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Abstract

Phyllite clays contain clay minerals (chlorite, illite and mixed-layer illite smectite), quartz and feldspars. In this experimental laboratory study, new composites of phyllite clay and cement (5, 7 and 9 _wt.%) were prepared and

tested to determine their Atterberg limits, dry density and optimum water content for modified Proctor (MP) compaction, California Bearing ratio, swelling potential after soakage in water, unconfined compressive strength (UCS) and

water-permeability coefficient. From the mixes investigated, the composite with 5 ——wt.% cement was deemed most suitable for certain construction material applications, having a plasticity index of 10.5%, maximum dry density of

2.17 Mg/m?® and optimum water content of 8% for MP compaction (undergoing no swelling under soakage), a UCS of 0.74 MPa, and a very low permeability coefficient value of 7.4 x 10~ m/s. Potential material applications for these

new composites include for building construction, roofs, and flexible pavements.
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1 Introduction

Phyllite clays are rocks (metamorphosed to a low extent) of slate clay materials having an abundance of fine-grained phyllosilicates, which gives them an unctuous feel and the existence of preferential cleavage makes them easily
breakable into thin sheets (Ramamurthy et al., 1993; Valera et al., 2002; Garzon et al., 2009a; Adom-Asamoah and Owusu-Afrifa, 2010; Oliva-Urcia et al., 2010). Phyllite clays can range in color from beige to violet and from reddish to
gray and black. Although found in several parts of the world, phyllite clays are predominant in the Almeria and Granada provinces (Andalusia region, southeast Spain) (Lonergan and Platt, 1995; Alcantara-Ayala, 1999; Garzén et al., 2009b),
forming a band of Permo-Triassic materials, along with slates and marble. In recent years, a few publications have reported on different applications of phyllite clays in materials technology; e.g. as a filler in plastic (Valera et al., 2002) and
concrete (Ramamurthy et al., 1993; Adom-Asamoah and Owusu-Afrifa, 2010) products. In southeast Spain, phyllite clays have been used as raw materials for some specific applications on account of their compaction properties and very low
permeability, including: as covering and to waterproof roofs and the central area of ponds, core material in zoned dams and also for urban waste landfill applications (Garzén et al., 2009a,b, 2010). In this instance, for flat roof applications,
typically several layers of clay phyllites are placed and compacted on a cane matting base, which is supported by a framework of wooden beams. For gable or hip roof applications, the compacted phyllite clay layers are typically covered by clay
brick tiles or slate leaves. From previous work by the authors, compacted phyllite clays sourced from the Almeria and Granada provinces (Spain) do not undergo significant swelling on soaking on account of their low values of specific surface

area, porosity and water-retention ability (Garzon et al., 2009a,b, 2010). However, the expansivity of these phyllite clays at low applied stress limits certain applications; e.g. as a road subgrade material.

The improvement and (or) stabilization of clayey materials by the addition of cementing agents (e.g. cement or lime) in order to obtain superior engineering properties/performance is a well-established technology. The proper design of

clayey soil-cement composites includes careful identification of the soil characteristics and an experimental testing programse aimed at identifying an appropriate cementing agent and mix proportion to achieve the required
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properties/performance for the composite material. Composite materials having attributes superior to those of the raw soil, but produced at similar relative cost, are attractive alternatives for soil material applications, such as Construction and
Building Materials, Soil Engineering, and Civil, Structural and Environmental Engineering. Different methods have been reported in the literature on the use of some industrial additives or wastes as cementing agents to improve the
properties/performance of raw clayey materials (Ayuso, 1982; Gidley and Sack, 1984; Arabi and Wild, 1986; Bell, 1996), laterites (Osula, 1996), soil (Bell, 1996; Attom and Al-Shariff, 1998; Miller and Azad, 2000), clayey soil (Kolias et al., 20054;
Yong and Ouhadi, 2007), residual soil (Basha et al., 2005), and expansive clay/soil (Ayuso, 1982; Al-Rawas et al., 2005; Seco et al., 2011). For instance, among the industrial waste materials investigated in these studies were burned olive
waste (Attom and Al-Shariff, 1998), cement kiln dust (Miller and Azad, 2000), fly ash (Kolias et al., 20054; Seco et al., 2011), rice husk ash (Basha et al., 2005), rice husk fly ash (Seco et al., 2011), artificial pozzolan (Al-Rawas et al., 2005), and

coal bottom ash, natural gypsum and aluminatum filler (Seco et al., 2011).

