97 19 245

Najarra 430196.59 4518886.29 2080 72.17 (27, 112) 10.45 (2.8, 15.7) 9 89 523

Laguna 419931.16 4521082.09 1946 77.00 (31, 134) 10.27 (2.8, 15.2) 7.17 6 147

Armeria caespitosa

Cabezas de Hierro 420950.54 4516685.32 2336 85.2 (34, 151) 8.37 (0.2, 13.7) 10.87 145 318

Najarra 430196.79 4518886.33 2080 72.2 (27, 112) 10.45 (2.8, 15.7) 9 498 356

Loma de Cabezas 420013.12 4514794.49 1970 77.0 (30, 131) 9.78 (2.5, 14.8) 8.45 53 132

Collado de las Vacas 419168.95 4513371.38 1882 66.3 (25, 110) 11.80 (4.0, 17.2) 8.46 49 169

Sierra de los Porrones 420580.85 4512251.64 1647 64.5 (26, 102) 12.88 (4.4, 18.3) 7.4 32 52

Geographical coordinates, altitude, climatic variables for the growing season (April-September) and seedling and reproductive plant density (individuals per 10610 m
plot) in study populations. Pm: monthly precipitation, Tm: monthly temperature, Ws: wind speed at 80 m height. Minimum and maximum monthly precipitation and
temperatures are provided in brackets.
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Poisson distribution (p,0.05) in all populations except the Nevero

population of S. ciliata, and we thus modelled seedling counts using

a negative binomial distribution [5]:

L(SDb,d,u,h)~ P
c

j~1

C(sjzh)

C(sjz1)C(h)

ŝs
sj
j (b,rj; b,d,u)hh

½̂ssj(b,rj; b,d,u)�sjzh
, ð2Þ

where S is the set of c observed seedling counts sj, C is the gamma

function, and h is the negative binomial parameter, determining

the distribution variance (values of h ,1 indicate overdispersed

distributions, while h ..1 tend to the Poisson distribution).

Maximum-likelihood estimates for b, d, u and h were obtained for

each population of each species by maximizing eqn 2. Confidence

intervals were computed using the profile-likelihood method [49].

As most studies show that no single dispersal function provides

consistently superior fits across species [14,18,19,50], the perfor-

mance of alternative dispersal kernels should always be compared

[14,17]. We considered four commonly employed two-dimension-

al seedling dispersal kernels, with scale parameter a and shape

parameter u: the 2Dt kernel [12]; see [51] for the parameterization

used here.

f2Dt(rij Da,u)~
u{1

pa2
1z

r2
ij

a2

 !{u

, ð3Þ

the log-normal kernel [52]

fLN (rij Da,u)~
1

(2p)3=2ur2
ij

exp {
( ln (rij){a)2

2u2

" #
, ð4Þ

the WALD kernel [14,53]

fWALD(rij Da,u)~
u

8p3r5
ij

 !1=2

exp {
u(rij{a)2

2a2rij

" #
, ð5Þ

and the exponential-power kernel [5]

fEXPOW (rij Da,u)~
u

2pa2C(2=u)
exp {

rij

a

� �u
� �

: ð6Þ

Mean seedling dispersal distances for each kernel are given by

d2Dt = aC(3/2) C(u23/2)/C(u21), dLN = exp (a + 0.5u2), dWALD = a

and dEXPOW = aC(3/u)/C(2/u), respectively. Given that d provides

a more intuitive description of dispersal range than a, independent

of the assumed kernel, we parameterized the model (eqns 1 and 2)

in terms of d and u, rather than in terms of a and u, facilitating the

estimation of profile-likelihood confidence intervals for d [5,54]

and tests of its variation across populations (see below). We used

the Akaike Information criterion (AIC) [55] to assess method

performance and calculated the goodness of fit of the most

parsimonious model by measuring Pearson’s product-moment

correlation between observed vs. predicted seedling densities.

