
   

 

12th European Conference on Thermoelectrics  

Nonlinear heat conduction in Coulomb-blockaded quantum dots 

Miguel A. Sierraa and David Sáncheza 

aInstituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain 
 

Abstract 

We analyze the heat current flowing across interacting quantum dots within the Coulomb blockade regime. Power can be 
generated by either voltage or temperature biases. In the former case, we find nonlinear contributions to the Peltier effect that are 
dominated by conventional Joule heating for sufficiently high voltages. In the latter case, the differential thermal conductance 
shows maxima or minima depending on the energy level position. Furthermore, we discuss departures from the Kelvin-Onsager 
reciprocity relation beyond linear response. 
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1. Introduction 

Recent advances suggest that nanostructures will play a pivotal role in improving today’s thermoelectric 
efficiencies [1]. The Seebeck coefficient has been measured in quantum point contacts [2], quantum dots [3] and 
ballistic microjunctions [4]. The results from these experiments can be understood by using linear-response models. 
However, nanoscale conductors can also become excellent platforms for the investigation and manipulation of 
electron dynamics far from equilibrium since large voltage and temperature differences can be applied in a 
controlled way [5,6]. As a consequence, nonlinear effects are clearly visible in the thermovoltage generated in 
response to a temperature shift. Charging effects are important in these systems. Although a scattering approach to 
nonlinear thermoelectric effects accounts for temperatures and voltage dependences of the transmission function [7], 
Coulomb blockade effects fall beyond the scope of this theory. 

 We have recently considered in Ref. [8] nonlinear thermoelectric effects within a single-impurity Anderson 
model with constant energy U. Our results agree with the experiments of Staring et al. [5] and Svensson et al. [6]. 
Additionally, we discussed asymmetries shown in the heat dissipation when the voltage is reversed in a given 
terminal or when the created power is compared between two leads. In both cases, higher order effects start to 
dominate the heat current and a change of sign for the rectification factor is found. This striking result demonstrates 
that a more careful analysis of the nonlinear heat current in Coulomb-blockaded quantum dots is needed. This is the 
goal of the present work. 

Coulomb blockade is not only detected in quantum dots. This universal effect governs the low temperature 
physics of many nanoscale systems such as molecular bridges [9], carbon nanotubes [10] and optical lattices [11]. 
Coulomb blockade becomes apparent when the energy scale associated to electron-electron interactions is larger 
than any other energy in the system (temperature, level broadening). As a result, electrons tunneling from nearby 
reservoirs into the sample must pay an extra energy that blocks the transport at low voltages. The effect is clearly 
seen in the conductance plots as a function of both the bias and the gate voltages. 

Since electrons carry energy during tunneling, Coulomb blockade also affects heat conduction. Now, the heat 
current can be driven by both electric fields and temperature biases. The former leads to the Peltier effect, which 
leads to a reversible heat flow for small voltages in isothermal conditions. When voltages become larger, 
nonlinearities can give rise to rectification effects. A study of this phenomenon in the heat current is necessary for an 



 Author name / Materials Today: Proceedings 00 (2014) 000–000 2 

accurate assessment of the cooling properties of nanostructured thermoelectric modules [1,12]. In fact, nonlinear 
contributions have been observed in atomic-scale junctions [13] and interesting predictions have been made for 
quantum point contacts and nanowires [14,15,16], doped bulk semiconductors [17] and quantum dots with weak 
interactions [18]. 

When heat flow is induced by temperature differences, the Fourier law is obeyed if the thermal gradient is small. 
Larger temperature biases may give rise to rectification effects, a subject that has lately attracted much attention [19-
23]. In the following, we will consider Coulomb blockade effects also for temperature-driven heat currents. 

2. Model 

Our investigation is based on the Anderson model where a quantum dot with a charging energy U plays the role 
of a magnetic impurity coupled to fermionic reservoirs.  The total Hamiltonian in expressed as 

 
ℋ = ℋleads +ℋdot +ℋtun         (1) 
 

The first contribution corresponds to the Hamiltonian of the leads, 
 
ℋleads = 𝜀!"𝐶!"#

! 𝐶!"#!"#          (2) 
 

where α labels the left (α=L) or right (α=R) reservoir. Furthermore, k is the continuous wavenumber, σ is the 
electron spin index and 𝜀!! is the energy spectrum, which we take as spin-independent (nonmagnetic leads). 