Regarding clay—-cement composites, Chang et al. (2007) studied the material properties of Portland cement paste with nano-montmorillonite additive. They reported that the composites comprising 0.6% and 0.4% of montmorillonite by
weight of cement produced the optimum values for compressive strength and the permeability coefficient, respectively, with an increase in compressive strength of ~ 13% and a decrease in the permeability coefficient of ~ 50% produced.

Hakamy et al. (2014) studied the characteristics of hemp fabric (HF) reinforced clay—cement composites. They reported an optimum replacement of ordinary Portland cement with 1 ——wt.% clay decreased the porosity and significantly

increased the density, flexural strength and fracture toughness of HF-reinforced nanocomposite. Potential building applications include the construction of sandwich panels, ceilings, roofing sheets, on-ground floors and concrete tiles. Wei and

Meyer (2014) reported the partial replacement of Portland cement by a combination of metakaolin and clay (1, 3 and 5 ——wt.%) in sisal fiber-reinforced cement composites enhanced mechanical properties.

However, we found no published work in the literature concerning the engineering or hydraulic properties of composites prepared using phyllite clays and cement additive. The present investigation reports an original experimental

laboratory study on phyllite clay—cement composites undertaken by the authors to examine the improvement in selected engineering properties compared with the phyllite clay material itself.

2 Experimental

In the present investigation, selected phyllite clay samples, sourced from Berja (Almeria, Spain), and white cement (CEM V/A 32.5 N/mm? (EN 197-1: CEN, 2000)) were used. In its natural state, the phyllite clay material had a very low
gravimetric water content ranging of 1-2% (mean of 1.8%), a void ratio (volume of voids to volume of solids) of ~ 0.39, and a dry density of 2.03 Mg/m® (Garzén et al., 2010). The sampled phyllite clay material was oven dried at 105-110 °C to
constant mass, allowed —cooling to ambient laboratory temperature, disaggregated and then dry sieved to obtain the fraction passing <- 125 uym. Using this size fraction of the phyllite clay, batches comprising 0, 5, 7 and 9 ——wt.% cement
were prepared for geotechnical index, compaction, unconfined compressive strength (UCS) and permeability testing. In preparing the composite materials, the phyllite clay and cement were dry mixed for a 1 h period to achieve homogeneity and

after that water was added.

As part of the present investigation, the sampled phyllite clay was characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry. A sample was taken through successive quartering, crushed, lightly ground,

sieved to obtain the fraction passing the 63 pm aperture sieve (No. 230 ASTM sieve), oven dried at 105-110 °C for a 24 h period, and then allowed cooling in a desiccator to ambient laboratory temperature. Aliquots of dried material (1-2 g)
were then gently ground using an agate mortar for further analysis. For the XRF analysis, an Axios spectrometer (PANanalytical B.V., Germany) was used; with the experimental test conditions, standard certified materials and data processing
required previously reported by Garzon et al. (2009a). For the XRD analysis, an XZPERT PRO X-ray diffractometer (PANanalytical B.V., Germany), was used at 36 kV and 26 mA settings, with Ni-filtered CuKa radiation and graphite
monochromator. Oven-dried phyllite clay sub-samples were gently ground in an agate mortar and a random-oriented powder mount specimen prepared for XRD testing (Niskanen, 1964; Sanchez-Soto et al., 1993). The XRD instrument, with
X*Celerator detector, had the following settings: 26 range of 3-70°; step size of 0.03° (26); scan speed of 0.05/240 (26/s); counting time of 240 s; divergence slit of -1/2 (°26) and antiscatter slit of —1/4 (°26). The identification of crystalline

phases, according to the files by the Joint Committee for Powder Diffraction Standards, was performed using the software provided by the equipment.