We tested for potential differences in dispersal and fecundity

parameters across populations using likelihood ratio statistics as in

Clark et al. [5]. Assuming that mean dispersal distance d is

constant across populations within species, we obtained parameter

estimates based on the likelihood of the whole species data set Sq,

incorporating information from all q populations of the species:

Ld(SqDbq,d,uq,hq)~ P
q

k~1
L(Sk Dbk,d,uk,hk), ð7Þ

where bq, uq, and hq are q-length vectors of population-specific

fecundity parameters bk, kernel shape parameters uk and negative

binomial parameters hk. This model has 3q degrees of freedom and

provides an average species-level estimate of d. Note that, unlike

Clark et al. [5], we allowed for different values of the negative

binomial parameter (i.e. different degrees of spatial seedling

clumping) across populations. We assumed the same kernel family

for all populations in conducting this test, choosing the one

yielding the best average fit over all populations (i.e. the one with

the smallest average AIC across the population-level fits obtained

using eqn. 2). We then obtained parameter estimates assuming that

all parameters (including d) vary among populations within species

(still assuming a single consensual kernel family), based on the

likelihood

L(SqDbq,dq,uq,hq)~ P
q

k~1
L(Sk Dbk,dk,uk,hk), ð8Þ

where dq is the q-length vector of population-specific mean

dispersal distances dk. The model in eqn 8 has 4q21 degrees of

freedom. The deviance

D~{2 ln
Ld(SqDbq,d,uq,hq)

L(SqDbq,dq,uq,hq)

" #
ð9Þ

is asymptotically distributed as x2 with q21 degrees of freedom.

Large deviances mean that stand-specific d improves the likelihood

of the data so substantially that the null hypothesis of invariant d
across populations can be rejected [5]. We first tested for

significant differences in d across all populations of each species.

When the overall test was positive, we tested for specific

populations with d-values significantly different from the global

species-average by subsequently conducting q deviance tests, one

for each population i (x2 with 1 degree of freedom), using:

Di~{2 ln
Ld(SqDbq,d,uq,hq)

L(SqDbq,di,d{i,uq,hq)

" #
, ð10Þ

where the numerator is the same likelihood as before, assuming

that the mean dispersal distance d is constant across all

populations, while the likelihood in the denominator assumes that

the i-th population has a mean dispersal distance di, while the

remaining q21 populations have a constant mean dispersal

distance d2i. We applied the sequential Bonferroni correction to

correct for multiple testing [56]. Analogous tests were conducted

to investigate among-population variation in the shape parameter

of the dispersal kernel (assuming constant u and variable d in eqn 7)

and in the fecundity parameter b (assuming constant b and

variable d in eqn 7). Although the field survey at the study sites was

exhaustive, some sample sizes were unbalanced and relatively

small due to natural density variation (Table 1), which may

compromise the large numbers approximation under which the x2

distribution is expected. Small samples can indeed make likelihood

ratio (LR) tests relatively lax in the case of unequal male

reproductive success analysis [57]. Smouse et al. [58], proposed

the use of nonparametric (permutational) tests as an alternative to

LR tests, showing that the former can perform better than LR tests

when parent-offspring genealogical information is available.

Effective Dispersal Patterns in Mountain Plants
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Similar non-parametric tests have not been developed so far in the

different statistical framework of inverse modeling, for which LR

tests, such as those used here, are still widely employed as feasible

approximations for exploratory assessment of variation in dispersal

and fecundity parameters [5,59–61]. All statistical analyses were

performed in the open source software package R [62].

Results

We mapped a total of 4095 reproductive individuals and 1603

seedlings across all populations of the two species (Table 1; Figure

S1). Reproductive plant and seedling densities varied between

populations in both species (Table 1). We focused on the results

obtained with a 0.125 m cell side length (Tables 2 and 3), because

some of the S. ciliata populations did not converge when 0.25 or

0.5 m cell side lengths were used (Table S1). In any case, similar

results were obtained for both species for all cell side lengths

(Tables 2, 3, S1 and S2). As none of the four models converged for

A. caespitosa in the Najarra population, this population was

excluded from further analyses.