In Eq. (1), the dot Hamiltonian reads  
 
ℋ!"# = 𝜀!𝑑!

!𝑑!! + 𝑈𝑑↑
!𝑑↑𝑑↓

!𝑑↓         (3) 
 
with εd the quasilocalized level of the dot. Here we only consider one single level for definiteness. Importantly, 𝜀! 
can be tuned with an external gate voltage. 

The hybridization term that establishes the tunnel coupling between localized and continuum states is  
 
ℋ!"# = (𝑉!"𝐶!"#

! 𝑑! +!"# 𝑉!"∗ 𝑑!
!𝐶!"#),       

 (4) 
 
Here, 𝑉!" describe tunneling amplitudes. 

Once we have defined the Hamiltonian, the electronic current I and the heat flux J can be obtained with the aid of 
leads’ operators. The former is given by the time evolution of the reservoir occupation 𝑛! = 𝐶!"#

! 𝐶!"#!" , whereas 
the heat current depends on the change rate of the reservoir energy ℋleads

! = 𝜀!"𝐶!"#
! 𝐶!"#!" , 

  
𝐼! = −𝑒 !〈!!〉

!"
           (5) 

 
𝐽! =

! ℋ!"#$%
!

!"
− !!

!
𝐼!          (6) 

 
As is customary, the heat current results from the energy flux measured with respect to the convective term !!

!
𝐼!,  

where 𝜇! = 𝐸! + 𝑒𝑉! is the electrochemical potential of reservoir α which consists of two contributions, the 
common Fermi energy 𝐸! (chemical part) and the applied voltage shift (electric part). For static fields, both 𝑛! and 
ℋleads

!  commute with the total Hamiltonian. As a consequence, in the steady state we find the conservation law for 
the electrical current 𝐼! + 𝐼! = 0, which allows us to define the net current 𝐼 ≡ 𝐼! = −𝐼!. On the other hand, the 
heat currents satisfy 𝐽! + 𝐽! = −𝐼𝑉 with 𝑉 = 𝑉! − 𝑉!. In what follows, we show calculations for 𝐽 ≡ 𝐽! = −𝐽! −
𝐼𝑉. 
    Within the nonequilibrium Keldysh-Green’s function formalism [24], the charge and heat fluxes become 
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𝐼 = !
!ℏ
Re   𝑑𝐸  [ 𝑉!"𝐺!,!"#!

!" 𝐸 ]!
!!           (7) 

 
𝐽 = !

!ℏ
Re   𝑑𝐸  [ 𝜀!"#𝑉!"𝐺!,!"#!

!" 𝐸 ]!
!! − !!

!
𝐼         (8) 

 
𝐺!,!"#! (𝐸) is the Fourier transform of the lesser Green’s function 𝐺!,!"#! 𝑡, 𝑡! = !

ℏ
〈𝐶!"#

! 𝑡! 𝑑! 𝑡 〉. Applying the 
Langreth rules and after a little algebra, the currents are recast as 
 
  𝐼 = − !

!ℏ
∫ 𝑑𝐸   !!!!

!
Im  𝐺!,!! 𝐸 [𝑓! 𝐸 − 𝑓!(𝐸)]!        (9) 

 
  𝐽 = − !

!ℏ
∫ 𝑑𝐸   !!!!

!
(E − µμ!)Im  𝐺!,!! 𝐸 [𝑓! 𝐸 − 𝑓!(𝐸)]!       (10) 

 
where 𝐺!,!! 𝐸  is the dot retarded Green’s function, from which the local density of states can be derived. 