The phyllite clay and the composites of phyllite clay and cement were characterized by their liquid limit (LL), plastic limit (PL) and plasticity index (PI) values, which were determined in accordance with standard sample preparation and
testing procedures (ASTM, 2005). Modified Proctor (MP) compaction tests and California Bearing Ratio (CBR) tests were performed over a range of compaction water contents in accordance with the sample preparation and testing procedures
given in ASTM (2014). From the MP data, the optimum water content for compaction; and corresponding maximum dry density value; of the phyllite clay and composite materials were determined. The CBR test method is used to evaluate the
potential strength of subgrade, subbase, and base course materials, for use in the design of road and airfield pavements. CBR values were determined by measuring the force required to cause the CBR plunger to penetrate at a specified rate
into MP compacted specimens which had been allowed to soak in a water bath for 4 —days. The swelling potential of the MP compacted specimens was determined from the measured longitudinal dimensional change of the compacted soil
cylinders under soakage (ASTM, 2014). Unconfined compression tests (ASTM, 2013) and water-permeability testing under constant confining stress and controlled-gradient conditions in the triaxial cell were performed on MP compacted

specimens (50 mm in diameter by 100 mm long) of the phyllite clay and the composites of phyllite clay and cement; these specimens having been allowed to cure in a wet chamber for a 7 —day period before performing these tests}.

Finally, the thicknesses (E, in cm) of the flexible pavement required for road work construction using the phyllite clay and its cement composites were calculated using Peltier!'s equation (Dal-Ré, 1994):

E= (100+ 150P“2),f(f+ 5) (1)
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where P is the maximum wheel load (tonne), estimated at 3 -tonne, and /is the CBR value, determined as described earlier.

3 Results and discussion

XRF analysis of the raw phyllite clay samples is reported in Table 1 and XRD in Fig. 1. From the latter, the mineralogical composition of this material, which had a 6.8% loss in dry mass after a 1 h ignition period at 1000 °C, was
identified as chlorite and illite (main clay minerals), quartz and some minor aluminosilicates, potassium feldspar, and an interstratified phase which was identified as mixed-layer illite smectite or possible chlorite smectite. Iron oxide was also
detected as a minor component. This mineralogical composition agreed with the chemical composition reported in Table 1. The amount of SiO, is associated with the presence of quartz and silicates (illite, chlorite, feldspars and interstratified
phase). The content of CaO and MgO can be mainly related to the chlorite identified by XRD. The alkaline elements (sodium and potassium) are associated with illite and feldspar because these silicates contain potassium. The 6.8% loss in dry

mass on ignition is consistent with the presence of phyllosilicates having structural OH groups, which are lost by thermal treatment at 1000 °C.

Table 1 Chemical analysis by X-ray fluorescence. Note: P2O5 < 0.1%; MnO < 0.08%.

Weight (%)

Sample 1 Sample 2 Sample 3
SiO, 45.66 49.70 48.33
Al,O, 24.36 23.40 22.04
Fe,O, 9.41 8.51 8.35
TiO, 1.30 1.01 1.15
CaOo 3.06 1.68 4.43
MgO 2.81 2.95 3.43
Na,O 2.33 2.45 1.84
K,0 3.91 3.84 3.32
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Fig. 1 XRD diagram of clay phyllite sample. Note: C, chlorite; F, feldspar; I/S, interstratified illite/smectite phase; M, mica (ilite); and Q, quartz.

Fig. 2 presents the measured LL, PL, and PI (defined as the numeric difference between the LL and PL) values for the phyllite clay and the composites of phyllite clay and cement in their remolded state. For the range of 5-9 ——wt.%
cement investigated, the addition of cement produced a step increase in the LL (from 26% to 36%) and the PL (from 17% to 24-25%) (Fig. 2a). This had the effect of producing an apparent approximately linear increase in Pl (from 8.4% to 12%)
with increasing cement content over the range of 0-9 ——wt.% cement (see Fig. 2b). Further, this caused a change in plasticity characterization, from low plasticity (LL < 35%) for the phyllite clay, to intermediate plasticity (LL = 35-50%) for the
composites with 5, 7 and 9 wt.% cement. This behavior is influenced by the presence of a relative high proportion of clay minerals (chlorite and illite) and the mixed layer in the raw phyllite clay. Hence, the addition of up to 9 ——wt.% cement

does not appear effective in reducing the sensitivity of the phyllite clay to water content variation (Bell, 1996; Kolias et al., 2004; Yong and Ouhadi, 2007).
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Fig. 2 Atterberg limits for phyllite clay and clay—cement composites: a) liquid limit and plastic limit, and b) plasticity index.