Differences in AIC values indicated that no single kernel

function provided the best fit across all populations of either of the

two species (Table 2 and 3). For S. ciliata, the WALD kernel was

among the most parsimonious models (i.e. models whose AIC

values differ DAIC ,2 from the model with the lowest AIC [55])

in all five populations, while the log-normal model was among the

most parsimonious in four populations, the exponential-power

model in three populations and the 2Dt model in two populations

(Table 2). Results did not support a particular kernel shape in S.

ciliata: the mesokurtic, thin-tailed exponential-power with u .1

showed similarly good fits (DAIC ,2) as leptokurtic functions with

either exponential (WALD) or fat (2Dt and log-normal) tails within

the same populations. Using the WALD kernel across all S. ciliata

populations, species-level estimates of mean dispersal distance and

the shape parameters were d = 0.39 m (95% CI: 0.35–0.45 m) and

u = 0.80 (0.63–1.13). For A. caespitosa, the log-normal kernel ranked

among the best models in all four populations where estimation

converged, whereas the WALD, 2Dt and exponential-power

models showed a similarly good performance in three populations

(Table 3). Supported models in A. caespitosa always included

leptokurtic functions with exponential or fat tails (including the

exponential-power with u,1). Using the log-normal model across

all A. caespitosa populations, the species-level estimates of kernel

parameters were d = 0.43 m (0.32–0.60 m) and u = 0.98 (0.87–

1.14).

The fits of the most parsimonious models ranged from good in

A. caespitosa populations (r2 = 0.17–0.35) to fair or poor (r2 = 0.01–

0.12) in S. ciliata populations (Tables 2 and 3) and were highly

significant (p,0.0001) in all cases except in the population with the

lowest seedling number (p = 0.32 for the Laguna population of S.

ciliata, which only had 6 seedlings). Population estimates of mean

dispersal distance (d) and fecundity (b) parameters were generally

consistent when assuming different kernel families (Table 2 and 3).

No significant correlation was found between log b and log d
(r = 0.35, p = 0.65).

Focusing on the cross-population comparisons of the WALD

dispersal model for S. ciliata, estimated mean dispersal distances

ranged between d = 0.23 and 0.71 m (Table 2), although

differences were only marginally significant (x2
4d.f. = 8.846,

p = 0.065). Estimated shape parameters ranged between u = 0.55

Table 2. Estimated parameters for the models fitted to the seedling recruitment data of S. ciliata.

Population Kernel
Mean dispersal
(d) (m) Shape parameter (u)

Fecundity parameter
(b) (seedlings/cm)

Negative binomial
parameter (h) 2 logL DAIC r2

Peñalara Log-norm 0.32 (0.27–0.39) 0.64 (0.52–0.77) 0.009 (0.008–0.010) 0.359 (0.260–0.523) 1624.80 – 0.12

WALD 0.33 (0.28–0.41) 0.64 (0.44–0.99) 0.009 (0.008–0.010) 0.360 (0.260–0.525) 1624.82 0.04

2Dt 0.32 (0.27–0.46) 3.80 (1.99–na) 0.009 (0.009–0.011) 0.351 (0.255–0.509) 1627.77 5.94

Exp-pow 0.31 (0.27–0.37) 1.51 (0.97–2.34) 0.009 (0.008–0.010) 0.349 (0.253–0.507) 1628.76 7.92

Cabezas de Hierro Exp-pow 0.37 (0.32–0.45) 9.86 (2.34–na) 0.003 (0.003–0.004) 0.449 (0.235–1.198) 1029.04 – 0.05

Log-norm 0.43 (0.35–0.60) 0.43 (0.23–0.70) 0.003 (0.003–0.004) 0.460 (0.240–1.246) 1029.04 0.01

WALD 0.43 (0.35–0.62) 2.26 (0.84–8.70) 0.003 (0.003–0.004) 0.459 (0.239–1.244) 1029.17 0.27

2Dt 0.43 (0.33–0.58) 172.54 (3.65–na) 0.003 (0.003–0.004) 0.450 (0.235–1.205) 1031.17 4.25

Nevero Exp-pow 0.23 (0.17–0.50) 2.84 (0.74–21.91) 0.001 (0.001–0.002) 142.062 (0.045–na) 108.04 – 0.08

2Dt 0.23 (0.17–0.42) 171.06 (1.74–na) 0.001 (0.001–0.002) 142.162 (0.082–na) 108.12 0.17

WALD 0.30 (0.22–0.60) 1.23 (0.41–3.27) 0.001 (0.001–0.002) 141.865 (0.054–na) 109.04 1.99