In Eqs. (9) and (10), we define the level broadening due to interaction with reservoir  𝛼, Γ! = 2𝜋𝜌! 𝐸 𝑉!(𝐸) !. 
It is proportional to the lead density of states, 𝜌!(𝐸) = 𝛿(𝐸 − 𝜀!")! , and the tunneling probability 𝑉!(𝐸) !. We 
consider the wide band limit and assume that Γ!   is independent of the energy E. Additionally, I and J in Eqs. (9) and 
(10) depend on the difference of Fermi functions at the leads, 𝑓! 𝐸 = 1/[1 + exp  (𝐸 − 𝜇!)/(𝑘!𝑇!)],  where 𝜇! is 
the electrochemical potential defined above and 𝑇! = 𝑇 + 𝜃!  with 𝑇  the background temperature and 𝜃!  the 
temperature shift applied to lead 𝛼. We remark that phonons can directly contribute to the heat flux (and indirectly 
to the charge current) but we henceforth consider low temperatures and neglect phonon effects. 

 The retarded Green’s function in Eqs. (9) and (10) can be found using the equation-of-motion technique [24]. 
This approach yields coupled equations of motion for correlation functions. The resulting (infinite) hierarchy of 
equations is simplified based on physical grounds. We focus on the regime where electrons interact strongly in the 
dot (Coulomb blockade) and take into account tunneling processes up to leading order (sequential tunneling). As a 
consequence, we disregard cotunneling processes (higher-order tunneling via virtual events) and Kondo correlations 
(many-body spin-flip interactions in the dot), which can be important for strongly coupled dots or for very low 
temperatures (𝑇 smaller than the level broadening). Therefore, we neglect the following higher order correlators: 
〈 𝑑!

!𝐶!"#𝑑! ,𝑑!
! 〉  and 𝐶!"!

! 𝑑!𝑑! ,𝑑!
! ,  which correspond to virtual charge excitations in the dot, and 

〈 𝐶!"#𝐶!"!
! 𝑑! ,𝑑!

! 〉, which describes spin excitations. Taking into account these simplifications, the retarded Green 
function acquires an analytical form, 

 
𝐺!,!! 𝐸 = !!〈!!〉

!!!!!!!/!
+ 〈!!〉

!!!!!!!!!/!
        (11) 

 
in terms of the expected value of the dot occupation 
 

𝑛! = !
!!"

∫ 𝑑𝐸  𝐺!,!! (𝐸)         (12) 
 
where the lesser Green function is determined from the Keldysh equation 𝐺! = 𝑖 Γ!𝑓! 𝐸 + Γ!𝑓! 𝐸 𝐺! !. 

 Equation (11) shows that the spectral function (− !
!
)Im  𝐺!,!! (𝐸) has two Coulomb-blockade peaks centered at 

𝐸 = 𝜀! and 𝐸 = 𝜀! + 𝑈, and broadened by the total linewidth Γ = Γ! + Γ!. Each peak is weighted by the (electron-
like or hole-like) occupation for the opposite spin. We stress that the Coulomb blockade regime is only possible 
when Γ < 𝑈 since both peaks must be visible.  We emphasize two features of the transmission function. First, the 
resonance positions are not renormalized due to tunnel coupling or electron-electron interactions. Such 
renormalizations would appear beyond the sequential tunneling regime or for reservoirs with energy resolved 
densities of states. Second, Eq. (12) shows that the occupation depends, quite generally, on voltage and temperature 
differences. Thus,  (− !

!
)Im  𝐺!,!! 𝐸  will also depend on the applied fields, which will in turn affect the currents I 

and J. This is a crucial fact that noninteracting models are not able to capture and turns out to be essential for a 
correct description of the nonlinear regime of transport. Our calculations thus have to be treated in a self-consistent 
fashion. 

The self-consistent procedure can be simplified by noticing that due to the absence of Zeeman splittings the dot 
density should be nonmagnetic. Hence, the mean occupation in the dot 𝑛 = 𝑛! + 〈𝑛!〉 reads 
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𝑛 =    !!

!!!!!
           (13) 

 
We have defined 𝐴 and 𝐵 as the integrals 
 
𝐴 = !

!!
∫ 𝑑𝐸 !!!! ! !!!!!(!)

!!!! !!!!/!
         (14) 

 
𝐵 = !

!!
∫ 𝑑𝐸 !!!! ! !!!!!(!)

!!!!!! !!!!/!
         (15) 

 
In general, 𝑛  takes values from 0 to 2 depending on the value of the energy level 𝜀!. The occupation is roughly 
constant between the Coulomb blockade peaks and significantly changes across resonances. Once the 
nonequilibrium occupation is determined for a given set of parameters, the currents I and J can be easily derived.  