Referring to Fig. 3, MP compactive effort produced quite high maximum dry densities, which were greater than that of the in-situ phyllite clay material (2.03 Mg/m®, Garzén et al. (2010)). The MP maximum dry density reduced slightly,

and approximately linearly, with increasing cement content; from 2.25 Mg/m? for the phyllite clay to 2.14 Mg/m? for the composite with 9 wt.% cement. Further, the addition of cement produced a moderate (and again an approximately linear)

increase in the optimum water content for MP compaction; from 6.5% for the phyllite clay to 9% for the composite with 9 wt.% cement (Fig. 3). This behavior is consistent with that reported previously for other clayey materials, expansive
clays and soils (Ayuso, 1982; Osula, 1996; Kolias et al., 2004; Al-Rawas et al., 2005; Basha et al., 2005; Yong and Ouhadi, 2007). The slight reduction in maximum dry density values for the clay—cement composites, compared with the phyllite

clay, may be explained by the lower density of the cement additive and the higher rigidity of the soil skeleton produced for the composite materials. The moderate increase in the optimum water content is consistent with the increase in plasticity
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caused by the addition of cement (Fig. 2b). These changes can be associated with a pozzolanic reaction (i.e. chemical reaction between the clay minerals present in the test materials), as occurs with related clay materials (Ayuso, 1982; Gidley

and Sack, 1984; Arabi and Wild, 1986; Osula, 1996; Miller and Azad, 2000; Kolias et al., 2004; Al-Rawas et al., 2005; Basha et al., 2005; Yong and Ouhadi, 2007; Seco et al., 2011). In the present study, clay minerals (chlorite and illite) are the
main components of the phyllite clay investigated (Fig. 1).
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Fig. 3 Modified Proctor compaction test results.

Referring to Table 2, the CBR values of the composites with 5-9 wt.% cement were significantly greater, 36-50% at 100% MP and 15-32% at 95% MP, compared with the corresponding values for the phyllite clay of 2.5% and 1.7%
respectively. Yong and Ouhadi (2007) proposed a mechanistic model on wetted-state instability of road bases founded on natural and cement-stabilized clayey soils containing phyllosilicates (illite, chlorite and kaolinite), palygorskite

(attapulgite), and other minerals including quartz, gypsum, arcanite, thendernite, calcite, and dolomite. Because of the palygorskite's

presence, the clayey material they investigated had some very unique features, with the formation of a
transformation product of this fibrous silicate increasing the swelling potential. In the present investigation, the phyllite clay had a measured swelling value of 3.6%, whereas the composites with 5-9 wt.% cement additive did not experience

any swelling under soakage (Table 2). The swelling behavior of phyllite clay is associated with its mineralogical composition (particularly that of the clay minerals), with the zero swelling potential for the composite materials most likely due to the
pozzolanic reaction with the 5-9 wt.% cement additive.

Table 2 Results of CBR and swelling tests and calculated road pavement thickness (refer to Eq. (1)). Note: E1 and Ep, thicknesses of the road pavement required based on measured CBR values for 100% and 95% of MP maximum dry
density, respectively, determined in accordance with ASTM (2014).

Test material CBR at 100% MP (%) CBR at 95% MP (%) Swelling (%) E, (cm) E, (cm)
Phyllite clay 25 1.7 3.6 48.0 53.7
Phyllite clay with 5 ——wt.% cement 43 15 0 8 18
Phyllite clay with 7 ——wt.% cement 50 28 0 7 11
Phyllite clay with 9 ——wt.% cement 36 32 0 9 10

Compared with the phyllite clay, the required thickness E of the road pavement necessary to support vehicular traffic provoked by a linear work (Eqg. (1)) was significantly lower for the composite with 5——wt.% cement (see Table 2).
Further, based on the limited available data, a general trend of a modest reduction in the pavement thickness occurred with increasing cement content over the range of 5 to 9 wt.% cement investigated. Hence, the addition of cement to

phyllite clays for road construction would allow considerable reductions in overall costs.