Log-norm 0.30 (0.21–0.86) 0.47 (0.29–1.35) 0.001 (0.001–0.002) 50.393 (0.053–na) 109.14 2.19

Najarra WALD 0.71 (0.37–na) 0.55 (0.27–1.24) 0.002 (0.003–0.003) 0.280 (0.092–8.456) 461.85 – 0.04

Log-norm 0.62 (0.36–3.01) 0.86 (0.58–1.46) 0.002 (0.002–0.003) 0.280 (0.092–8.401) 462.14 0.59

Exp-pow 0.61 (0.36–2.45) 0.83 (0.27–2.49) 0.002 (0.002–0.003) 0.275 (0.091–7.395) 463.15 2.59

2Dt nc nc nc nc nc

Laguna Exp-pow 0.29 (0.17–0.40) 1411.75 (0.03-na) 0.001 (0.0003–0.004) 0.003 (0.001–0.035) 38.74 – 0.01

WALD 0.24 (0.14-na) 1.00 (na-na) 0.001 (0.0003–0.029) 0.004 (0.001–0.049) 38.91 0.34

Log-norm 0.24 (0.16-na) 0.47 (0.23–na) 0.001 (0.0003-na) 0.004 (0.001–0.048) 38.95 0.42

2Dt 0.23 (0.15–0.86) 165.18 (1.00–na) 0.001 (0.0003 - 0.006) 0.003 (0.001–0.035) 39.12 0.76

For each parameter, 95% confidence intervals are presented along with the mean value. Log-norm, log-normal; Exp-pow, exponential-power. na denotes that the
confidence interval limit is not available because of flat likelihood function. nc denotes models that did not converge.–logL, log-likelihood; AIC, Akaike’s information
criterion; r, Pearson correlation coefficient between observed and predicted seedling density values. Models with the lowest AIC are marked in bold for each population.
doi:10.1371/journal.pone.0087189.t002
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and 2.26 and were not significantly different from each other

(x2
4d.f. = 7.022, p = 0.135). Fecundity parameters ranged between

b = 0.001 and 0.009 seedlings/cm across S. ciliata populations and

were significantly different (x2
4d.f. = 254.26, p,0.001). Per-popu-

lation tests indicated that all population estimates of b were

significantly different from the species average (Table 4).

Assuming a log-normal dispersal model for A. caespitosa,

population estimates of d varied between 0.23 and 0.78 m

(Table 3) and were significantly different (x2
3d.f. = 14.022,

p = 0.003). Per-population tests showed that only the population

with the largest d (Loma de Cabezas with 0.78 m) differed

significantly from the species average (Table 5). Estimated shape

parameters ranged between u = 0.84 and 1.07 and were not

significantly different from each other (x2
3d.f. = 1.426, p = 0.699).

Fecundity parameter estimates exhibited significant differences in

A. caespiotsa (x2
3d.f. = 22.51, p,0.001), ranging from b = 0.011 to

0.024 seedlings/cm. Per-population tests indicated that maximum

estimates of b (at Cabezas de Hierro) and minimum estimates of b
(at Collado de las Vacas) were significantly higher and lower than

the species average, respectively (Table 6).

Discussion

We used an inverse modelling approach to analyse the variation

in effective seed dispersal patterns of two coexisting species along

an altitudinal gradient in a high mountain pasture community of

central Spain. Estimated mean dispersal distances were short in

both species, as most seedlings established less than a meter from

Table 3. Estimated parameters for the models fitted to the seedling recruitment data of A. caespitosa.

Population Kernel
Mean dispersal
(d) (m) Shape parameter (u)

Fecundity parameter
(b) (seedlings/cm)

Negative binomial
parameter (h) 2 logL DAIC r2

Cabezas de
Hierro

Log-norm 0.33 (0.24–0.56) 0.97 (0.78–1.29) 0.024 (0.019–0.029) 0.122 (0.076–0.208) 584.41 – 0.17

2Dt 0.80 (0.30 - na) 1.60 (1.24–2.48) 0.024 (0.020–0.030) 0.122 (0.076–0.207) 584.78 0.73

WALD 0.35 (0.24–1.44) 0.21 (0.13–0.35) 0.024 (0.020–0.030) 0.121 (0.076–0.206) 584.80 0.79

Exp-pow 0.29 (0.23–0.45) 0.60 (0.31–1.03) 0.024 (0.020–0.029) 0.120 (0.075–0.202) 585.01 1.19

Loma de
Cabezas

Exp-pow 0.66 (0.46–1.39) 0.69 (0.24–2.37) 0.014 (0.010–0.019) 0.061 (0.028–0.162) 247.54 – 0.12

Log-norm 0.78 (0.48–2.57) 1.02 (0.69–1.64) 0.014 (0.010–0.019) 0.063 (0.028–0.169) 247.82 0.57

WALD 0.77 (0.46 - na) 0.44 (0.19–1.01) 0.014 (0.010–0.020) 0.064 (0.028–0.171) 247.96 0.85

2Dt 0.73 (0.05 - na) 2.15 (0.12 - na) 0.014 (0.010–0.020) 0.058 (0.026–0.158) 248.64 2.20

Collado de
las Vacas

2Dt 0.30 (0.18–na) 1.84 (1.36–2.85) 0.011 (0.008–0.014) 0.286 (0.107–1.330) 206.84 – 0.22

WALD 0.28 (0.19–0.58) 0.25 (0.13–0.44) 0.011 (0.008–0.014) 0.298 (0.109–1.444) 207.11 0.56

Log-norm 0.25 (0.17–0.43) 0.84 (0.63–1.18) 0.011 (0.008–0.014) 0.298 (0.109–1.442) 207.47 1.26

Exp-pow 0.27 (0.18–0.45) 0.56 (0.29–0.96) 0.011 (0.008–0.015) 0.249 (0.096–1.057) 209.86 6.05

Sierra de los
Porrones

Log-norm 0.23 (0.13–0.50) 1.07 (0.84–1.56) 0.021 (0.013–0.033) 0.369 (0.118–2.966) 110.01 – 0.35

2Dt 0.28 (0.16 - na) 1.75 (1.27–3.12) 0.021 (0.013–0.033) 0.371 (0.117–3.291) 110.02 0.01

Exp-pow 0.21 (0.13–0.40) 0.48 (0.19–0.93) 0.020 (0.013–0.033) 0.370 (0.118–3.227) 110.15 0.27

WALD 0.20 (0.10 - na) 0.07 (0.03–0.12) 0.024 (0.015–0.043) 0.280 (0.098–1.231) 111.27 2.52

For each parameter, 95% confidence intervals are presented along with the mean value. Log-norm, log-normal; Exp-pow, exponential-power. na denotes that the
confidence interval limit is not available because of flat likelihood function. – logL, log-likelihood; AIC, Akaike’s information criterion; r, Pearson correlation coefficient
between observed and predicted seedling density values. Models with the lowest AIC are marked in bold for each population.
doi:10.1371/journal.pone.0087189.t003

Table 4. Comparison of estimated fecundity parameters (b) among S. ciliata populations.

Population bi (seedlings/cm) b-i (seedlings/cm) 2logL x2
1d.f. (p-value)

Peñalara 0.009 0.003 23276.28 229.28 (,0.0001)*

Cabezas de Hierro 0.003 0.007 23365.25 51.35 (,0.0001)*

Nevero 0.001 0.006 23361.72 58.41 (,0.0001)*

Najarra 0.002 0.006 23366.10 49.64 (,0.0001)*

Laguna 0.001 0.005 23380.92 19.99 (,0.0001)*

Average 0.005 – 23390.92 –

bi is the fecundity parameter for the corresponding population and b-i is the average b across the remaining four populations. –logL is the log-likelihood of the model
considering bi and separately b-i. Last column shows the deviance (x2

1d.f. -distributed) of the model considering bi and separately b-i relative to the model (shown in the
last row) assuming constant b across all five populations. Asterisks denote a significant test after sequential Bonferroni correction.
doi:10.1371/journal.pone.0087189.t004
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the source. No single kernel function provided the best fit across all

populations. Furthermore, fecundity parameters were significantly

different among populations in both species. Mean dispersal

distance was significantly different among A. caespitosa populations,

while differences in mean dispersal distance among S. ciliata

populations were only marginally significant. The kernel shape

parameter did not vary significantly in either of the two species.

The inverse modelling approach proved to be useful in

characterizing effective seed dispersal patterns in both species.

Parameter estimates were consistent among populations and

species independent of the assumed kernel. In addition, estimates

conformed to independent fecundity measures for the same species

[30,34], and to primary seed dispersal estimates obtained with

direct and indirect methods in congeneric species (Silene latifolia:

0.17–0.85 m, [63]; Armeria maritima: 0.6 m, [64]). Although r2

values were slightly lower than those obtained in analogous studies

[13,18,20], they were highly significant (except in the population

with the lowest seedling number). This suggests that inverse

modelling was able to provide information on the scale of dispersal

in the studied high mountain plants, even though there seemed to

be substantial distance-independent fluctuations in dispersal and

establishment probabilities that cannot be characterized by simple

kernel fits as frequently found in heterogeneous environments

[19].

Most effectively dispersed seeds were established near conspe-

cific adult plants (Figure S1). Consequently, estimated mean

dispersal distances were low, suggesting that both A. caespitosa and

S. ciliata have low effective seed dispersal ranges. Effective dispersal

scale is influenced by factors operating at the level of both primary

seed dispersal and germination and establishment. According to

mechanistic wind dispersal models based on the WALD kernel,

the seeds of six high-mountain species are transported no farther

than a few meters by primary wind dispersal, probably due to low

seed release height [65]. Release height, determined by inflores-

cence length, is indeed low (about 5–25 cm) in both A. caespitosa

and S. ciliata (see Castroviejo et al. [66] for morphological

characteristics). However, according to the mechanistic simula-

tions in Dullinger et al. [65], the primary seed dispersal range of

these two species should be longer than that estimated by our

effective dispersal models. This suggests that effective seed

dispersal is further limited by post-dispersal processes. Environ-

mental harshness in summer might be the main factor in reducing

primary seed dispersal distance. In the two species studied here,

recruitment is mainly limited at the seedling emergence and

survival stages by summer drought [30,34]. Furthermore, Garcı́a-

Camacho et al. [30] found a positive effect of A. caespitosa adult

cover on seedling emergence and survival in 0.560.5 m samplings

subplots. This suggests that adults act as nurse plants, facilitating

seedling emergence and survival along the altitudinal gradient

[30], as observed in other Mediterranean mountain regions [67].

The effect of adult cover on post-dispersal survival might lead to

unrealistic conclusions of short effective dispersal distance, because

our modelling approach assumes a distance-invariant survival

function. This assumption may be violated in the case of distance-

dependent survival because the primary and effective seed

dispersal kernel would attain different shapes [68]. Hence, the

modelling approach will implicitly assume that seedlings close to a

conspecific adult originate from this adult, even though facilitation

can also favour seeds from other adults after more substantial

dispersal [68]. Given the mean distance between the adult plants

recorded in our study plots (mean 6 SD: 5.3560.38 m for S.

ciliata; 5.2160.58 m for A. caespitosa) and the essentially barochor-

ous seed dispersal mechanism, the ratio of seeds from other adults

to seeds from the closest adult is likely to be very small, and,

therefore, the effect of this bias negligible. Moreover, all the

studied S. ciliata populations exhibited significant positive fine-scale

spatial genetic structure (FSGS) at the 0–1 m distance class (Lara-

Romero et al. unpublished data), indicating that the spatial

aggregation of genotypes is consistent with the low effective

dispersal distance observed in our study.

Mean dispersal distance provides a limited characterization of

dispersal range [19,69]. Other characteristics of the dispersal

Table 5. Comparison of estimated mean dispersal distances
(d) among A. caespitosa populations.

Population di (m) d-i (m) -logL x2
1d.f. (p-value)

Cabezas de
Hierro

0.33 0.49 1155.80 1.84 (0.1744)

Loma de
Cabezas

0.78 0.29 1150.46 12.53 (0.0003)*

Collado de las
Vacas

0.25 0.50 1154.47 4.50 (0.0338)

Sierra de los
Porrones

0.23 0.47 1155.20 3.04 (0.0809)

Average 0.43 – 1156.72 –

di is the mean dispersal distance for the corresponding population and d-i is the
average d across the three remaining populations. –logL is the log-likelihood of
the model considering di and separately d-i. The last column shows the
deviance (x2

1d.f. -distributed) of the model considering di and separately d-i

relative to the model (shown in the last row) assuming constant d across all four
populations. The asterisk denotes a significant test after sequential Bonferroni
correction.
doi:10.1371/journal.pone.0087189.t005

Table 6. Comparison of estimated fecundity parameters (b) among A. caespitosa populations.

Population bi (seedlings/cm) b-i (seedlings/cm) -logL x2
1d.f. (p-value)

Cabezas de Hierro 0.024 0.013 1152.64 16.65 (,0.0001)*

Loma de Cabezas 0.014 0.020 1159.56 2.82 (0.0932)

Collado de las Vacas 0.011 0.021 1153.55 14.84 (0.0001)*

Sierra de los Porrones 0.021 0.017 1160.66 0.61 (0.4337)

Average 0.017 – 1160.97 –

bi is the fecundity parameter for the corresponding population and b-i is the average b across the three remaining populations. –logL is the log-likelihood of the model
considering bi and separately b-i. The last column shows the deviance (x2

1d.f. -distributed) of the model considering bi and separately b-i relative to the model (shown in
the last row) assuming constant b across all four populations. Asterisks denote significant tests after sequential Bonferroni correction.
doi:10.1371/journal.pone.0087189.t006
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kernel such as the kurtosis and fatness of the distribution tail may

have important demographic, ecological and genetic consequences

[12,19,69,70]. Our results did not support a particular kernel

shape in the case of S. ciliata. Although the behavior near the origin

and the tail is not independent in the assumed phenomenological

kernels (see [16] and references therein), the virtual absence of

seedlings beyond the close proximity of S. ciliata adults (Figure S1)

may result in similarly good fits for kernels with very different tails

but with sufficiently fast probability decay near the origin. That is,

fat-tailed kernels could fit well in S. ciliata, because the actual

dispersal probability decreased fast near the origin and not

necessarily because the actual process had a fat tail. In A. caespitosa,

results supported leptokurtic functions with exponential or fat tails

with consistently more abundant isolated seedlings than for S.

ciliata (Figure S1). This would suggest a larger proportion of long-

distance effective dispersal events in A. caespitosa than in S. ciliata.

The few studies that have previously used inverse modelling

with a multi-population approach found local variation in

dispersal parameter estimates within species [5,20]. In Clark et al.

[5] and LePage et al. [20], variation in dispersal patterns within

species was found across tree stands of temperate forests that

spanned gradients in moisture and canopy openness. Similarly, we

expected higher effective dispersal ranges in high-altitude popu-

lations because less stressful conditions could reduce the intensity

of the adult nurse effect on the survival of emerged seedlings.

Furthermore, the lower encroachment by subalpine shrubs at high

elevation sites [71] would provide a more open habitat with

greater exposure to wind that might favour longer-distance seed

dispersal. However, contrary to our expectations, differences in the

shape parameter value were not significant among populations in

either of the two species. Only the A. caespitosa population with the

largest mean dispersal distance differed significantly from the

species average value for this parameter. Despite the strong

variation in demographic structure and/or physical environment

along the altitudinal gradient, dispersal parameter estimates

tended to be consistent among populations within the species.

This implies that the inherent seed dispersal traits of the species

(e.g., inflorescence length, fruit morphology, seed size and shape),

which are essentially the same in all populations, were the most

important factors in determining the effective dispersal kernel in

our study sites during the study period. Post-dispersal processes

controlling seedling emergence and establishment seem to operate

similarly across populations, regardless of evident variation in local

demographic and environmental conditions (intra and interspecific

plant density, local topography, soil moisture, temperature regime,

etc.). This provides new insight into the prevalence and magnitude

of intraspecific dispersal variation. Although our results are

consistent with previous studies [5,20], showing that effective

mean dispersal distances vary among populations of particular

species, they also indicate that effective dispersal kernels can

remain invariant across populations of other co-occurring species,

even if there is significant variation in demographic structure and

the environment.

Effective fecundity varied significantly across populations in

both species, and per-population tests identified that these

differences were due to the greater fecundity values found in the

populations located at the highest altitude. As expected, the

fecundity parameter was related to the ratio of seedlings to

reproductive adults (Kendall rank correlation coefficient: t = 1,

p,0.001 for S. ciliata; and t= 0.67, p = 0.167 for A. caespitosa),

which represents a measure of the average number of successfully

established seedlings produced by each mother. By contrast, the

fecundity parameter was not associated with mean seed produc-

tion per adult plant (as estimated with a seed-crop sample from a

small number of individuals of each population; data not shown).

Furthermore, seedling density was positively related to altitude

(t = 0.8, p,0.05 for both species). These results suggest different

seedling mortality rates at different altitudes, which have probably

influenced the observed differences in the fecundity parameter

among populations. These results are also congruent with previous

studies on the demography of the two species [30,33], indicating

that more benign conditions at the populations located at the

highest altitudes allow the emergence and establishment of larger

numbers of seedlings. Hence, the altitudinal gradient appears to

influence effective seed dispersal patterns in S. ciliata and A.

caespitosa through variation in effective seedling establishment

probabilities, but not as much through variation in the effective

seed dispersal range. The explicit incorporation of finer-scale

environmental factors and landscape features (e.g. shrub cover) in

our models (for instance through the application of the movement

space concept; Schurr et al. [14]) might help to estimate and model

the potential effects of environmental variables on fine-scale spatial

patterns of effective dispersal more accurately, and thus increase

the amount of explained variance in within-population recruit-

ment patterns.

The estimates provided by empirical dispersal studies such as

this one could help to explicitly incorporate real migration

constraints in predictive species distribution models. This infor-

mation is all the more relevant because accurate predictions about

dispersal and migration capacities are considered to be among the

most significant uncertainties in projecting climate impacts on

plant species ranges [72]. Our results, together with previous seed

dispersal mechanistic simulations of alpine plant species [65] show

that the majority of dispersal events occur within a few meters

from the source. This is consistent with [73], who found

widespread post-glacial dispersal constraints on the current

distribution of plants in the European Alps. These findings raise

doubts about the capacity of high mountain plants to track their

climatic niche under the rapid climate warming predicted for

mountain systems during the 21st century [23]. However, spatial

spread and colonization rates are not necessarily governed by

mean seed dispersal distance but by the frequency of rare long-

distance dispersal (LDD) events [11,74,75]. LDD is usually caused

by extreme events in terms of horizontal wind speed or turbulence

[21,74]. High-mountain habitats are exposed to frequent and

strong updrafts [76,77]. Consequently, LDD may occur frequently

in high-mountain environments [78]. These events could greatly

increase the chance of threatened populations to track the

altitudinal-zone displacement induced by warming. Therefore,

further research should accurately estimate the impact of LDD on

seed dispersal patterns in mountain ecosystems using adequate

methods (for instance through the application of recently

developed genetic methods [79–81]).

Conclusions
This study shows that there is not a single kernel function that

consistently provides the best fits across species and populations.

More importantly, this study points out that effective dispersal

kernels can remain invariant across populations of particular

species under strong variation in demographic structure and/or

physical environment, while they may vary among populations of

other co-occurring species. These results call for a case-by-case

analysis in a wider range of taxa and environments to assess the

validity of approaches that assume invariant species-specific

dispersal kernels [22].
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Supporting Information

Figure S1 Spatial distribution of adults (circles) and seedlings

(crosses) in each study plot of A. caespitosa and S. ciliata.

(PDF)

Table S1 Estimated parameters for the models fitted to the

seedling recruitment data of Silene ciliata (cell size length 0.25 and

0.50 m). d, mean dispersal distance (m); u shape parameter; b,

fecundity parameter (seedlings/cm); h, negative binomial param-

eter; – logL, log-likelihood; nc denotes models that did not

converge.

(PDF)

Table S2 Estimated parameters for the four models fitted to the

seedling recruitment data of Armeria caespitosa. (cell size length 0.25

and 0.50 m). d, mean dispersal distance (m); u shape parameter; b,

fecundity parameter (seedlings/cm); h, negative binomial param-

eter; – logL, log-likelihood; nc denotes models that did not

converge.

(PDF)
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