3. Heat Current 

When a voltage is applied to an atomic-scale junction, experiments show an asymmetric rectification of the 
generated power [13]. We now investigate the heat flux distribution in a quantum dot using the theoretical model 
discussed above. Here, we consider that heat can flow due to voltage or to temperature biases. The former case is 
sketched in Fig. 1(a), where we explore a system with a symmetrically applied voltage bias and set 𝐸! = 0. In the 
case of a temperature-driven dot as illustrated in Fig. 1(b), the temperature shift is applied to one of the electrodes: 
𝜃! = 𝜃  and 𝜃! = 0  lead to positive temperature differences 𝜃 = 𝑇! − 𝑇! > 0  while 𝜃! = 0  and 𝜃! = 𝜃  yield a 
negative temperature gradient. 

 

 
Fig. 1. Pictorial representations of (a) a quantum dot coupled to voltage biased terminals and (b) a quantum dot coupled to thermally biased 

reservoirs. 
 

3.1. Voltage-driven case 

Inserting Eq. (7) and the result of the retarded Green’s function [Eq. (11)] in the expression for the heat current in 
Eq. (10), we calculate the dependence of 𝐽 as a function of the voltage bias (Fig. 2). In Fig. 2(a), we depict the heat 
current for several values of 𝜀!. At low bias (see the inset), J depends linearly on V (Peltier effect). Remarkably, this 
linear regime disappears quickly, allowing Joule and higher order effects to dominate (see the main figure). 
Interestingly, the heat current can be positive or negative at low bias (reversible heat), showing a nontrivial zero for 
finite 𝑉  when 𝜀! = −3𝑈/4 . This vanishing power is, in fact, more general: it occurs for any value of 𝜀! . 
Additionally, 𝐽  exhibits an asymmetric behavior for any value, expecting the particle-hole symmetry point 
𝜀! = −𝑈/2 but for different positions of V. As a consequence, a power asymmetry between V and –V arises. This 
asymmetry is apparent for large values of 𝜀! far from the resonances. Our results in Fig. 2(a) show that there exists 
invariance when we simultaneously change 𝜀! → −𝜀! − 𝑈 and 𝑉 → −𝑉. 

The heat current changes its curvature for finite 𝑉 . This is related to the maxima and minima of the 
electrothermal conductance (differential Peltier coefficient) 𝑀 = 𝑑𝐽/𝑑𝑉, shown in Fig. 2(b). These extremal points 
are related to the alignment of the dot resonance peaks with the leads’ electrochemical energies, yielding extremum 
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values when 𝜀! = −𝑉/2 and 𝜀! = −𝑉/2 − 𝑈. We clearly see in Fig. 2(b) a change of sign depending of the sign of 
𝑉. However, the point when the change of sign occurs is not 𝑉 = 0 due to the nontrivial zero of the heat current. 
Furthermore, our results demonstrate that for sufficiently large voltages the electrothermal conductance 𝑀 directly 
follows from the electrical current, 𝑀 𝑉 → ∞ = −𝐼/2, because at very large voltages the occupation factors are 
simply  𝑓! → 1 and 𝑓! → 0 and the energy flux becomes independent of voltage. 

 
 

Fig. 2. (a) Heat current versus voltage difference for a single-level quantum dot in the Coulomb blockade regime and different level positions 
(gate voltages). In this case, the external temperature gradient is taken as 𝜃 = 0. Inset: Detail of the heat current around the equilibrium point. (b) 
Differential electrothermal conductance M as a function of the voltage bias and level position. All energies are set in terms of the broadening 
Γ = Γ! + Γ!  with Γ! = Γ! , charging energy U=10  Γ and background temperature T=0.1  Γ. 

 

3.2. Temperature-driven case 

In Fig. 3(a), we show the heat current with an increasing temperature difference. 𝐽 is a monotonic function of   𝜃 
for all values of the energy level. As in the voltage-driven case, the linear behavior here predicted by the Fourier law 
is quickly surpassed by higher order terms as the temperature shift exceeds values larger than the base temperature. 
The linear response behavior is better preserved when 𝜀! = 0 and 𝜀! = −𝑈 (the two curves coincide) due to the 
alignment of the resonances with the electrochemical potentials. Furthermore, for increasingly larger values of 𝜃 the 
heat current attains a constant value. Physically, this can be understood from the fact that the occupation factor for 
thermally excited electrons becomes almost constant around the dot resonances for very high temperatures. 

The saturation effect is related to the properties of the differential thermal conductance 𝐾 = 𝑑𝐽/𝑑𝜃, which decays 
as 𝐾 ∝ 1/𝜃 for large temperature biases. Figure 3(b) shows the thermal conductance as a function of both the 
temperature difference in the leads and the energy level 𝜀! . Clearly, 𝐾 is antisymmetric under reversal of 𝜃, 
meaning that the heat flux direction is determined by the hotter lead. We observe that near the resonances the 
thermal conductance reaches two maxima (or minima) before the power-law decay. In contrast, for energy levels 
around the particle-hole symmetry point, 𝜀! = −𝑈/2 , 𝐾  only reaches one extremal value. Therefore, heat 
conduction driven by thermal gradients is quite sensitive to variations of an external gate potential. 
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Fig. 3. (a) Heat current as a function of the temperature shift in absence of applied voltages and for different values of the gate voltage. The 
results for 𝜀! = 0 and 𝜀! = −𝑈 are on top of each other. (b) Differential thermal conductance as a function of the temperature bias and level 

position. We use the same parameters as in Fig. 2. 

4. Kelvin-Onsager relation 

The Kelvin-Onsager relation establishes a reciprocal relation between the thermoelectric and electrothermal 
responses of a conductor out of equilibrium. In our system, the electrothermal conductance 𝑀 𝑉 , which describes 
the amount of power generated in response to a voltage bias should be reciprocal to the thermoelectric conductance 
𝐿 𝜃 = 𝑑𝐼/𝑑𝜃, which measures the current changes due to a shift of the temperature in the leads. Close to 
equilibrium, one has 𝑀! = 𝐿!𝑇, where 𝑀! (𝐿!) are the electrothermal (thermoelectric) conductances at zero voltage 
and temperature differences (𝑉 = 𝜃 = 0). This is a linear-response property with a universal character. As a 
consequence, it also applies to our Coulomb-blockaded dot. However, when nonlinear effects start to dominate, the 
relation is broken [25,26]. In Fig. 4 we illustrate this departure when the degree of nonlinearity increases with 
increasing 𝑉 or 𝜃. Clearly, in the limit of zero voltage or temperature bias the relation is exactly satisfied, but as the 
external fields increase, the deviation from the Kelvin-Onsager relation becomes apparent. Breakdown of the 
reciprocal relation occurs independently of 𝜀!, although is larger for values of the energy level that lie far from 
𝜀! = −𝑈/2  since at this point [Fig. 4(b)] the thermoelectric conductance exactly cancels due to particle-hole 
symmetry, independently of  𝜃. 
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Fig. 4. Comparison between the differential electrothermal conductance M as a function of the voltage bias and the differential thermoelectric 

conductance L as a function of the temperature shift for three different gate voltages indicated above. We use the same parameters as in Figs. 2 
and 3. 

5. Conclusions 

We have theoretically investigated the nonlinear power generated across a quantum dot in response to voltage or 
temperature shifts. The dot is largely dominated by charging effects yielding Coulomb blockade peaks in the local 
density of states. Based on our self-consistent calculations, we have shown that nonlinearities appear quickly in the 
heat current as voltage increases. The nonlinear Peltier coefficient shows a rich behavior as either the dc bias or the 
dot energy level is tuned. When the dot is subjected to a thermal gradient, the heat always flows from the hot 
reservoir to the cold one, leading to a distinctive antisymmetry for the differential thermal conductance. Finally, we 
have discussed breakdowns of the Kelvin-Onsager relation in the nonlinear regime of transport. Our work is useful 
to characterize the performance of small devices that aim at taking advantage of nonlinear effects in order to control 
heat dissipation at the nanoscale. Future works should consider the role of phonons and coherence beyond the 
sequential tunneling regime. 
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