Table 3 lists the measured permeability coefficient values for the MP compacted test materials which were of the order of 10-'° to 10~ " m/s, indicating extremely low permeability. The permeability coefficient values of the composites

with 5 and 7 wt.% cement were approximately an order of magnitude greater than that measured for the phyllite clay and the composite with 9 wt.% cement.
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Table 3 Evolution of permeability coefficient for MP compacted phyllite clay samples with addition of cement.
Permeability coefficient_(m/s)

Material
Phyllite clay 1.8 x 10
Phyllite clay with 5 wt.% cement 7.4 x 10"
Phyllite clay with 7 wt.% cement 4.0 x 1071
Phyllite clay with 9 wt.% cement 1.4 x 10"

Fig. 4a presents unconfined compressive stress against axial strain plots for the different test materials. The UCS increased approximately linearly in value with cement content (Fig. 4b), mobilizing 1.02 MPa for the composite with

9 wt.% cement, approximately twice that for the phyllite clay (0.52 MPa). These strength values are in broad agreement with the range reported by Dal-Ré (1994) for expansive soils stabilized with cement for use in earth construction. The

stiffness (Young*s modulus) was also found to increase with increasing cement content (Fig. 4a); e.g. the composite with 9 ——wt.% cement was three times stiffer than the phyllite clay. However, the test materials were quite brittle, with the

axial specimen strain corresponding to the UCS reducing from 1.3% (phyllite clay) to 0.75% (composite with 9 wt.% cement) (Fig. 4b).
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Fig. 4 Unconfined compressive stress (UCS in kPa) testing of specimens cured for 7 days period: (a) representation of UCS vs. axial strain; and (b) including axial strain at UCS (%).

The results of this experimental study indicate that a relatively low addition of cement can produce significantly higher UCS values (0.74 MPa for 5——wt.% cement), compared with the raw phyllite clay (0.52 MPa). On this basis, ‘green
ceramic bodies’ (e.g. bricks and tiles) can be produced at relatively low additional cost using ground phyllite clay with 5-9 ——wt.% cement addition. This was demonstrated in the laboratory by depositing phyllite clay—cement mixtures into
330 x 330 x 16 mm (for bricks) and 280 x 280 x 14 mm (for tiles) molds, consolidating, curing for a 7 day period, and de-molding. Using a conventional laboratory press and moderate values of confining pressure, bricks and tiles of different
shapes can be manufactured for ready-to-use applications (particularly as impermeabilization products having moderate compressive strength), without the need for firing. However, the PI range (Fig. 2a) is not sufficient for processing of these

composite materials by extrusion techniques. Other potential material applications include for building construction, flexible pavements, and road sub-base and sub-grade construction.

4 Summary and conclusions

This study reported a new class of composite prepared using phyllite clay and cement additive at 5, 7 and 9 wt.%, which has improved engineering properties over the raw phyllite clay. For 5 wt.% cement, the composite material

had a plasticity index of 10.5%, a maximum dry density of 2.17 Mg/m® and an optimum water content of 8% for MP compaction, an unconfined compression strength of 0.74 MPa, and a very low permeability coefficient value of 7.4 x 10~ " m/s.
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Potential material applications include for building construction, roofs, pavements, and road sub-base and sub-grade construction. For instance, bricks and tiles can be manufactured using ground phyllite clay and cement additive,
conventional pressing and a curing period of 7 days, before use in-service. In such instances, phyllite clay—-cement composites have the potential for use as a low-cost alternative when they are available locally, such as in the Andalusia

region, Spain. Further research on the use of phyllite clays in the preparation of mortars and concrete (cement matrix composites) for specific material applications is underway and will be the subject of future reports.
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« First report on stabilization of clay phyllites using cement:

« Effect of 5-9 ——wt.% cement on engineering properties of clay phyllites:

» Most suitable stabilization achieved for phyllite clay with 5 ——wt.% cement:







